WORST_CASE(Omega(n^1),O(n^1)) proof of input_Tb51zbqQr9.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsTAProof [FINISHED, 21 ms] (4) BOUNDS(1, n^1) (5) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (12) typed CpxTrs (13) OrderProof [LOWER BOUND(ID), 13 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 482 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 129 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 117 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 147 ms] (22) BEST (23) proven lower bound (24) LowerBoundPropagationProof [FINISHED, 0 ms] (25) BOUNDS(n^1, INF) (26) typed CpxTrs (27) RewriteLemmaProof [LOWER BOUND(ID), 156 ms] (28) typed CpxTrs (29) RewriteLemmaProof [LOWER BOUND(ID), 170 ms] (30) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: g(f(x), y) -> f(h(x, y)) h(x, y) -> g(x, f(y)) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: g(f(x), y) -> f(h(x, y)) h(x, y) -> g(x, f(y)) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (3) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2] transitions: f0(0) -> 0 g0(0, 0) -> 1 h0(0, 0) -> 2 h1(0, 0) -> 3 f1(3) -> 1 f1(0) -> 4 g1(0, 4) -> 2 h1(0, 4) -> 3 f1(3) -> 2 f2(0) -> 5 g2(0, 5) -> 3 f2(4) -> 5 h1(0, 5) -> 3 f1(3) -> 3 f2(5) -> 5 ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: g(f(z0), z1) -> f(h(z0, z1)) h(z0, z1) -> g(z0, f(z1)) Tuples: G(f(z0), z1) -> c(H(z0, z1)) H(z0, z1) -> c1(G(z0, f(z1))) S tuples: G(f(z0), z1) -> c(H(z0, z1)) H(z0, z1) -> c1(G(z0, f(z1))) K tuples:none Defined Rule Symbols: g_2, h_2 Defined Pair Symbols: G_2, H_2 Compound Symbols: c_1, c1_1 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: G(f(z0), z1) -> c(H(z0, z1)) H(z0, z1) -> c1(G(z0, f(z1))) The (relative) TRS S consists of the following rules: g(f(z0), z1) -> f(h(z0, z1)) h(z0, z1) -> g(z0, f(z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (9) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: G(f(z0), z1) -> c(H(z0, z1)) H(z0, z1) -> c1(G(z0, f(z1))) The (relative) TRS S consists of the following rules: g(f(z0), z1) -> f(h(z0, z1)) h(z0, z1) -> g(z0, f(z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (12) Obligation: Innermost TRS: Rules: G(f(z0), z1) -> c(H(z0, z1)) H(z0, z1) -> c1(G(z0, f(z1))) g(f(z0), z1) -> f(h(z0, z1)) h(z0, z1) -> g(z0, f(z1)) Types: G :: f -> f -> c f :: f -> f c :: c1 -> c H :: f -> f -> c1 c1 :: c -> c1 g :: f -> f -> f h :: f -> f -> f hole_c1_2 :: c hole_f2_2 :: f hole_c13_2 :: c1 gen_f4_2 :: Nat -> f ---------------------------------------- (13) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: G, H, g, h They will be analysed ascendingly in the following order: G = H g = h ---------------------------------------- (14) Obligation: Innermost TRS: Rules: G(f(z0), z1) -> c(H(z0, z1)) H(z0, z1) -> c1(G(z0, f(z1))) g(f(z0), z1) -> f(h(z0, z1)) h(z0, z1) -> g(z0, f(z1)) Types: G :: f -> f -> c f :: f -> f c :: c1 -> c H :: f -> f -> c1 c1 :: c -> c1 g :: f -> f -> f h :: f -> f -> f hole_c1_2 :: c hole_f2_2 :: f hole_c13_2 :: c1 gen_f4_2 :: Nat -> f Generator Equations: gen_f4_2(0) <=> hole_f2_2 gen_f4_2(+(x, 1)) <=> f(gen_f4_2(x)) The following defined symbols remain to be analysed: h, G, H, g They will be analysed ascendingly in the following order: G = H g = h ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: h(gen_f4_2(n6_2), gen_f4_2(b)) -> *5_2, rt in Omega(0) Induction Base: h(gen_f4_2(0), gen_f4_2(b)) Induction Step: h(gen_f4_2(+(n6_2, 1)), gen_f4_2(b)) ->_R^Omega(0) g(gen_f4_2(+(n6_2, 1)), f(gen_f4_2(b))) ->_R^Omega(0) f(h(gen_f4_2(n6_2), f(gen_f4_2(b)))) ->_IH f(*5_2) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (16) Obligation: Innermost TRS: Rules: G(f(z0), z1) -> c(H(z0, z1)) H(z0, z1) -> c1(G(z0, f(z1))) g(f(z0), z1) -> f(h(z0, z1)) h(z0, z1) -> g(z0, f(z1)) Types: G :: f -> f -> c f :: f -> f c :: c1 -> c H :: f -> f -> c1 c1 :: c -> c1 g :: f -> f -> f h :: f -> f -> f hole_c1_2 :: c hole_f2_2 :: f hole_c13_2 :: c1 gen_f4_2 :: Nat -> f Lemmas: h(gen_f4_2(n6_2), gen_f4_2(b)) -> *5_2, rt in Omega(0) Generator Equations: gen_f4_2(0) <=> hole_f2_2 gen_f4_2(+(x, 1)) <=> f(gen_f4_2(x)) The following defined symbols remain to be analysed: g, G, H They will be analysed ascendingly in the following order: G = H g = h ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: g(gen_f4_2(+(1, n314_2)), gen_f4_2(b)) -> *5_2, rt in Omega(0) Induction Base: g(gen_f4_2(+(1, 0)), gen_f4_2(b)) Induction Step: g(gen_f4_2(+(1, +(n314_2, 1))), gen_f4_2(b)) ->_R^Omega(0) f(h(gen_f4_2(+(1, n314_2)), gen_f4_2(b))) ->_R^Omega(0) f(g(gen_f4_2(+(1, n314_2)), f(gen_f4_2(b)))) ->_IH f(*5_2) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) Obligation: Innermost TRS: Rules: G(f(z0), z1) -> c(H(z0, z1)) H(z0, z1) -> c1(G(z0, f(z1))) g(f(z0), z1) -> f(h(z0, z1)) h(z0, z1) -> g(z0, f(z1)) Types: G :: f -> f -> c f :: f -> f c :: c1 -> c H :: f -> f -> c1 c1 :: c -> c1 g :: f -> f -> f h :: f -> f -> f hole_c1_2 :: c hole_f2_2 :: f hole_c13_2 :: c1 gen_f4_2 :: Nat -> f Lemmas: h(gen_f4_2(n6_2), gen_f4_2(b)) -> *5_2, rt in Omega(0) g(gen_f4_2(+(1, n314_2)), gen_f4_2(b)) -> *5_2, rt in Omega(0) Generator Equations: gen_f4_2(0) <=> hole_f2_2 gen_f4_2(+(x, 1)) <=> f(gen_f4_2(x)) The following defined symbols remain to be analysed: h, G, H They will be analysed ascendingly in the following order: G = H g = h ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: h(gen_f4_2(n2131_2), gen_f4_2(b)) -> *5_2, rt in Omega(0) Induction Base: h(gen_f4_2(0), gen_f4_2(b)) Induction Step: h(gen_f4_2(+(n2131_2, 1)), gen_f4_2(b)) ->_R^Omega(0) g(gen_f4_2(+(n2131_2, 1)), f(gen_f4_2(b))) ->_R^Omega(0) f(h(gen_f4_2(n2131_2), f(gen_f4_2(b)))) ->_IH f(*5_2) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (20) Obligation: Innermost TRS: Rules: G(f(z0), z1) -> c(H(z0, z1)) H(z0, z1) -> c1(G(z0, f(z1))) g(f(z0), z1) -> f(h(z0, z1)) h(z0, z1) -> g(z0, f(z1)) Types: G :: f -> f -> c f :: f -> f c :: c1 -> c H :: f -> f -> c1 c1 :: c -> c1 g :: f -> f -> f h :: f -> f -> f hole_c1_2 :: c hole_f2_2 :: f hole_c13_2 :: c1 gen_f4_2 :: Nat -> f Lemmas: h(gen_f4_2(n2131_2), gen_f4_2(b)) -> *5_2, rt in Omega(0) g(gen_f4_2(+(1, n314_2)), gen_f4_2(b)) -> *5_2, rt in Omega(0) Generator Equations: gen_f4_2(0) <=> hole_f2_2 gen_f4_2(+(x, 1)) <=> f(gen_f4_2(x)) The following defined symbols remain to be analysed: H, G They will be analysed ascendingly in the following order: G = H ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: H(gen_f4_2(n5465_2), gen_f4_2(b)) -> *5_2, rt in Omega(n5465_2) Induction Base: H(gen_f4_2(0), gen_f4_2(b)) Induction Step: H(gen_f4_2(+(n5465_2, 1)), gen_f4_2(b)) ->_R^Omega(1) c1(G(gen_f4_2(+(n5465_2, 1)), f(gen_f4_2(b)))) ->_R^Omega(1) c1(c(H(gen_f4_2(n5465_2), f(gen_f4_2(b))))) ->_IH c1(c(*5_2)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Complex Obligation (BEST) ---------------------------------------- (23) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: G(f(z0), z1) -> c(H(z0, z1)) H(z0, z1) -> c1(G(z0, f(z1))) g(f(z0), z1) -> f(h(z0, z1)) h(z0, z1) -> g(z0, f(z1)) Types: G :: f -> f -> c f :: f -> f c :: c1 -> c H :: f -> f -> c1 c1 :: c -> c1 g :: f -> f -> f h :: f -> f -> f hole_c1_2 :: c hole_f2_2 :: f hole_c13_2 :: c1 gen_f4_2 :: Nat -> f Lemmas: h(gen_f4_2(n2131_2), gen_f4_2(b)) -> *5_2, rt in Omega(0) g(gen_f4_2(+(1, n314_2)), gen_f4_2(b)) -> *5_2, rt in Omega(0) Generator Equations: gen_f4_2(0) <=> hole_f2_2 gen_f4_2(+(x, 1)) <=> f(gen_f4_2(x)) The following defined symbols remain to be analysed: H, G They will be analysed ascendingly in the following order: G = H ---------------------------------------- (24) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (25) BOUNDS(n^1, INF) ---------------------------------------- (26) Obligation: Innermost TRS: Rules: G(f(z0), z1) -> c(H(z0, z1)) H(z0, z1) -> c1(G(z0, f(z1))) g(f(z0), z1) -> f(h(z0, z1)) h(z0, z1) -> g(z0, f(z1)) Types: G :: f -> f -> c f :: f -> f c :: c1 -> c H :: f -> f -> c1 c1 :: c -> c1 g :: f -> f -> f h :: f -> f -> f hole_c1_2 :: c hole_f2_2 :: f hole_c13_2 :: c1 gen_f4_2 :: Nat -> f Lemmas: h(gen_f4_2(n2131_2), gen_f4_2(b)) -> *5_2, rt in Omega(0) g(gen_f4_2(+(1, n314_2)), gen_f4_2(b)) -> *5_2, rt in Omega(0) H(gen_f4_2(n5465_2), gen_f4_2(b)) -> *5_2, rt in Omega(n5465_2) Generator Equations: gen_f4_2(0) <=> hole_f2_2 gen_f4_2(+(x, 1)) <=> f(gen_f4_2(x)) The following defined symbols remain to be analysed: G They will be analysed ascendingly in the following order: G = H ---------------------------------------- (27) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: G(gen_f4_2(+(1, n8833_2)), gen_f4_2(b)) -> *5_2, rt in Omega(n8833_2) Induction Base: G(gen_f4_2(+(1, 0)), gen_f4_2(b)) Induction Step: G(gen_f4_2(+(1, +(n8833_2, 1))), gen_f4_2(b)) ->_R^Omega(1) c(H(gen_f4_2(+(1, n8833_2)), gen_f4_2(b))) ->_R^Omega(1) c(c1(G(gen_f4_2(+(1, n8833_2)), f(gen_f4_2(b))))) ->_IH c(c1(*5_2)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (28) Obligation: Innermost TRS: Rules: G(f(z0), z1) -> c(H(z0, z1)) H(z0, z1) -> c1(G(z0, f(z1))) g(f(z0), z1) -> f(h(z0, z1)) h(z0, z1) -> g(z0, f(z1)) Types: G :: f -> f -> c f :: f -> f c :: c1 -> c H :: f -> f -> c1 c1 :: c -> c1 g :: f -> f -> f h :: f -> f -> f hole_c1_2 :: c hole_f2_2 :: f hole_c13_2 :: c1 gen_f4_2 :: Nat -> f Lemmas: h(gen_f4_2(n2131_2), gen_f4_2(b)) -> *5_2, rt in Omega(0) g(gen_f4_2(+(1, n314_2)), gen_f4_2(b)) -> *5_2, rt in Omega(0) H(gen_f4_2(n5465_2), gen_f4_2(b)) -> *5_2, rt in Omega(n5465_2) G(gen_f4_2(+(1, n8833_2)), gen_f4_2(b)) -> *5_2, rt in Omega(n8833_2) Generator Equations: gen_f4_2(0) <=> hole_f2_2 gen_f4_2(+(x, 1)) <=> f(gen_f4_2(x)) The following defined symbols remain to be analysed: H They will be analysed ascendingly in the following order: G = H ---------------------------------------- (29) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: H(gen_f4_2(n13603_2), gen_f4_2(b)) -> *5_2, rt in Omega(n13603_2) Induction Base: H(gen_f4_2(0), gen_f4_2(b)) Induction Step: H(gen_f4_2(+(n13603_2, 1)), gen_f4_2(b)) ->_R^Omega(1) c1(G(gen_f4_2(+(n13603_2, 1)), f(gen_f4_2(b)))) ->_R^Omega(1) c1(c(H(gen_f4_2(n13603_2), f(gen_f4_2(b))))) ->_IH c1(c(*5_2)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (30) BOUNDS(1, INF)