WORST_CASE(Omega(n^1),?) proof of input_YjRsTvlTbG.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CdtProblem (3) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 14 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 358 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 296 ms] (18) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) after(0, XS) -> XS after(s(N), cons(X, XS)) -> after(N, XS) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: from(z0) -> cons(z0, from(s(z0))) after(0, z0) -> z0 after(s(z0), cons(z1, z2)) -> after(z0, z2) Tuples: FROM(z0) -> c(FROM(s(z0))) AFTER(0, z0) -> c1 AFTER(s(z0), cons(z1, z2)) -> c2(AFTER(z0, z2)) S tuples: FROM(z0) -> c(FROM(s(z0))) AFTER(0, z0) -> c1 AFTER(s(z0), cons(z1, z2)) -> c2(AFTER(z0, z2)) K tuples:none Defined Rule Symbols: from_1, after_2 Defined Pair Symbols: FROM_1, AFTER_2 Compound Symbols: c_1, c1, c2_1 ---------------------------------------- (3) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: FROM(z0) -> c(FROM(s(z0))) AFTER(0, z0) -> c1 AFTER(s(z0), cons(z1, z2)) -> c2(AFTER(z0, z2)) The (relative) TRS S consists of the following rules: from(z0) -> cons(z0, from(s(z0))) after(0, z0) -> z0 after(s(z0), cons(z1, z2)) -> after(z0, z2) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: FROM(z0) -> c(FROM(s(z0))) AFTER(0', z0) -> c1 AFTER(s(z0), cons(z1, z2)) -> c2(AFTER(z0, z2)) The (relative) TRS S consists of the following rules: from(z0) -> cons(z0, from(s(z0))) after(0', z0) -> z0 after(s(z0), cons(z1, z2)) -> after(z0, z2) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: FROM(z0) -> c(FROM(s(z0))) AFTER(0', z0) -> c1 AFTER(s(z0), cons(z1, z2)) -> c2(AFTER(z0, z2)) from(z0) -> cons(z0, from(s(z0))) after(0', z0) -> z0 after(s(z0), cons(z1, z2)) -> after(z0, z2) Types: FROM :: s:0' -> c c :: c -> c s :: s:0' -> s:0' AFTER :: s:0' -> cons -> c1:c2 0' :: s:0' c1 :: c1:c2 cons :: s:0' -> cons -> cons c2 :: c1:c2 -> c1:c2 from :: s:0' -> cons after :: s:0' -> cons -> cons hole_c1_3 :: c hole_s:0'2_3 :: s:0' hole_c1:c23_3 :: c1:c2 hole_cons4_3 :: cons gen_c5_3 :: Nat -> c gen_s:0'6_3 :: Nat -> s:0' gen_c1:c27_3 :: Nat -> c1:c2 gen_cons8_3 :: Nat -> cons ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: FROM, AFTER, from, after ---------------------------------------- (10) Obligation: Innermost TRS: Rules: FROM(z0) -> c(FROM(s(z0))) AFTER(0', z0) -> c1 AFTER(s(z0), cons(z1, z2)) -> c2(AFTER(z0, z2)) from(z0) -> cons(z0, from(s(z0))) after(0', z0) -> z0 after(s(z0), cons(z1, z2)) -> after(z0, z2) Types: FROM :: s:0' -> c c :: c -> c s :: s:0' -> s:0' AFTER :: s:0' -> cons -> c1:c2 0' :: s:0' c1 :: c1:c2 cons :: s:0' -> cons -> cons c2 :: c1:c2 -> c1:c2 from :: s:0' -> cons after :: s:0' -> cons -> cons hole_c1_3 :: c hole_s:0'2_3 :: s:0' hole_c1:c23_3 :: c1:c2 hole_cons4_3 :: cons gen_c5_3 :: Nat -> c gen_s:0'6_3 :: Nat -> s:0' gen_c1:c27_3 :: Nat -> c1:c2 gen_cons8_3 :: Nat -> cons Generator Equations: gen_c5_3(0) <=> hole_c1_3 gen_c5_3(+(x, 1)) <=> c(gen_c5_3(x)) gen_s:0'6_3(0) <=> 0' gen_s:0'6_3(+(x, 1)) <=> s(gen_s:0'6_3(x)) gen_c1:c27_3(0) <=> c1 gen_c1:c27_3(+(x, 1)) <=> c2(gen_c1:c27_3(x)) gen_cons8_3(0) <=> hole_cons4_3 gen_cons8_3(+(x, 1)) <=> cons(0', gen_cons8_3(x)) The following defined symbols remain to be analysed: FROM, AFTER, from, after ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: AFTER(gen_s:0'6_3(n123_3), gen_cons8_3(n123_3)) -> gen_c1:c27_3(n123_3), rt in Omega(1 + n123_3) Induction Base: AFTER(gen_s:0'6_3(0), gen_cons8_3(0)) ->_R^Omega(1) c1 Induction Step: AFTER(gen_s:0'6_3(+(n123_3, 1)), gen_cons8_3(+(n123_3, 1))) ->_R^Omega(1) c2(AFTER(gen_s:0'6_3(n123_3), gen_cons8_3(n123_3))) ->_IH c2(gen_c1:c27_3(c124_3)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: FROM(z0) -> c(FROM(s(z0))) AFTER(0', z0) -> c1 AFTER(s(z0), cons(z1, z2)) -> c2(AFTER(z0, z2)) from(z0) -> cons(z0, from(s(z0))) after(0', z0) -> z0 after(s(z0), cons(z1, z2)) -> after(z0, z2) Types: FROM :: s:0' -> c c :: c -> c s :: s:0' -> s:0' AFTER :: s:0' -> cons -> c1:c2 0' :: s:0' c1 :: c1:c2 cons :: s:0' -> cons -> cons c2 :: c1:c2 -> c1:c2 from :: s:0' -> cons after :: s:0' -> cons -> cons hole_c1_3 :: c hole_s:0'2_3 :: s:0' hole_c1:c23_3 :: c1:c2 hole_cons4_3 :: cons gen_c5_3 :: Nat -> c gen_s:0'6_3 :: Nat -> s:0' gen_c1:c27_3 :: Nat -> c1:c2 gen_cons8_3 :: Nat -> cons Generator Equations: gen_c5_3(0) <=> hole_c1_3 gen_c5_3(+(x, 1)) <=> c(gen_c5_3(x)) gen_s:0'6_3(0) <=> 0' gen_s:0'6_3(+(x, 1)) <=> s(gen_s:0'6_3(x)) gen_c1:c27_3(0) <=> c1 gen_c1:c27_3(+(x, 1)) <=> c2(gen_c1:c27_3(x)) gen_cons8_3(0) <=> hole_cons4_3 gen_cons8_3(+(x, 1)) <=> cons(0', gen_cons8_3(x)) The following defined symbols remain to be analysed: AFTER, from, after ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: FROM(z0) -> c(FROM(s(z0))) AFTER(0', z0) -> c1 AFTER(s(z0), cons(z1, z2)) -> c2(AFTER(z0, z2)) from(z0) -> cons(z0, from(s(z0))) after(0', z0) -> z0 after(s(z0), cons(z1, z2)) -> after(z0, z2) Types: FROM :: s:0' -> c c :: c -> c s :: s:0' -> s:0' AFTER :: s:0' -> cons -> c1:c2 0' :: s:0' c1 :: c1:c2 cons :: s:0' -> cons -> cons c2 :: c1:c2 -> c1:c2 from :: s:0' -> cons after :: s:0' -> cons -> cons hole_c1_3 :: c hole_s:0'2_3 :: s:0' hole_c1:c23_3 :: c1:c2 hole_cons4_3 :: cons gen_c5_3 :: Nat -> c gen_s:0'6_3 :: Nat -> s:0' gen_c1:c27_3 :: Nat -> c1:c2 gen_cons8_3 :: Nat -> cons Lemmas: AFTER(gen_s:0'6_3(n123_3), gen_cons8_3(n123_3)) -> gen_c1:c27_3(n123_3), rt in Omega(1 + n123_3) Generator Equations: gen_c5_3(0) <=> hole_c1_3 gen_c5_3(+(x, 1)) <=> c(gen_c5_3(x)) gen_s:0'6_3(0) <=> 0' gen_s:0'6_3(+(x, 1)) <=> s(gen_s:0'6_3(x)) gen_c1:c27_3(0) <=> c1 gen_c1:c27_3(+(x, 1)) <=> c2(gen_c1:c27_3(x)) gen_cons8_3(0) <=> hole_cons4_3 gen_cons8_3(+(x, 1)) <=> cons(0', gen_cons8_3(x)) The following defined symbols remain to be analysed: from, after ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: after(gen_s:0'6_3(n618_3), gen_cons8_3(n618_3)) -> gen_cons8_3(0), rt in Omega(0) Induction Base: after(gen_s:0'6_3(0), gen_cons8_3(0)) ->_R^Omega(0) gen_cons8_3(0) Induction Step: after(gen_s:0'6_3(+(n618_3, 1)), gen_cons8_3(+(n618_3, 1))) ->_R^Omega(0) after(gen_s:0'6_3(n618_3), gen_cons8_3(n618_3)) ->_IH gen_cons8_3(0) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) BOUNDS(1, INF)