WORST_CASE(Omega(n^1),?) proof of input_eg5G5KJweg.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CdtProblem (3) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 341 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 154 ms] (18) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) from(X) -> cons(X, from(s(X))) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: first(0, z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, first(z0, z2)) from(z0) -> cons(z0, from(s(z0))) Tuples: FIRST(0, z0) -> c FIRST(s(z0), cons(z1, z2)) -> c1(FIRST(z0, z2)) FROM(z0) -> c2(FROM(s(z0))) S tuples: FIRST(0, z0) -> c FIRST(s(z0), cons(z1, z2)) -> c1(FIRST(z0, z2)) FROM(z0) -> c2(FROM(s(z0))) K tuples:none Defined Rule Symbols: first_2, from_1 Defined Pair Symbols: FIRST_2, FROM_1 Compound Symbols: c, c1_1, c2_1 ---------------------------------------- (3) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: FIRST(0, z0) -> c FIRST(s(z0), cons(z1, z2)) -> c1(FIRST(z0, z2)) FROM(z0) -> c2(FROM(s(z0))) The (relative) TRS S consists of the following rules: first(0, z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, first(z0, z2)) from(z0) -> cons(z0, from(s(z0))) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: FIRST(0', z0) -> c FIRST(s(z0), cons(z1, z2)) -> c1(FIRST(z0, z2)) FROM(z0) -> c2(FROM(s(z0))) The (relative) TRS S consists of the following rules: first(0', z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, first(z0, z2)) from(z0) -> cons(z0, from(s(z0))) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: FIRST(0', z0) -> c FIRST(s(z0), cons(z1, z2)) -> c1(FIRST(z0, z2)) FROM(z0) -> c2(FROM(s(z0))) first(0', z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, first(z0, z2)) from(z0) -> cons(z0, from(s(z0))) Types: FIRST :: 0':s -> cons:nil -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s cons :: 0':s -> cons:nil -> cons:nil c1 :: c:c1 -> c:c1 FROM :: 0':s -> c2 c2 :: c2 -> c2 first :: 0':s -> cons:nil -> cons:nil nil :: cons:nil from :: 0':s -> cons:nil hole_c:c11_3 :: c:c1 hole_0':s2_3 :: 0':s hole_cons:nil3_3 :: cons:nil hole_c24_3 :: c2 gen_c:c15_3 :: Nat -> c:c1 gen_0':s6_3 :: Nat -> 0':s gen_cons:nil7_3 :: Nat -> cons:nil gen_c28_3 :: Nat -> c2 ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: FIRST, FROM, first, from ---------------------------------------- (10) Obligation: Innermost TRS: Rules: FIRST(0', z0) -> c FIRST(s(z0), cons(z1, z2)) -> c1(FIRST(z0, z2)) FROM(z0) -> c2(FROM(s(z0))) first(0', z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, first(z0, z2)) from(z0) -> cons(z0, from(s(z0))) Types: FIRST :: 0':s -> cons:nil -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s cons :: 0':s -> cons:nil -> cons:nil c1 :: c:c1 -> c:c1 FROM :: 0':s -> c2 c2 :: c2 -> c2 first :: 0':s -> cons:nil -> cons:nil nil :: cons:nil from :: 0':s -> cons:nil hole_c:c11_3 :: c:c1 hole_0':s2_3 :: 0':s hole_cons:nil3_3 :: cons:nil hole_c24_3 :: c2 gen_c:c15_3 :: Nat -> c:c1 gen_0':s6_3 :: Nat -> 0':s gen_cons:nil7_3 :: Nat -> cons:nil gen_c28_3 :: Nat -> c2 Generator Equations: gen_c:c15_3(0) <=> c gen_c:c15_3(+(x, 1)) <=> c1(gen_c:c15_3(x)) gen_0':s6_3(0) <=> 0' gen_0':s6_3(+(x, 1)) <=> s(gen_0':s6_3(x)) gen_cons:nil7_3(0) <=> nil gen_cons:nil7_3(+(x, 1)) <=> cons(0', gen_cons:nil7_3(x)) gen_c28_3(0) <=> hole_c24_3 gen_c28_3(+(x, 1)) <=> c2(gen_c28_3(x)) The following defined symbols remain to be analysed: FIRST, FROM, first, from ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: FIRST(gen_0':s6_3(n10_3), gen_cons:nil7_3(n10_3)) -> gen_c:c15_3(n10_3), rt in Omega(1 + n10_3) Induction Base: FIRST(gen_0':s6_3(0), gen_cons:nil7_3(0)) ->_R^Omega(1) c Induction Step: FIRST(gen_0':s6_3(+(n10_3, 1)), gen_cons:nil7_3(+(n10_3, 1))) ->_R^Omega(1) c1(FIRST(gen_0':s6_3(n10_3), gen_cons:nil7_3(n10_3))) ->_IH c1(gen_c:c15_3(c11_3)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: FIRST(0', z0) -> c FIRST(s(z0), cons(z1, z2)) -> c1(FIRST(z0, z2)) FROM(z0) -> c2(FROM(s(z0))) first(0', z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, first(z0, z2)) from(z0) -> cons(z0, from(s(z0))) Types: FIRST :: 0':s -> cons:nil -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s cons :: 0':s -> cons:nil -> cons:nil c1 :: c:c1 -> c:c1 FROM :: 0':s -> c2 c2 :: c2 -> c2 first :: 0':s -> cons:nil -> cons:nil nil :: cons:nil from :: 0':s -> cons:nil hole_c:c11_3 :: c:c1 hole_0':s2_3 :: 0':s hole_cons:nil3_3 :: cons:nil hole_c24_3 :: c2 gen_c:c15_3 :: Nat -> c:c1 gen_0':s6_3 :: Nat -> 0':s gen_cons:nil7_3 :: Nat -> cons:nil gen_c28_3 :: Nat -> c2 Generator Equations: gen_c:c15_3(0) <=> c gen_c:c15_3(+(x, 1)) <=> c1(gen_c:c15_3(x)) gen_0':s6_3(0) <=> 0' gen_0':s6_3(+(x, 1)) <=> s(gen_0':s6_3(x)) gen_cons:nil7_3(0) <=> nil gen_cons:nil7_3(+(x, 1)) <=> cons(0', gen_cons:nil7_3(x)) gen_c28_3(0) <=> hole_c24_3 gen_c28_3(+(x, 1)) <=> c2(gen_c28_3(x)) The following defined symbols remain to be analysed: FIRST, FROM, first, from ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: FIRST(0', z0) -> c FIRST(s(z0), cons(z1, z2)) -> c1(FIRST(z0, z2)) FROM(z0) -> c2(FROM(s(z0))) first(0', z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, first(z0, z2)) from(z0) -> cons(z0, from(s(z0))) Types: FIRST :: 0':s -> cons:nil -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s cons :: 0':s -> cons:nil -> cons:nil c1 :: c:c1 -> c:c1 FROM :: 0':s -> c2 c2 :: c2 -> c2 first :: 0':s -> cons:nil -> cons:nil nil :: cons:nil from :: 0':s -> cons:nil hole_c:c11_3 :: c:c1 hole_0':s2_3 :: 0':s hole_cons:nil3_3 :: cons:nil hole_c24_3 :: c2 gen_c:c15_3 :: Nat -> c:c1 gen_0':s6_3 :: Nat -> 0':s gen_cons:nil7_3 :: Nat -> cons:nil gen_c28_3 :: Nat -> c2 Lemmas: FIRST(gen_0':s6_3(n10_3), gen_cons:nil7_3(n10_3)) -> gen_c:c15_3(n10_3), rt in Omega(1 + n10_3) Generator Equations: gen_c:c15_3(0) <=> c gen_c:c15_3(+(x, 1)) <=> c1(gen_c:c15_3(x)) gen_0':s6_3(0) <=> 0' gen_0':s6_3(+(x, 1)) <=> s(gen_0':s6_3(x)) gen_cons:nil7_3(0) <=> nil gen_cons:nil7_3(+(x, 1)) <=> cons(0', gen_cons:nil7_3(x)) gen_c28_3(0) <=> hole_c24_3 gen_c28_3(+(x, 1)) <=> c2(gen_c28_3(x)) The following defined symbols remain to be analysed: FROM, first, from ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: first(gen_0':s6_3(n413_3), gen_cons:nil7_3(n413_3)) -> gen_cons:nil7_3(n413_3), rt in Omega(0) Induction Base: first(gen_0':s6_3(0), gen_cons:nil7_3(0)) ->_R^Omega(0) nil Induction Step: first(gen_0':s6_3(+(n413_3, 1)), gen_cons:nil7_3(+(n413_3, 1))) ->_R^Omega(0) cons(0', first(gen_0':s6_3(n413_3), gen_cons:nil7_3(n413_3))) ->_IH cons(0', gen_cons:nil7_3(c414_3)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) Obligation: Innermost TRS: Rules: FIRST(0', z0) -> c FIRST(s(z0), cons(z1, z2)) -> c1(FIRST(z0, z2)) FROM(z0) -> c2(FROM(s(z0))) first(0', z0) -> nil first(s(z0), cons(z1, z2)) -> cons(z1, first(z0, z2)) from(z0) -> cons(z0, from(s(z0))) Types: FIRST :: 0':s -> cons:nil -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s cons :: 0':s -> cons:nil -> cons:nil c1 :: c:c1 -> c:c1 FROM :: 0':s -> c2 c2 :: c2 -> c2 first :: 0':s -> cons:nil -> cons:nil nil :: cons:nil from :: 0':s -> cons:nil hole_c:c11_3 :: c:c1 hole_0':s2_3 :: 0':s hole_cons:nil3_3 :: cons:nil hole_c24_3 :: c2 gen_c:c15_3 :: Nat -> c:c1 gen_0':s6_3 :: Nat -> 0':s gen_cons:nil7_3 :: Nat -> cons:nil gen_c28_3 :: Nat -> c2 Lemmas: FIRST(gen_0':s6_3(n10_3), gen_cons:nil7_3(n10_3)) -> gen_c:c15_3(n10_3), rt in Omega(1 + n10_3) first(gen_0':s6_3(n413_3), gen_cons:nil7_3(n413_3)) -> gen_cons:nil7_3(n413_3), rt in Omega(0) Generator Equations: gen_c:c15_3(0) <=> c gen_c:c15_3(+(x, 1)) <=> c1(gen_c:c15_3(x)) gen_0':s6_3(0) <=> 0' gen_0':s6_3(+(x, 1)) <=> s(gen_0':s6_3(x)) gen_cons:nil7_3(0) <=> nil gen_cons:nil7_3(+(x, 1)) <=> cons(0', gen_cons:nil7_3(x)) gen_c28_3(0) <=> hole_c24_3 gen_c28_3(+(x, 1)) <=> c2(gen_c28_3(x)) The following defined symbols remain to be analysed: from