WORST_CASE(Omega(n^1),?) proof of input_SLdA2ewG9M.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CdtProblem (3) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 16 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 375 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 123 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 2214 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 419 ms] (22) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: fib(N) -> sel(N, fib1(s(0), s(0))) fib1(X, Y) -> cons(X, fib1(Y, add(X, Y))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) sel(0, cons(X, XS)) -> X sel(s(N), cons(X, XS)) -> sel(N, XS) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: fib(z0) -> sel(z0, fib1(s(0), s(0))) fib1(z0, z1) -> cons(z0, fib1(z1, add(z0, z1))) add(0, z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) sel(0, cons(z0, z1)) -> z0 sel(s(z0), cons(z1, z2)) -> sel(z0, z2) Tuples: FIB(z0) -> c(SEL(z0, fib1(s(0), s(0))), FIB1(s(0), s(0))) FIB1(z0, z1) -> c1(FIB1(z1, add(z0, z1)), ADD(z0, z1)) ADD(0, z0) -> c2 ADD(s(z0), z1) -> c3(ADD(z0, z1)) SEL(0, cons(z0, z1)) -> c4 SEL(s(z0), cons(z1, z2)) -> c5(SEL(z0, z2)) S tuples: FIB(z0) -> c(SEL(z0, fib1(s(0), s(0))), FIB1(s(0), s(0))) FIB1(z0, z1) -> c1(FIB1(z1, add(z0, z1)), ADD(z0, z1)) ADD(0, z0) -> c2 ADD(s(z0), z1) -> c3(ADD(z0, z1)) SEL(0, cons(z0, z1)) -> c4 SEL(s(z0), cons(z1, z2)) -> c5(SEL(z0, z2)) K tuples:none Defined Rule Symbols: fib_1, fib1_2, add_2, sel_2 Defined Pair Symbols: FIB_1, FIB1_2, ADD_2, SEL_2 Compound Symbols: c_2, c1_2, c2, c3_1, c4, c5_1 ---------------------------------------- (3) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: FIB(z0) -> c(SEL(z0, fib1(s(0), s(0))), FIB1(s(0), s(0))) FIB1(z0, z1) -> c1(FIB1(z1, add(z0, z1)), ADD(z0, z1)) ADD(0, z0) -> c2 ADD(s(z0), z1) -> c3(ADD(z0, z1)) SEL(0, cons(z0, z1)) -> c4 SEL(s(z0), cons(z1, z2)) -> c5(SEL(z0, z2)) The (relative) TRS S consists of the following rules: fib(z0) -> sel(z0, fib1(s(0), s(0))) fib1(z0, z1) -> cons(z0, fib1(z1, add(z0, z1))) add(0, z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) sel(0, cons(z0, z1)) -> z0 sel(s(z0), cons(z1, z2)) -> sel(z0, z2) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: FIB(z0) -> c(SEL(z0, fib1(s(0'), s(0'))), FIB1(s(0'), s(0'))) FIB1(z0, z1) -> c1(FIB1(z1, add(z0, z1)), ADD(z0, z1)) ADD(0', z0) -> c2 ADD(s(z0), z1) -> c3(ADD(z0, z1)) SEL(0', cons(z0, z1)) -> c4 SEL(s(z0), cons(z1, z2)) -> c5(SEL(z0, z2)) The (relative) TRS S consists of the following rules: fib(z0) -> sel(z0, fib1(s(0'), s(0'))) fib1(z0, z1) -> cons(z0, fib1(z1, add(z0, z1))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) sel(0', cons(z0, z1)) -> z0 sel(s(z0), cons(z1, z2)) -> sel(z0, z2) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: FIB(z0) -> c(SEL(z0, fib1(s(0'), s(0'))), FIB1(s(0'), s(0'))) FIB1(z0, z1) -> c1(FIB1(z1, add(z0, z1)), ADD(z0, z1)) ADD(0', z0) -> c2 ADD(s(z0), z1) -> c3(ADD(z0, z1)) SEL(0', cons(z0, z1)) -> c4 SEL(s(z0), cons(z1, z2)) -> c5(SEL(z0, z2)) fib(z0) -> sel(z0, fib1(s(0'), s(0'))) fib1(z0, z1) -> cons(z0, fib1(z1, add(z0, z1))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) sel(0', cons(z0, z1)) -> z0 sel(s(z0), cons(z1, z2)) -> sel(z0, z2) Types: FIB :: 0':s -> c c :: c4:c5 -> c1 -> c SEL :: 0':s -> cons -> c4:c5 fib1 :: 0':s -> 0':s -> cons s :: 0':s -> 0':s 0' :: 0':s FIB1 :: 0':s -> 0':s -> c1 c1 :: c1 -> c2:c3 -> c1 add :: 0':s -> 0':s -> 0':s ADD :: 0':s -> 0':s -> c2:c3 c2 :: c2:c3 c3 :: c2:c3 -> c2:c3 cons :: 0':s -> cons -> cons c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 fib :: 0':s -> 0':s sel :: 0':s -> cons -> 0':s hole_c1_6 :: c hole_0':s2_6 :: 0':s hole_c4:c53_6 :: c4:c5 hole_c14_6 :: c1 hole_cons5_6 :: cons hole_c2:c36_6 :: c2:c3 gen_0':s7_6 :: Nat -> 0':s gen_c4:c58_6 :: Nat -> c4:c5 gen_c19_6 :: Nat -> c1 gen_cons10_6 :: Nat -> cons gen_c2:c311_6 :: Nat -> c2:c3 ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: SEL, fib1, FIB1, add, ADD, sel They will be analysed ascendingly in the following order: add < fib1 add < FIB1 ADD < FIB1 ---------------------------------------- (10) Obligation: Innermost TRS: Rules: FIB(z0) -> c(SEL(z0, fib1(s(0'), s(0'))), FIB1(s(0'), s(0'))) FIB1(z0, z1) -> c1(FIB1(z1, add(z0, z1)), ADD(z0, z1)) ADD(0', z0) -> c2 ADD(s(z0), z1) -> c3(ADD(z0, z1)) SEL(0', cons(z0, z1)) -> c4 SEL(s(z0), cons(z1, z2)) -> c5(SEL(z0, z2)) fib(z0) -> sel(z0, fib1(s(0'), s(0'))) fib1(z0, z1) -> cons(z0, fib1(z1, add(z0, z1))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) sel(0', cons(z0, z1)) -> z0 sel(s(z0), cons(z1, z2)) -> sel(z0, z2) Types: FIB :: 0':s -> c c :: c4:c5 -> c1 -> c SEL :: 0':s -> cons -> c4:c5 fib1 :: 0':s -> 0':s -> cons s :: 0':s -> 0':s 0' :: 0':s FIB1 :: 0':s -> 0':s -> c1 c1 :: c1 -> c2:c3 -> c1 add :: 0':s -> 0':s -> 0':s ADD :: 0':s -> 0':s -> c2:c3 c2 :: c2:c3 c3 :: c2:c3 -> c2:c3 cons :: 0':s -> cons -> cons c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 fib :: 0':s -> 0':s sel :: 0':s -> cons -> 0':s hole_c1_6 :: c hole_0':s2_6 :: 0':s hole_c4:c53_6 :: c4:c5 hole_c14_6 :: c1 hole_cons5_6 :: cons hole_c2:c36_6 :: c2:c3 gen_0':s7_6 :: Nat -> 0':s gen_c4:c58_6 :: Nat -> c4:c5 gen_c19_6 :: Nat -> c1 gen_cons10_6 :: Nat -> cons gen_c2:c311_6 :: Nat -> c2:c3 Generator Equations: gen_0':s7_6(0) <=> 0' gen_0':s7_6(+(x, 1)) <=> s(gen_0':s7_6(x)) gen_c4:c58_6(0) <=> c4 gen_c4:c58_6(+(x, 1)) <=> c5(gen_c4:c58_6(x)) gen_c19_6(0) <=> hole_c14_6 gen_c19_6(+(x, 1)) <=> c1(gen_c19_6(x), c2) gen_cons10_6(0) <=> hole_cons5_6 gen_cons10_6(+(x, 1)) <=> cons(0', gen_cons10_6(x)) gen_c2:c311_6(0) <=> c2 gen_c2:c311_6(+(x, 1)) <=> c3(gen_c2:c311_6(x)) The following defined symbols remain to be analysed: SEL, fib1, FIB1, add, ADD, sel They will be analysed ascendingly in the following order: add < fib1 add < FIB1 ADD < FIB1 ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: SEL(gen_0':s7_6(n13_6), gen_cons10_6(+(1, n13_6))) -> gen_c4:c58_6(n13_6), rt in Omega(1 + n13_6) Induction Base: SEL(gen_0':s7_6(0), gen_cons10_6(+(1, 0))) ->_R^Omega(1) c4 Induction Step: SEL(gen_0':s7_6(+(n13_6, 1)), gen_cons10_6(+(1, +(n13_6, 1)))) ->_R^Omega(1) c5(SEL(gen_0':s7_6(n13_6), gen_cons10_6(+(1, n13_6)))) ->_IH c5(gen_c4:c58_6(c14_6)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: FIB(z0) -> c(SEL(z0, fib1(s(0'), s(0'))), FIB1(s(0'), s(0'))) FIB1(z0, z1) -> c1(FIB1(z1, add(z0, z1)), ADD(z0, z1)) ADD(0', z0) -> c2 ADD(s(z0), z1) -> c3(ADD(z0, z1)) SEL(0', cons(z0, z1)) -> c4 SEL(s(z0), cons(z1, z2)) -> c5(SEL(z0, z2)) fib(z0) -> sel(z0, fib1(s(0'), s(0'))) fib1(z0, z1) -> cons(z0, fib1(z1, add(z0, z1))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) sel(0', cons(z0, z1)) -> z0 sel(s(z0), cons(z1, z2)) -> sel(z0, z2) Types: FIB :: 0':s -> c c :: c4:c5 -> c1 -> c SEL :: 0':s -> cons -> c4:c5 fib1 :: 0':s -> 0':s -> cons s :: 0':s -> 0':s 0' :: 0':s FIB1 :: 0':s -> 0':s -> c1 c1 :: c1 -> c2:c3 -> c1 add :: 0':s -> 0':s -> 0':s ADD :: 0':s -> 0':s -> c2:c3 c2 :: c2:c3 c3 :: c2:c3 -> c2:c3 cons :: 0':s -> cons -> cons c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 fib :: 0':s -> 0':s sel :: 0':s -> cons -> 0':s hole_c1_6 :: c hole_0':s2_6 :: 0':s hole_c4:c53_6 :: c4:c5 hole_c14_6 :: c1 hole_cons5_6 :: cons hole_c2:c36_6 :: c2:c3 gen_0':s7_6 :: Nat -> 0':s gen_c4:c58_6 :: Nat -> c4:c5 gen_c19_6 :: Nat -> c1 gen_cons10_6 :: Nat -> cons gen_c2:c311_6 :: Nat -> c2:c3 Generator Equations: gen_0':s7_6(0) <=> 0' gen_0':s7_6(+(x, 1)) <=> s(gen_0':s7_6(x)) gen_c4:c58_6(0) <=> c4 gen_c4:c58_6(+(x, 1)) <=> c5(gen_c4:c58_6(x)) gen_c19_6(0) <=> hole_c14_6 gen_c19_6(+(x, 1)) <=> c1(gen_c19_6(x), c2) gen_cons10_6(0) <=> hole_cons5_6 gen_cons10_6(+(x, 1)) <=> cons(0', gen_cons10_6(x)) gen_c2:c311_6(0) <=> c2 gen_c2:c311_6(+(x, 1)) <=> c3(gen_c2:c311_6(x)) The following defined symbols remain to be analysed: SEL, fib1, FIB1, add, ADD, sel They will be analysed ascendingly in the following order: add < fib1 add < FIB1 ADD < FIB1 ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: FIB(z0) -> c(SEL(z0, fib1(s(0'), s(0'))), FIB1(s(0'), s(0'))) FIB1(z0, z1) -> c1(FIB1(z1, add(z0, z1)), ADD(z0, z1)) ADD(0', z0) -> c2 ADD(s(z0), z1) -> c3(ADD(z0, z1)) SEL(0', cons(z0, z1)) -> c4 SEL(s(z0), cons(z1, z2)) -> c5(SEL(z0, z2)) fib(z0) -> sel(z0, fib1(s(0'), s(0'))) fib1(z0, z1) -> cons(z0, fib1(z1, add(z0, z1))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) sel(0', cons(z0, z1)) -> z0 sel(s(z0), cons(z1, z2)) -> sel(z0, z2) Types: FIB :: 0':s -> c c :: c4:c5 -> c1 -> c SEL :: 0':s -> cons -> c4:c5 fib1 :: 0':s -> 0':s -> cons s :: 0':s -> 0':s 0' :: 0':s FIB1 :: 0':s -> 0':s -> c1 c1 :: c1 -> c2:c3 -> c1 add :: 0':s -> 0':s -> 0':s ADD :: 0':s -> 0':s -> c2:c3 c2 :: c2:c3 c3 :: c2:c3 -> c2:c3 cons :: 0':s -> cons -> cons c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 fib :: 0':s -> 0':s sel :: 0':s -> cons -> 0':s hole_c1_6 :: c hole_0':s2_6 :: 0':s hole_c4:c53_6 :: c4:c5 hole_c14_6 :: c1 hole_cons5_6 :: cons hole_c2:c36_6 :: c2:c3 gen_0':s7_6 :: Nat -> 0':s gen_c4:c58_6 :: Nat -> c4:c5 gen_c19_6 :: Nat -> c1 gen_cons10_6 :: Nat -> cons gen_c2:c311_6 :: Nat -> c2:c3 Lemmas: SEL(gen_0':s7_6(n13_6), gen_cons10_6(+(1, n13_6))) -> gen_c4:c58_6(n13_6), rt in Omega(1 + n13_6) Generator Equations: gen_0':s7_6(0) <=> 0' gen_0':s7_6(+(x, 1)) <=> s(gen_0':s7_6(x)) gen_c4:c58_6(0) <=> c4 gen_c4:c58_6(+(x, 1)) <=> c5(gen_c4:c58_6(x)) gen_c19_6(0) <=> hole_c14_6 gen_c19_6(+(x, 1)) <=> c1(gen_c19_6(x), c2) gen_cons10_6(0) <=> hole_cons5_6 gen_cons10_6(+(x, 1)) <=> cons(0', gen_cons10_6(x)) gen_c2:c311_6(0) <=> c2 gen_c2:c311_6(+(x, 1)) <=> c3(gen_c2:c311_6(x)) The following defined symbols remain to be analysed: add, fib1, FIB1, ADD, sel They will be analysed ascendingly in the following order: add < fib1 add < FIB1 ADD < FIB1 ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: add(gen_0':s7_6(n416_6), gen_0':s7_6(b)) -> gen_0':s7_6(+(n416_6, b)), rt in Omega(0) Induction Base: add(gen_0':s7_6(0), gen_0':s7_6(b)) ->_R^Omega(0) gen_0':s7_6(b) Induction Step: add(gen_0':s7_6(+(n416_6, 1)), gen_0':s7_6(b)) ->_R^Omega(0) s(add(gen_0':s7_6(n416_6), gen_0':s7_6(b))) ->_IH s(gen_0':s7_6(+(b, c417_6))) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) Obligation: Innermost TRS: Rules: FIB(z0) -> c(SEL(z0, fib1(s(0'), s(0'))), FIB1(s(0'), s(0'))) FIB1(z0, z1) -> c1(FIB1(z1, add(z0, z1)), ADD(z0, z1)) ADD(0', z0) -> c2 ADD(s(z0), z1) -> c3(ADD(z0, z1)) SEL(0', cons(z0, z1)) -> c4 SEL(s(z0), cons(z1, z2)) -> c5(SEL(z0, z2)) fib(z0) -> sel(z0, fib1(s(0'), s(0'))) fib1(z0, z1) -> cons(z0, fib1(z1, add(z0, z1))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) sel(0', cons(z0, z1)) -> z0 sel(s(z0), cons(z1, z2)) -> sel(z0, z2) Types: FIB :: 0':s -> c c :: c4:c5 -> c1 -> c SEL :: 0':s -> cons -> c4:c5 fib1 :: 0':s -> 0':s -> cons s :: 0':s -> 0':s 0' :: 0':s FIB1 :: 0':s -> 0':s -> c1 c1 :: c1 -> c2:c3 -> c1 add :: 0':s -> 0':s -> 0':s ADD :: 0':s -> 0':s -> c2:c3 c2 :: c2:c3 c3 :: c2:c3 -> c2:c3 cons :: 0':s -> cons -> cons c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 fib :: 0':s -> 0':s sel :: 0':s -> cons -> 0':s hole_c1_6 :: c hole_0':s2_6 :: 0':s hole_c4:c53_6 :: c4:c5 hole_c14_6 :: c1 hole_cons5_6 :: cons hole_c2:c36_6 :: c2:c3 gen_0':s7_6 :: Nat -> 0':s gen_c4:c58_6 :: Nat -> c4:c5 gen_c19_6 :: Nat -> c1 gen_cons10_6 :: Nat -> cons gen_c2:c311_6 :: Nat -> c2:c3 Lemmas: SEL(gen_0':s7_6(n13_6), gen_cons10_6(+(1, n13_6))) -> gen_c4:c58_6(n13_6), rt in Omega(1 + n13_6) add(gen_0':s7_6(n416_6), gen_0':s7_6(b)) -> gen_0':s7_6(+(n416_6, b)), rt in Omega(0) Generator Equations: gen_0':s7_6(0) <=> 0' gen_0':s7_6(+(x, 1)) <=> s(gen_0':s7_6(x)) gen_c4:c58_6(0) <=> c4 gen_c4:c58_6(+(x, 1)) <=> c5(gen_c4:c58_6(x)) gen_c19_6(0) <=> hole_c14_6 gen_c19_6(+(x, 1)) <=> c1(gen_c19_6(x), c2) gen_cons10_6(0) <=> hole_cons5_6 gen_cons10_6(+(x, 1)) <=> cons(0', gen_cons10_6(x)) gen_c2:c311_6(0) <=> c2 gen_c2:c311_6(+(x, 1)) <=> c3(gen_c2:c311_6(x)) The following defined symbols remain to be analysed: fib1, FIB1, ADD, sel They will be analysed ascendingly in the following order: ADD < FIB1 ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ADD(gen_0':s7_6(n2018_6), gen_0':s7_6(b)) -> gen_c2:c311_6(n2018_6), rt in Omega(1 + n2018_6) Induction Base: ADD(gen_0':s7_6(0), gen_0':s7_6(b)) ->_R^Omega(1) c2 Induction Step: ADD(gen_0':s7_6(+(n2018_6, 1)), gen_0':s7_6(b)) ->_R^Omega(1) c3(ADD(gen_0':s7_6(n2018_6), gen_0':s7_6(b))) ->_IH c3(gen_c2:c311_6(c2019_6)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: Innermost TRS: Rules: FIB(z0) -> c(SEL(z0, fib1(s(0'), s(0'))), FIB1(s(0'), s(0'))) FIB1(z0, z1) -> c1(FIB1(z1, add(z0, z1)), ADD(z0, z1)) ADD(0', z0) -> c2 ADD(s(z0), z1) -> c3(ADD(z0, z1)) SEL(0', cons(z0, z1)) -> c4 SEL(s(z0), cons(z1, z2)) -> c5(SEL(z0, z2)) fib(z0) -> sel(z0, fib1(s(0'), s(0'))) fib1(z0, z1) -> cons(z0, fib1(z1, add(z0, z1))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) sel(0', cons(z0, z1)) -> z0 sel(s(z0), cons(z1, z2)) -> sel(z0, z2) Types: FIB :: 0':s -> c c :: c4:c5 -> c1 -> c SEL :: 0':s -> cons -> c4:c5 fib1 :: 0':s -> 0':s -> cons s :: 0':s -> 0':s 0' :: 0':s FIB1 :: 0':s -> 0':s -> c1 c1 :: c1 -> c2:c3 -> c1 add :: 0':s -> 0':s -> 0':s ADD :: 0':s -> 0':s -> c2:c3 c2 :: c2:c3 c3 :: c2:c3 -> c2:c3 cons :: 0':s -> cons -> cons c4 :: c4:c5 c5 :: c4:c5 -> c4:c5 fib :: 0':s -> 0':s sel :: 0':s -> cons -> 0':s hole_c1_6 :: c hole_0':s2_6 :: 0':s hole_c4:c53_6 :: c4:c5 hole_c14_6 :: c1 hole_cons5_6 :: cons hole_c2:c36_6 :: c2:c3 gen_0':s7_6 :: Nat -> 0':s gen_c4:c58_6 :: Nat -> c4:c5 gen_c19_6 :: Nat -> c1 gen_cons10_6 :: Nat -> cons gen_c2:c311_6 :: Nat -> c2:c3 Lemmas: SEL(gen_0':s7_6(n13_6), gen_cons10_6(+(1, n13_6))) -> gen_c4:c58_6(n13_6), rt in Omega(1 + n13_6) add(gen_0':s7_6(n416_6), gen_0':s7_6(b)) -> gen_0':s7_6(+(n416_6, b)), rt in Omega(0) ADD(gen_0':s7_6(n2018_6), gen_0':s7_6(b)) -> gen_c2:c311_6(n2018_6), rt in Omega(1 + n2018_6) Generator Equations: gen_0':s7_6(0) <=> 0' gen_0':s7_6(+(x, 1)) <=> s(gen_0':s7_6(x)) gen_c4:c58_6(0) <=> c4 gen_c4:c58_6(+(x, 1)) <=> c5(gen_c4:c58_6(x)) gen_c19_6(0) <=> hole_c14_6 gen_c19_6(+(x, 1)) <=> c1(gen_c19_6(x), c2) gen_cons10_6(0) <=> hole_cons5_6 gen_cons10_6(+(x, 1)) <=> cons(0', gen_cons10_6(x)) gen_c2:c311_6(0) <=> c2 gen_c2:c311_6(+(x, 1)) <=> c3(gen_c2:c311_6(x)) The following defined symbols remain to be analysed: FIB1, sel ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: sel(gen_0':s7_6(n3399_6), gen_cons10_6(+(1, n3399_6))) -> gen_0':s7_6(0), rt in Omega(0) Induction Base: sel(gen_0':s7_6(0), gen_cons10_6(+(1, 0))) ->_R^Omega(0) 0' Induction Step: sel(gen_0':s7_6(+(n3399_6, 1)), gen_cons10_6(+(1, +(n3399_6, 1)))) ->_R^Omega(0) sel(gen_0':s7_6(n3399_6), gen_cons10_6(+(1, n3399_6))) ->_IH gen_0':s7_6(0) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (22) BOUNDS(1, INF)