WORST_CASE(Omega(n^1),?) proof of input_DFx30qa8vV.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CdtProblem (3) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 522 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 723 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 464 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 530 ms] (22) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) length(nil) -> 0 length(cons(X, Y)) -> s(length1(Y)) length1(X) -> length(X) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: from(z0) -> cons(z0, from(s(z0))) length(nil) -> 0 length(cons(z0, z1)) -> s(length1(z1)) length1(z0) -> length(z0) Tuples: FROM(z0) -> c(FROM(s(z0))) LENGTH(nil) -> c1 LENGTH(cons(z0, z1)) -> c2(LENGTH1(z1)) LENGTH1(z0) -> c3(LENGTH(z0)) S tuples: FROM(z0) -> c(FROM(s(z0))) LENGTH(nil) -> c1 LENGTH(cons(z0, z1)) -> c2(LENGTH1(z1)) LENGTH1(z0) -> c3(LENGTH(z0)) K tuples:none Defined Rule Symbols: from_1, length_1, length1_1 Defined Pair Symbols: FROM_1, LENGTH_1, LENGTH1_1 Compound Symbols: c_1, c1, c2_1, c3_1 ---------------------------------------- (3) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: FROM(z0) -> c(FROM(s(z0))) LENGTH(nil) -> c1 LENGTH(cons(z0, z1)) -> c2(LENGTH1(z1)) LENGTH1(z0) -> c3(LENGTH(z0)) The (relative) TRS S consists of the following rules: from(z0) -> cons(z0, from(s(z0))) length(nil) -> 0 length(cons(z0, z1)) -> s(length1(z1)) length1(z0) -> length(z0) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: FROM(z0) -> c(FROM(s(z0))) LENGTH(nil) -> c1 LENGTH(cons(z0, z1)) -> c2(LENGTH1(z1)) LENGTH1(z0) -> c3(LENGTH(z0)) The (relative) TRS S consists of the following rules: from(z0) -> cons(z0, from(s(z0))) length(nil) -> 0' length(cons(z0, z1)) -> s(length1(z1)) length1(z0) -> length(z0) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: FROM(z0) -> c(FROM(s(z0))) LENGTH(nil) -> c1 LENGTH(cons(z0, z1)) -> c2(LENGTH1(z1)) LENGTH1(z0) -> c3(LENGTH(z0)) from(z0) -> cons(z0, from(s(z0))) length(nil) -> 0' length(cons(z0, z1)) -> s(length1(z1)) length1(z0) -> length(z0) Types: FROM :: s:0' -> c c :: c -> c s :: s:0' -> s:0' LENGTH :: nil:cons -> c1:c2 nil :: nil:cons c1 :: c1:c2 cons :: s:0' -> nil:cons -> nil:cons c2 :: c3 -> c1:c2 LENGTH1 :: nil:cons -> c3 c3 :: c1:c2 -> c3 from :: s:0' -> nil:cons length :: nil:cons -> s:0' 0' :: s:0' length1 :: nil:cons -> s:0' hole_c1_4 :: c hole_s:0'2_4 :: s:0' hole_c1:c23_4 :: c1:c2 hole_nil:cons4_4 :: nil:cons hole_c35_4 :: c3 gen_c6_4 :: Nat -> c gen_s:0'7_4 :: Nat -> s:0' gen_nil:cons8_4 :: Nat -> nil:cons ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: FROM, LENGTH, LENGTH1, from, length, length1 They will be analysed ascendingly in the following order: LENGTH = LENGTH1 length = length1 ---------------------------------------- (10) Obligation: Innermost TRS: Rules: FROM(z0) -> c(FROM(s(z0))) LENGTH(nil) -> c1 LENGTH(cons(z0, z1)) -> c2(LENGTH1(z1)) LENGTH1(z0) -> c3(LENGTH(z0)) from(z0) -> cons(z0, from(s(z0))) length(nil) -> 0' length(cons(z0, z1)) -> s(length1(z1)) length1(z0) -> length(z0) Types: FROM :: s:0' -> c c :: c -> c s :: s:0' -> s:0' LENGTH :: nil:cons -> c1:c2 nil :: nil:cons c1 :: c1:c2 cons :: s:0' -> nil:cons -> nil:cons c2 :: c3 -> c1:c2 LENGTH1 :: nil:cons -> c3 c3 :: c1:c2 -> c3 from :: s:0' -> nil:cons length :: nil:cons -> s:0' 0' :: s:0' length1 :: nil:cons -> s:0' hole_c1_4 :: c hole_s:0'2_4 :: s:0' hole_c1:c23_4 :: c1:c2 hole_nil:cons4_4 :: nil:cons hole_c35_4 :: c3 gen_c6_4 :: Nat -> c gen_s:0'7_4 :: Nat -> s:0' gen_nil:cons8_4 :: Nat -> nil:cons Generator Equations: gen_c6_4(0) <=> hole_c1_4 gen_c6_4(+(x, 1)) <=> c(gen_c6_4(x)) gen_s:0'7_4(0) <=> 0' gen_s:0'7_4(+(x, 1)) <=> s(gen_s:0'7_4(x)) gen_nil:cons8_4(0) <=> nil gen_nil:cons8_4(+(x, 1)) <=> cons(0', gen_nil:cons8_4(x)) The following defined symbols remain to be analysed: FROM, LENGTH, LENGTH1, from, length, length1 They will be analysed ascendingly in the following order: LENGTH = LENGTH1 length = length1 ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: length1(gen_nil:cons8_4(n230_4)) -> gen_s:0'7_4(n230_4), rt in Omega(0) Induction Base: length1(gen_nil:cons8_4(0)) ->_R^Omega(0) length(gen_nil:cons8_4(0)) ->_R^Omega(0) 0' Induction Step: length1(gen_nil:cons8_4(+(n230_4, 1))) ->_R^Omega(0) length(gen_nil:cons8_4(+(n230_4, 1))) ->_R^Omega(0) s(length1(gen_nil:cons8_4(n230_4))) ->_IH s(gen_s:0'7_4(c231_4)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (12) Obligation: Innermost TRS: Rules: FROM(z0) -> c(FROM(s(z0))) LENGTH(nil) -> c1 LENGTH(cons(z0, z1)) -> c2(LENGTH1(z1)) LENGTH1(z0) -> c3(LENGTH(z0)) from(z0) -> cons(z0, from(s(z0))) length(nil) -> 0' length(cons(z0, z1)) -> s(length1(z1)) length1(z0) -> length(z0) Types: FROM :: s:0' -> c c :: c -> c s :: s:0' -> s:0' LENGTH :: nil:cons -> c1:c2 nil :: nil:cons c1 :: c1:c2 cons :: s:0' -> nil:cons -> nil:cons c2 :: c3 -> c1:c2 LENGTH1 :: nil:cons -> c3 c3 :: c1:c2 -> c3 from :: s:0' -> nil:cons length :: nil:cons -> s:0' 0' :: s:0' length1 :: nil:cons -> s:0' hole_c1_4 :: c hole_s:0'2_4 :: s:0' hole_c1:c23_4 :: c1:c2 hole_nil:cons4_4 :: nil:cons hole_c35_4 :: c3 gen_c6_4 :: Nat -> c gen_s:0'7_4 :: Nat -> s:0' gen_nil:cons8_4 :: Nat -> nil:cons Lemmas: length1(gen_nil:cons8_4(n230_4)) -> gen_s:0'7_4(n230_4), rt in Omega(0) Generator Equations: gen_c6_4(0) <=> hole_c1_4 gen_c6_4(+(x, 1)) <=> c(gen_c6_4(x)) gen_s:0'7_4(0) <=> 0' gen_s:0'7_4(+(x, 1)) <=> s(gen_s:0'7_4(x)) gen_nil:cons8_4(0) <=> nil gen_nil:cons8_4(+(x, 1)) <=> cons(0', gen_nil:cons8_4(x)) The following defined symbols remain to be analysed: length, LENGTH, LENGTH1 They will be analysed ascendingly in the following order: LENGTH = LENGTH1 length = length1 ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: LENGTH1(gen_nil:cons8_4(n518_4)) -> *9_4, rt in Omega(n518_4) Induction Base: LENGTH1(gen_nil:cons8_4(0)) Induction Step: LENGTH1(gen_nil:cons8_4(+(n518_4, 1))) ->_R^Omega(1) c3(LENGTH(gen_nil:cons8_4(+(n518_4, 1)))) ->_R^Omega(1) c3(c2(LENGTH1(gen_nil:cons8_4(n518_4)))) ->_IH c3(c2(*9_4)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: FROM(z0) -> c(FROM(s(z0))) LENGTH(nil) -> c1 LENGTH(cons(z0, z1)) -> c2(LENGTH1(z1)) LENGTH1(z0) -> c3(LENGTH(z0)) from(z0) -> cons(z0, from(s(z0))) length(nil) -> 0' length(cons(z0, z1)) -> s(length1(z1)) length1(z0) -> length(z0) Types: FROM :: s:0' -> c c :: c -> c s :: s:0' -> s:0' LENGTH :: nil:cons -> c1:c2 nil :: nil:cons c1 :: c1:c2 cons :: s:0' -> nil:cons -> nil:cons c2 :: c3 -> c1:c2 LENGTH1 :: nil:cons -> c3 c3 :: c1:c2 -> c3 from :: s:0' -> nil:cons length :: nil:cons -> s:0' 0' :: s:0' length1 :: nil:cons -> s:0' hole_c1_4 :: c hole_s:0'2_4 :: s:0' hole_c1:c23_4 :: c1:c2 hole_nil:cons4_4 :: nil:cons hole_c35_4 :: c3 gen_c6_4 :: Nat -> c gen_s:0'7_4 :: Nat -> s:0' gen_nil:cons8_4 :: Nat -> nil:cons Lemmas: length1(gen_nil:cons8_4(n230_4)) -> gen_s:0'7_4(n230_4), rt in Omega(0) Generator Equations: gen_c6_4(0) <=> hole_c1_4 gen_c6_4(+(x, 1)) <=> c(gen_c6_4(x)) gen_s:0'7_4(0) <=> 0' gen_s:0'7_4(+(x, 1)) <=> s(gen_s:0'7_4(x)) gen_nil:cons8_4(0) <=> nil gen_nil:cons8_4(+(x, 1)) <=> cons(0', gen_nil:cons8_4(x)) The following defined symbols remain to be analysed: LENGTH1, LENGTH They will be analysed ascendingly in the following order: LENGTH = LENGTH1 ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: Innermost TRS: Rules: FROM(z0) -> c(FROM(s(z0))) LENGTH(nil) -> c1 LENGTH(cons(z0, z1)) -> c2(LENGTH1(z1)) LENGTH1(z0) -> c3(LENGTH(z0)) from(z0) -> cons(z0, from(s(z0))) length(nil) -> 0' length(cons(z0, z1)) -> s(length1(z1)) length1(z0) -> length(z0) Types: FROM :: s:0' -> c c :: c -> c s :: s:0' -> s:0' LENGTH :: nil:cons -> c1:c2 nil :: nil:cons c1 :: c1:c2 cons :: s:0' -> nil:cons -> nil:cons c2 :: c3 -> c1:c2 LENGTH1 :: nil:cons -> c3 c3 :: c1:c2 -> c3 from :: s:0' -> nil:cons length :: nil:cons -> s:0' 0' :: s:0' length1 :: nil:cons -> s:0' hole_c1_4 :: c hole_s:0'2_4 :: s:0' hole_c1:c23_4 :: c1:c2 hole_nil:cons4_4 :: nil:cons hole_c35_4 :: c3 gen_c6_4 :: Nat -> c gen_s:0'7_4 :: Nat -> s:0' gen_nil:cons8_4 :: Nat -> nil:cons Lemmas: length1(gen_nil:cons8_4(n230_4)) -> gen_s:0'7_4(n230_4), rt in Omega(0) LENGTH1(gen_nil:cons8_4(n518_4)) -> *9_4, rt in Omega(n518_4) Generator Equations: gen_c6_4(0) <=> hole_c1_4 gen_c6_4(+(x, 1)) <=> c(gen_c6_4(x)) gen_s:0'7_4(0) <=> 0' gen_s:0'7_4(+(x, 1)) <=> s(gen_s:0'7_4(x)) gen_nil:cons8_4(0) <=> nil gen_nil:cons8_4(+(x, 1)) <=> cons(0', gen_nil:cons8_4(x)) The following defined symbols remain to be analysed: LENGTH They will be analysed ascendingly in the following order: LENGTH = LENGTH1 ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: LENGTH(gen_nil:cons8_4(n811_4)) -> *9_4, rt in Omega(n811_4) Induction Base: LENGTH(gen_nil:cons8_4(0)) Induction Step: LENGTH(gen_nil:cons8_4(+(n811_4, 1))) ->_R^Omega(1) c2(LENGTH1(gen_nil:cons8_4(n811_4))) ->_R^Omega(1) c2(c3(LENGTH(gen_nil:cons8_4(n811_4)))) ->_IH c2(c3(*9_4)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: Innermost TRS: Rules: FROM(z0) -> c(FROM(s(z0))) LENGTH(nil) -> c1 LENGTH(cons(z0, z1)) -> c2(LENGTH1(z1)) LENGTH1(z0) -> c3(LENGTH(z0)) from(z0) -> cons(z0, from(s(z0))) length(nil) -> 0' length(cons(z0, z1)) -> s(length1(z1)) length1(z0) -> length(z0) Types: FROM :: s:0' -> c c :: c -> c s :: s:0' -> s:0' LENGTH :: nil:cons -> c1:c2 nil :: nil:cons c1 :: c1:c2 cons :: s:0' -> nil:cons -> nil:cons c2 :: c3 -> c1:c2 LENGTH1 :: nil:cons -> c3 c3 :: c1:c2 -> c3 from :: s:0' -> nil:cons length :: nil:cons -> s:0' 0' :: s:0' length1 :: nil:cons -> s:0' hole_c1_4 :: c hole_s:0'2_4 :: s:0' hole_c1:c23_4 :: c1:c2 hole_nil:cons4_4 :: nil:cons hole_c35_4 :: c3 gen_c6_4 :: Nat -> c gen_s:0'7_4 :: Nat -> s:0' gen_nil:cons8_4 :: Nat -> nil:cons Lemmas: length1(gen_nil:cons8_4(n230_4)) -> gen_s:0'7_4(n230_4), rt in Omega(0) LENGTH1(gen_nil:cons8_4(n518_4)) -> *9_4, rt in Omega(n518_4) LENGTH(gen_nil:cons8_4(n811_4)) -> *9_4, rt in Omega(n811_4) Generator Equations: gen_c6_4(0) <=> hole_c1_4 gen_c6_4(+(x, 1)) <=> c(gen_c6_4(x)) gen_s:0'7_4(0) <=> 0' gen_s:0'7_4(+(x, 1)) <=> s(gen_s:0'7_4(x)) gen_nil:cons8_4(0) <=> nil gen_nil:cons8_4(+(x, 1)) <=> cons(0', gen_nil:cons8_4(x)) The following defined symbols remain to be analysed: LENGTH1 They will be analysed ascendingly in the following order: LENGTH = LENGTH1 ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: LENGTH1(gen_nil:cons8_4(n1773_4)) -> *9_4, rt in Omega(n1773_4) Induction Base: LENGTH1(gen_nil:cons8_4(0)) Induction Step: LENGTH1(gen_nil:cons8_4(+(n1773_4, 1))) ->_R^Omega(1) c3(LENGTH(gen_nil:cons8_4(+(n1773_4, 1)))) ->_R^Omega(1) c3(c2(LENGTH1(gen_nil:cons8_4(n1773_4)))) ->_IH c3(c2(*9_4)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) BOUNDS(1, INF)