WORST_CASE(Omega(n^1),?) proof of input_H5FHMmLUMq.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CdtProblem (3) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 20 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 306 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 122 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 10 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 18 ms] (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 402 ms] (24) typed CpxTrs (25) RewriteLemmaProof [LOWER BOUND(ID), 0 ms] (26) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: fst(0, Z) -> nil fst(s(X), cons(Y, Z)) -> cons(Y, fst(X, Z)) from(X) -> cons(X, from(s(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) len(nil) -> 0 len(cons(X, Z)) -> s(len(Z)) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: fst(0, z0) -> nil fst(s(z0), cons(z1, z2)) -> cons(z1, fst(z0, z2)) from(z0) -> cons(z0, from(s(z0))) add(0, z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) len(nil) -> 0 len(cons(z0, z1)) -> s(len(z1)) Tuples: FST(0, z0) -> c FST(s(z0), cons(z1, z2)) -> c1(FST(z0, z2)) FROM(z0) -> c2(FROM(s(z0))) ADD(0, z0) -> c3 ADD(s(z0), z1) -> c4(ADD(z0, z1)) LEN(nil) -> c5 LEN(cons(z0, z1)) -> c6(LEN(z1)) S tuples: FST(0, z0) -> c FST(s(z0), cons(z1, z2)) -> c1(FST(z0, z2)) FROM(z0) -> c2(FROM(s(z0))) ADD(0, z0) -> c3 ADD(s(z0), z1) -> c4(ADD(z0, z1)) LEN(nil) -> c5 LEN(cons(z0, z1)) -> c6(LEN(z1)) K tuples:none Defined Rule Symbols: fst_2, from_1, add_2, len_1 Defined Pair Symbols: FST_2, FROM_1, ADD_2, LEN_1 Compound Symbols: c, c1_1, c2_1, c3, c4_1, c5, c6_1 ---------------------------------------- (3) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: FST(0, z0) -> c FST(s(z0), cons(z1, z2)) -> c1(FST(z0, z2)) FROM(z0) -> c2(FROM(s(z0))) ADD(0, z0) -> c3 ADD(s(z0), z1) -> c4(ADD(z0, z1)) LEN(nil) -> c5 LEN(cons(z0, z1)) -> c6(LEN(z1)) The (relative) TRS S consists of the following rules: fst(0, z0) -> nil fst(s(z0), cons(z1, z2)) -> cons(z1, fst(z0, z2)) from(z0) -> cons(z0, from(s(z0))) add(0, z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) len(nil) -> 0 len(cons(z0, z1)) -> s(len(z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: FST(0', z0) -> c FST(s(z0), cons(z1, z2)) -> c1(FST(z0, z2)) FROM(z0) -> c2(FROM(s(z0))) ADD(0', z0) -> c3 ADD(s(z0), z1) -> c4(ADD(z0, z1)) LEN(nil) -> c5 LEN(cons(z0, z1)) -> c6(LEN(z1)) The (relative) TRS S consists of the following rules: fst(0', z0) -> nil fst(s(z0), cons(z1, z2)) -> cons(z1, fst(z0, z2)) from(z0) -> cons(z0, from(s(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) len(nil) -> 0' len(cons(z0, z1)) -> s(len(z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: FST(0', z0) -> c FST(s(z0), cons(z1, z2)) -> c1(FST(z0, z2)) FROM(z0) -> c2(FROM(s(z0))) ADD(0', z0) -> c3 ADD(s(z0), z1) -> c4(ADD(z0, z1)) LEN(nil) -> c5 LEN(cons(z0, z1)) -> c6(LEN(z1)) fst(0', z0) -> nil fst(s(z0), cons(z1, z2)) -> cons(z1, fst(z0, z2)) from(z0) -> cons(z0, from(s(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) len(nil) -> 0' len(cons(z0, z1)) -> s(len(z1)) Types: FST :: 0':s -> cons:nil -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s cons :: 0':s -> cons:nil -> cons:nil c1 :: c:c1 -> c:c1 FROM :: 0':s -> c2 c2 :: c2 -> c2 ADD :: 0':s -> a -> c3:c4 c3 :: c3:c4 c4 :: c3:c4 -> c3:c4 LEN :: cons:nil -> c5:c6 nil :: cons:nil c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 fst :: 0':s -> cons:nil -> cons:nil from :: 0':s -> cons:nil add :: 0':s -> 0':s -> 0':s len :: cons:nil -> 0':s hole_c:c11_7 :: c:c1 hole_0':s2_7 :: 0':s hole_cons:nil3_7 :: cons:nil hole_c24_7 :: c2 hole_c3:c45_7 :: c3:c4 hole_a6_7 :: a hole_c5:c67_7 :: c5:c6 gen_c:c18_7 :: Nat -> c:c1 gen_0':s9_7 :: Nat -> 0':s gen_cons:nil10_7 :: Nat -> cons:nil gen_c211_7 :: Nat -> c2 gen_c3:c412_7 :: Nat -> c3:c4 gen_c5:c613_7 :: Nat -> c5:c6 ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: FST, FROM, ADD, LEN, fst, from, add, len ---------------------------------------- (10) Obligation: Innermost TRS: Rules: FST(0', z0) -> c FST(s(z0), cons(z1, z2)) -> c1(FST(z0, z2)) FROM(z0) -> c2(FROM(s(z0))) ADD(0', z0) -> c3 ADD(s(z0), z1) -> c4(ADD(z0, z1)) LEN(nil) -> c5 LEN(cons(z0, z1)) -> c6(LEN(z1)) fst(0', z0) -> nil fst(s(z0), cons(z1, z2)) -> cons(z1, fst(z0, z2)) from(z0) -> cons(z0, from(s(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) len(nil) -> 0' len(cons(z0, z1)) -> s(len(z1)) Types: FST :: 0':s -> cons:nil -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s cons :: 0':s -> cons:nil -> cons:nil c1 :: c:c1 -> c:c1 FROM :: 0':s -> c2 c2 :: c2 -> c2 ADD :: 0':s -> a -> c3:c4 c3 :: c3:c4 c4 :: c3:c4 -> c3:c4 LEN :: cons:nil -> c5:c6 nil :: cons:nil c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 fst :: 0':s -> cons:nil -> cons:nil from :: 0':s -> cons:nil add :: 0':s -> 0':s -> 0':s len :: cons:nil -> 0':s hole_c:c11_7 :: c:c1 hole_0':s2_7 :: 0':s hole_cons:nil3_7 :: cons:nil hole_c24_7 :: c2 hole_c3:c45_7 :: c3:c4 hole_a6_7 :: a hole_c5:c67_7 :: c5:c6 gen_c:c18_7 :: Nat -> c:c1 gen_0':s9_7 :: Nat -> 0':s gen_cons:nil10_7 :: Nat -> cons:nil gen_c211_7 :: Nat -> c2 gen_c3:c412_7 :: Nat -> c3:c4 gen_c5:c613_7 :: Nat -> c5:c6 Generator Equations: gen_c:c18_7(0) <=> c gen_c:c18_7(+(x, 1)) <=> c1(gen_c:c18_7(x)) gen_0':s9_7(0) <=> 0' gen_0':s9_7(+(x, 1)) <=> s(gen_0':s9_7(x)) gen_cons:nil10_7(0) <=> nil gen_cons:nil10_7(+(x, 1)) <=> cons(0', gen_cons:nil10_7(x)) gen_c211_7(0) <=> hole_c24_7 gen_c211_7(+(x, 1)) <=> c2(gen_c211_7(x)) gen_c3:c412_7(0) <=> c3 gen_c3:c412_7(+(x, 1)) <=> c4(gen_c3:c412_7(x)) gen_c5:c613_7(0) <=> c5 gen_c5:c613_7(+(x, 1)) <=> c6(gen_c5:c613_7(x)) The following defined symbols remain to be analysed: FST, FROM, ADD, LEN, fst, from, add, len ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: FST(gen_0':s9_7(n15_7), gen_cons:nil10_7(n15_7)) -> gen_c:c18_7(n15_7), rt in Omega(1 + n15_7) Induction Base: FST(gen_0':s9_7(0), gen_cons:nil10_7(0)) ->_R^Omega(1) c Induction Step: FST(gen_0':s9_7(+(n15_7, 1)), gen_cons:nil10_7(+(n15_7, 1))) ->_R^Omega(1) c1(FST(gen_0':s9_7(n15_7), gen_cons:nil10_7(n15_7))) ->_IH c1(gen_c:c18_7(c16_7)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: FST(0', z0) -> c FST(s(z0), cons(z1, z2)) -> c1(FST(z0, z2)) FROM(z0) -> c2(FROM(s(z0))) ADD(0', z0) -> c3 ADD(s(z0), z1) -> c4(ADD(z0, z1)) LEN(nil) -> c5 LEN(cons(z0, z1)) -> c6(LEN(z1)) fst(0', z0) -> nil fst(s(z0), cons(z1, z2)) -> cons(z1, fst(z0, z2)) from(z0) -> cons(z0, from(s(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) len(nil) -> 0' len(cons(z0, z1)) -> s(len(z1)) Types: FST :: 0':s -> cons:nil -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s cons :: 0':s -> cons:nil -> cons:nil c1 :: c:c1 -> c:c1 FROM :: 0':s -> c2 c2 :: c2 -> c2 ADD :: 0':s -> a -> c3:c4 c3 :: c3:c4 c4 :: c3:c4 -> c3:c4 LEN :: cons:nil -> c5:c6 nil :: cons:nil c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 fst :: 0':s -> cons:nil -> cons:nil from :: 0':s -> cons:nil add :: 0':s -> 0':s -> 0':s len :: cons:nil -> 0':s hole_c:c11_7 :: c:c1 hole_0':s2_7 :: 0':s hole_cons:nil3_7 :: cons:nil hole_c24_7 :: c2 hole_c3:c45_7 :: c3:c4 hole_a6_7 :: a hole_c5:c67_7 :: c5:c6 gen_c:c18_7 :: Nat -> c:c1 gen_0':s9_7 :: Nat -> 0':s gen_cons:nil10_7 :: Nat -> cons:nil gen_c211_7 :: Nat -> c2 gen_c3:c412_7 :: Nat -> c3:c4 gen_c5:c613_7 :: Nat -> c5:c6 Generator Equations: gen_c:c18_7(0) <=> c gen_c:c18_7(+(x, 1)) <=> c1(gen_c:c18_7(x)) gen_0':s9_7(0) <=> 0' gen_0':s9_7(+(x, 1)) <=> s(gen_0':s9_7(x)) gen_cons:nil10_7(0) <=> nil gen_cons:nil10_7(+(x, 1)) <=> cons(0', gen_cons:nil10_7(x)) gen_c211_7(0) <=> hole_c24_7 gen_c211_7(+(x, 1)) <=> c2(gen_c211_7(x)) gen_c3:c412_7(0) <=> c3 gen_c3:c412_7(+(x, 1)) <=> c4(gen_c3:c412_7(x)) gen_c5:c613_7(0) <=> c5 gen_c5:c613_7(+(x, 1)) <=> c6(gen_c5:c613_7(x)) The following defined symbols remain to be analysed: FST, FROM, ADD, LEN, fst, from, add, len ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Innermost TRS: Rules: FST(0', z0) -> c FST(s(z0), cons(z1, z2)) -> c1(FST(z0, z2)) FROM(z0) -> c2(FROM(s(z0))) ADD(0', z0) -> c3 ADD(s(z0), z1) -> c4(ADD(z0, z1)) LEN(nil) -> c5 LEN(cons(z0, z1)) -> c6(LEN(z1)) fst(0', z0) -> nil fst(s(z0), cons(z1, z2)) -> cons(z1, fst(z0, z2)) from(z0) -> cons(z0, from(s(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) len(nil) -> 0' len(cons(z0, z1)) -> s(len(z1)) Types: FST :: 0':s -> cons:nil -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s cons :: 0':s -> cons:nil -> cons:nil c1 :: c:c1 -> c:c1 FROM :: 0':s -> c2 c2 :: c2 -> c2 ADD :: 0':s -> a -> c3:c4 c3 :: c3:c4 c4 :: c3:c4 -> c3:c4 LEN :: cons:nil -> c5:c6 nil :: cons:nil c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 fst :: 0':s -> cons:nil -> cons:nil from :: 0':s -> cons:nil add :: 0':s -> 0':s -> 0':s len :: cons:nil -> 0':s hole_c:c11_7 :: c:c1 hole_0':s2_7 :: 0':s hole_cons:nil3_7 :: cons:nil hole_c24_7 :: c2 hole_c3:c45_7 :: c3:c4 hole_a6_7 :: a hole_c5:c67_7 :: c5:c6 gen_c:c18_7 :: Nat -> c:c1 gen_0':s9_7 :: Nat -> 0':s gen_cons:nil10_7 :: Nat -> cons:nil gen_c211_7 :: Nat -> c2 gen_c3:c412_7 :: Nat -> c3:c4 gen_c5:c613_7 :: Nat -> c5:c6 Lemmas: FST(gen_0':s9_7(n15_7), gen_cons:nil10_7(n15_7)) -> gen_c:c18_7(n15_7), rt in Omega(1 + n15_7) Generator Equations: gen_c:c18_7(0) <=> c gen_c:c18_7(+(x, 1)) <=> c1(gen_c:c18_7(x)) gen_0':s9_7(0) <=> 0' gen_0':s9_7(+(x, 1)) <=> s(gen_0':s9_7(x)) gen_cons:nil10_7(0) <=> nil gen_cons:nil10_7(+(x, 1)) <=> cons(0', gen_cons:nil10_7(x)) gen_c211_7(0) <=> hole_c24_7 gen_c211_7(+(x, 1)) <=> c2(gen_c211_7(x)) gen_c3:c412_7(0) <=> c3 gen_c3:c412_7(+(x, 1)) <=> c4(gen_c3:c412_7(x)) gen_c5:c613_7(0) <=> c5 gen_c5:c613_7(+(x, 1)) <=> c6(gen_c5:c613_7(x)) The following defined symbols remain to be analysed: FROM, ADD, LEN, fst, from, add, len ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ADD(gen_0':s9_7(n530_7), hole_a6_7) -> gen_c3:c412_7(n530_7), rt in Omega(1 + n530_7) Induction Base: ADD(gen_0':s9_7(0), hole_a6_7) ->_R^Omega(1) c3 Induction Step: ADD(gen_0':s9_7(+(n530_7, 1)), hole_a6_7) ->_R^Omega(1) c4(ADD(gen_0':s9_7(n530_7), hole_a6_7)) ->_IH c4(gen_c3:c412_7(c531_7)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Obligation: Innermost TRS: Rules: FST(0', z0) -> c FST(s(z0), cons(z1, z2)) -> c1(FST(z0, z2)) FROM(z0) -> c2(FROM(s(z0))) ADD(0', z0) -> c3 ADD(s(z0), z1) -> c4(ADD(z0, z1)) LEN(nil) -> c5 LEN(cons(z0, z1)) -> c6(LEN(z1)) fst(0', z0) -> nil fst(s(z0), cons(z1, z2)) -> cons(z1, fst(z0, z2)) from(z0) -> cons(z0, from(s(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) len(nil) -> 0' len(cons(z0, z1)) -> s(len(z1)) Types: FST :: 0':s -> cons:nil -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s cons :: 0':s -> cons:nil -> cons:nil c1 :: c:c1 -> c:c1 FROM :: 0':s -> c2 c2 :: c2 -> c2 ADD :: 0':s -> a -> c3:c4 c3 :: c3:c4 c4 :: c3:c4 -> c3:c4 LEN :: cons:nil -> c5:c6 nil :: cons:nil c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 fst :: 0':s -> cons:nil -> cons:nil from :: 0':s -> cons:nil add :: 0':s -> 0':s -> 0':s len :: cons:nil -> 0':s hole_c:c11_7 :: c:c1 hole_0':s2_7 :: 0':s hole_cons:nil3_7 :: cons:nil hole_c24_7 :: c2 hole_c3:c45_7 :: c3:c4 hole_a6_7 :: a hole_c5:c67_7 :: c5:c6 gen_c:c18_7 :: Nat -> c:c1 gen_0':s9_7 :: Nat -> 0':s gen_cons:nil10_7 :: Nat -> cons:nil gen_c211_7 :: Nat -> c2 gen_c3:c412_7 :: Nat -> c3:c4 gen_c5:c613_7 :: Nat -> c5:c6 Lemmas: FST(gen_0':s9_7(n15_7), gen_cons:nil10_7(n15_7)) -> gen_c:c18_7(n15_7), rt in Omega(1 + n15_7) ADD(gen_0':s9_7(n530_7), hole_a6_7) -> gen_c3:c412_7(n530_7), rt in Omega(1 + n530_7) Generator Equations: gen_c:c18_7(0) <=> c gen_c:c18_7(+(x, 1)) <=> c1(gen_c:c18_7(x)) gen_0':s9_7(0) <=> 0' gen_0':s9_7(+(x, 1)) <=> s(gen_0':s9_7(x)) gen_cons:nil10_7(0) <=> nil gen_cons:nil10_7(+(x, 1)) <=> cons(0', gen_cons:nil10_7(x)) gen_c211_7(0) <=> hole_c24_7 gen_c211_7(+(x, 1)) <=> c2(gen_c211_7(x)) gen_c3:c412_7(0) <=> c3 gen_c3:c412_7(+(x, 1)) <=> c4(gen_c3:c412_7(x)) gen_c5:c613_7(0) <=> c5 gen_c5:c613_7(+(x, 1)) <=> c6(gen_c5:c613_7(x)) The following defined symbols remain to be analysed: LEN, fst, from, add, len ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: LEN(gen_cons:nil10_7(n953_7)) -> gen_c5:c613_7(n953_7), rt in Omega(1 + n953_7) Induction Base: LEN(gen_cons:nil10_7(0)) ->_R^Omega(1) c5 Induction Step: LEN(gen_cons:nil10_7(+(n953_7, 1))) ->_R^Omega(1) c6(LEN(gen_cons:nil10_7(n953_7))) ->_IH c6(gen_c5:c613_7(c954_7)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: Innermost TRS: Rules: FST(0', z0) -> c FST(s(z0), cons(z1, z2)) -> c1(FST(z0, z2)) FROM(z0) -> c2(FROM(s(z0))) ADD(0', z0) -> c3 ADD(s(z0), z1) -> c4(ADD(z0, z1)) LEN(nil) -> c5 LEN(cons(z0, z1)) -> c6(LEN(z1)) fst(0', z0) -> nil fst(s(z0), cons(z1, z2)) -> cons(z1, fst(z0, z2)) from(z0) -> cons(z0, from(s(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) len(nil) -> 0' len(cons(z0, z1)) -> s(len(z1)) Types: FST :: 0':s -> cons:nil -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s cons :: 0':s -> cons:nil -> cons:nil c1 :: c:c1 -> c:c1 FROM :: 0':s -> c2 c2 :: c2 -> c2 ADD :: 0':s -> a -> c3:c4 c3 :: c3:c4 c4 :: c3:c4 -> c3:c4 LEN :: cons:nil -> c5:c6 nil :: cons:nil c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 fst :: 0':s -> cons:nil -> cons:nil from :: 0':s -> cons:nil add :: 0':s -> 0':s -> 0':s len :: cons:nil -> 0':s hole_c:c11_7 :: c:c1 hole_0':s2_7 :: 0':s hole_cons:nil3_7 :: cons:nil hole_c24_7 :: c2 hole_c3:c45_7 :: c3:c4 hole_a6_7 :: a hole_c5:c67_7 :: c5:c6 gen_c:c18_7 :: Nat -> c:c1 gen_0':s9_7 :: Nat -> 0':s gen_cons:nil10_7 :: Nat -> cons:nil gen_c211_7 :: Nat -> c2 gen_c3:c412_7 :: Nat -> c3:c4 gen_c5:c613_7 :: Nat -> c5:c6 Lemmas: FST(gen_0':s9_7(n15_7), gen_cons:nil10_7(n15_7)) -> gen_c:c18_7(n15_7), rt in Omega(1 + n15_7) ADD(gen_0':s9_7(n530_7), hole_a6_7) -> gen_c3:c412_7(n530_7), rt in Omega(1 + n530_7) LEN(gen_cons:nil10_7(n953_7)) -> gen_c5:c613_7(n953_7), rt in Omega(1 + n953_7) Generator Equations: gen_c:c18_7(0) <=> c gen_c:c18_7(+(x, 1)) <=> c1(gen_c:c18_7(x)) gen_0':s9_7(0) <=> 0' gen_0':s9_7(+(x, 1)) <=> s(gen_0':s9_7(x)) gen_cons:nil10_7(0) <=> nil gen_cons:nil10_7(+(x, 1)) <=> cons(0', gen_cons:nil10_7(x)) gen_c211_7(0) <=> hole_c24_7 gen_c211_7(+(x, 1)) <=> c2(gen_c211_7(x)) gen_c3:c412_7(0) <=> c3 gen_c3:c412_7(+(x, 1)) <=> c4(gen_c3:c412_7(x)) gen_c5:c613_7(0) <=> c5 gen_c5:c613_7(+(x, 1)) <=> c6(gen_c5:c613_7(x)) The following defined symbols remain to be analysed: fst, from, add, len ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: fst(gen_0':s9_7(n1402_7), gen_cons:nil10_7(n1402_7)) -> gen_cons:nil10_7(n1402_7), rt in Omega(0) Induction Base: fst(gen_0':s9_7(0), gen_cons:nil10_7(0)) ->_R^Omega(0) nil Induction Step: fst(gen_0':s9_7(+(n1402_7, 1)), gen_cons:nil10_7(+(n1402_7, 1))) ->_R^Omega(0) cons(0', fst(gen_0':s9_7(n1402_7), gen_cons:nil10_7(n1402_7))) ->_IH cons(0', gen_cons:nil10_7(c1403_7)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (22) Obligation: Innermost TRS: Rules: FST(0', z0) -> c FST(s(z0), cons(z1, z2)) -> c1(FST(z0, z2)) FROM(z0) -> c2(FROM(s(z0))) ADD(0', z0) -> c3 ADD(s(z0), z1) -> c4(ADD(z0, z1)) LEN(nil) -> c5 LEN(cons(z0, z1)) -> c6(LEN(z1)) fst(0', z0) -> nil fst(s(z0), cons(z1, z2)) -> cons(z1, fst(z0, z2)) from(z0) -> cons(z0, from(s(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) len(nil) -> 0' len(cons(z0, z1)) -> s(len(z1)) Types: FST :: 0':s -> cons:nil -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s cons :: 0':s -> cons:nil -> cons:nil c1 :: c:c1 -> c:c1 FROM :: 0':s -> c2 c2 :: c2 -> c2 ADD :: 0':s -> a -> c3:c4 c3 :: c3:c4 c4 :: c3:c4 -> c3:c4 LEN :: cons:nil -> c5:c6 nil :: cons:nil c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 fst :: 0':s -> cons:nil -> cons:nil from :: 0':s -> cons:nil add :: 0':s -> 0':s -> 0':s len :: cons:nil -> 0':s hole_c:c11_7 :: c:c1 hole_0':s2_7 :: 0':s hole_cons:nil3_7 :: cons:nil hole_c24_7 :: c2 hole_c3:c45_7 :: c3:c4 hole_a6_7 :: a hole_c5:c67_7 :: c5:c6 gen_c:c18_7 :: Nat -> c:c1 gen_0':s9_7 :: Nat -> 0':s gen_cons:nil10_7 :: Nat -> cons:nil gen_c211_7 :: Nat -> c2 gen_c3:c412_7 :: Nat -> c3:c4 gen_c5:c613_7 :: Nat -> c5:c6 Lemmas: FST(gen_0':s9_7(n15_7), gen_cons:nil10_7(n15_7)) -> gen_c:c18_7(n15_7), rt in Omega(1 + n15_7) ADD(gen_0':s9_7(n530_7), hole_a6_7) -> gen_c3:c412_7(n530_7), rt in Omega(1 + n530_7) LEN(gen_cons:nil10_7(n953_7)) -> gen_c5:c613_7(n953_7), rt in Omega(1 + n953_7) fst(gen_0':s9_7(n1402_7), gen_cons:nil10_7(n1402_7)) -> gen_cons:nil10_7(n1402_7), rt in Omega(0) Generator Equations: gen_c:c18_7(0) <=> c gen_c:c18_7(+(x, 1)) <=> c1(gen_c:c18_7(x)) gen_0':s9_7(0) <=> 0' gen_0':s9_7(+(x, 1)) <=> s(gen_0':s9_7(x)) gen_cons:nil10_7(0) <=> nil gen_cons:nil10_7(+(x, 1)) <=> cons(0', gen_cons:nil10_7(x)) gen_c211_7(0) <=> hole_c24_7 gen_c211_7(+(x, 1)) <=> c2(gen_c211_7(x)) gen_c3:c412_7(0) <=> c3 gen_c3:c412_7(+(x, 1)) <=> c4(gen_c3:c412_7(x)) gen_c5:c613_7(0) <=> c5 gen_c5:c613_7(+(x, 1)) <=> c6(gen_c5:c613_7(x)) The following defined symbols remain to be analysed: from, add, len ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: add(gen_0':s9_7(n2043_7), gen_0':s9_7(b)) -> gen_0':s9_7(+(n2043_7, b)), rt in Omega(0) Induction Base: add(gen_0':s9_7(0), gen_0':s9_7(b)) ->_R^Omega(0) gen_0':s9_7(b) Induction Step: add(gen_0':s9_7(+(n2043_7, 1)), gen_0':s9_7(b)) ->_R^Omega(0) s(add(gen_0':s9_7(n2043_7), gen_0':s9_7(b))) ->_IH s(gen_0':s9_7(+(b, c2044_7))) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (24) Obligation: Innermost TRS: Rules: FST(0', z0) -> c FST(s(z0), cons(z1, z2)) -> c1(FST(z0, z2)) FROM(z0) -> c2(FROM(s(z0))) ADD(0', z0) -> c3 ADD(s(z0), z1) -> c4(ADD(z0, z1)) LEN(nil) -> c5 LEN(cons(z0, z1)) -> c6(LEN(z1)) fst(0', z0) -> nil fst(s(z0), cons(z1, z2)) -> cons(z1, fst(z0, z2)) from(z0) -> cons(z0, from(s(z0))) add(0', z0) -> z0 add(s(z0), z1) -> s(add(z0, z1)) len(nil) -> 0' len(cons(z0, z1)) -> s(len(z1)) Types: FST :: 0':s -> cons:nil -> c:c1 0' :: 0':s c :: c:c1 s :: 0':s -> 0':s cons :: 0':s -> cons:nil -> cons:nil c1 :: c:c1 -> c:c1 FROM :: 0':s -> c2 c2 :: c2 -> c2 ADD :: 0':s -> a -> c3:c4 c3 :: c3:c4 c4 :: c3:c4 -> c3:c4 LEN :: cons:nil -> c5:c6 nil :: cons:nil c5 :: c5:c6 c6 :: c5:c6 -> c5:c6 fst :: 0':s -> cons:nil -> cons:nil from :: 0':s -> cons:nil add :: 0':s -> 0':s -> 0':s len :: cons:nil -> 0':s hole_c:c11_7 :: c:c1 hole_0':s2_7 :: 0':s hole_cons:nil3_7 :: cons:nil hole_c24_7 :: c2 hole_c3:c45_7 :: c3:c4 hole_a6_7 :: a hole_c5:c67_7 :: c5:c6 gen_c:c18_7 :: Nat -> c:c1 gen_0':s9_7 :: Nat -> 0':s gen_cons:nil10_7 :: Nat -> cons:nil gen_c211_7 :: Nat -> c2 gen_c3:c412_7 :: Nat -> c3:c4 gen_c5:c613_7 :: Nat -> c5:c6 Lemmas: FST(gen_0':s9_7(n15_7), gen_cons:nil10_7(n15_7)) -> gen_c:c18_7(n15_7), rt in Omega(1 + n15_7) ADD(gen_0':s9_7(n530_7), hole_a6_7) -> gen_c3:c412_7(n530_7), rt in Omega(1 + n530_7) LEN(gen_cons:nil10_7(n953_7)) -> gen_c5:c613_7(n953_7), rt in Omega(1 + n953_7) fst(gen_0':s9_7(n1402_7), gen_cons:nil10_7(n1402_7)) -> gen_cons:nil10_7(n1402_7), rt in Omega(0) add(gen_0':s9_7(n2043_7), gen_0':s9_7(b)) -> gen_0':s9_7(+(n2043_7, b)), rt in Omega(0) Generator Equations: gen_c:c18_7(0) <=> c gen_c:c18_7(+(x, 1)) <=> c1(gen_c:c18_7(x)) gen_0':s9_7(0) <=> 0' gen_0':s9_7(+(x, 1)) <=> s(gen_0':s9_7(x)) gen_cons:nil10_7(0) <=> nil gen_cons:nil10_7(+(x, 1)) <=> cons(0', gen_cons:nil10_7(x)) gen_c211_7(0) <=> hole_c24_7 gen_c211_7(+(x, 1)) <=> c2(gen_c211_7(x)) gen_c3:c412_7(0) <=> c3 gen_c3:c412_7(+(x, 1)) <=> c4(gen_c3:c412_7(x)) gen_c5:c613_7(0) <=> c5 gen_c5:c613_7(+(x, 1)) <=> c6(gen_c5:c613_7(x)) The following defined symbols remain to be analysed: len ---------------------------------------- (25) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: len(gen_cons:nil10_7(n3336_7)) -> gen_0':s9_7(n3336_7), rt in Omega(0) Induction Base: len(gen_cons:nil10_7(0)) ->_R^Omega(0) 0' Induction Step: len(gen_cons:nil10_7(+(n3336_7, 1))) ->_R^Omega(0) s(len(gen_cons:nil10_7(n3336_7))) ->_IH s(gen_0':s9_7(c3337_7)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (26) BOUNDS(1, INF)