KILLED proof of input_SxiVyKMk6L.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (4) CdtProblem (5) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 17 ms] (12) typed CpxTrs (13) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (14) TRS for Loop Detection (15) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (16) CpxTRS (17) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (18) CdtProblem (19) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CdtProblem (21) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CdtProblem (23) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CpxTRS (25) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (26) CpxTRS (27) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (28) CpxWeightedTrs (29) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (30) CpxTypedWeightedTrs (31) CompletionProof [UPPER BOUND(ID), 0 ms] (32) CpxTypedWeightedCompleteTrs (33) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (34) CpxTypedWeightedCompleteTrs (35) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (38) CpxRNTS (39) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 15.2 s] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 5386 ms] (46) CpxRNTS (47) CompletionProof [UPPER BOUND(ID), 0 ms] (48) CpxTypedWeightedCompleteTrs (49) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (50) CpxRNTS (51) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (52) CdtProblem (53) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (54) CdtProblem (55) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (56) CdtProblem (57) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (58) CdtProblem (59) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (60) CpxWeightedTrs (61) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (62) CpxTypedWeightedTrs (63) CompletionProof [UPPER BOUND(ID), 0 ms] (64) CpxTypedWeightedCompleteTrs (65) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (66) CpxTypedWeightedCompleteTrs (67) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (68) CpxRNTS (69) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (70) CpxRNTS (71) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (72) CpxRNTS (73) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (74) CpxRNTS (75) IntTrsBoundProof [UPPER BOUND(ID), 1624 ms] (76) CpxRNTS (77) IntTrsBoundProof [UPPER BOUND(ID), 401 ms] (78) CpxRNTS (79) CompletionProof [UPPER BOUND(ID), 0 ms] (80) CpxTypedWeightedCompleteTrs (81) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (82) CpxRNTS ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(x, empty) -> x f(empty, cons(a, k)) -> f(cons(a, k), k) f(cons(a, k), y) -> f(y, k) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(x, empty) -> x f(empty, cons(a, k)) -> f(cons(a, k), k) f(cons(a, k), y) -> f(y, k) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (3) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: f(z0, empty) -> z0 f(empty, cons(z0, z1)) -> f(cons(z0, z1), z1) f(cons(z0, z1), z2) -> f(z2, z1) Tuples: F(z0, empty) -> c F(empty, cons(z0, z1)) -> c1(F(cons(z0, z1), z1)) F(cons(z0, z1), z2) -> c2(F(z2, z1)) S tuples: F(z0, empty) -> c F(empty, cons(z0, z1)) -> c1(F(cons(z0, z1), z1)) F(cons(z0, z1), z2) -> c2(F(z2, z1)) K tuples:none Defined Rule Symbols: f_2 Defined Pair Symbols: F_2 Compound Symbols: c, c1_1, c2_1 ---------------------------------------- (5) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: F(z0, empty) -> c F(empty, cons(z0, z1)) -> c1(F(cons(z0, z1), z1)) F(cons(z0, z1), z2) -> c2(F(z2, z1)) The (relative) TRS S consists of the following rules: f(z0, empty) -> z0 f(empty, cons(z0, z1)) -> f(cons(z0, z1), z1) f(cons(z0, z1), z2) -> f(z2, z1) Rewrite Strategy: INNERMOST ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: F(z0, empty) -> c F(empty, cons(z0, z1)) -> c1(F(cons(z0, z1), z1)) F(cons(z0, z1), z2) -> c2(F(z2, z1)) The (relative) TRS S consists of the following rules: f(z0, empty) -> z0 f(empty, cons(z0, z1)) -> f(cons(z0, z1), z1) f(cons(z0, z1), z2) -> f(z2, z1) Rewrite Strategy: INNERMOST ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (10) Obligation: Innermost TRS: Rules: F(z0, empty) -> c F(empty, cons(z0, z1)) -> c1(F(cons(z0, z1), z1)) F(cons(z0, z1), z2) -> c2(F(z2, z1)) f(z0, empty) -> z0 f(empty, cons(z0, z1)) -> f(cons(z0, z1), z1) f(cons(z0, z1), z2) -> f(z2, z1) Types: F :: empty:cons -> empty:cons -> c:c1:c2 empty :: empty:cons c :: c:c1:c2 cons :: a -> empty:cons -> empty:cons c1 :: c:c1:c2 -> c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 f :: empty:cons -> empty:cons -> empty:cons hole_c:c1:c21_3 :: c:c1:c2 hole_empty:cons2_3 :: empty:cons hole_a3_3 :: a gen_c:c1:c24_3 :: Nat -> c:c1:c2 gen_empty:cons5_3 :: Nat -> empty:cons ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: F, f ---------------------------------------- (12) Obligation: Innermost TRS: Rules: F(z0, empty) -> c F(empty, cons(z0, z1)) -> c1(F(cons(z0, z1), z1)) F(cons(z0, z1), z2) -> c2(F(z2, z1)) f(z0, empty) -> z0 f(empty, cons(z0, z1)) -> f(cons(z0, z1), z1) f(cons(z0, z1), z2) -> f(z2, z1) Types: F :: empty:cons -> empty:cons -> c:c1:c2 empty :: empty:cons c :: c:c1:c2 cons :: a -> empty:cons -> empty:cons c1 :: c:c1:c2 -> c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 f :: empty:cons -> empty:cons -> empty:cons hole_c:c1:c21_3 :: c:c1:c2 hole_empty:cons2_3 :: empty:cons hole_a3_3 :: a gen_c:c1:c24_3 :: Nat -> c:c1:c2 gen_empty:cons5_3 :: Nat -> empty:cons Generator Equations: gen_c:c1:c24_3(0) <=> c gen_c:c1:c24_3(+(x, 1)) <=> c1(gen_c:c1:c24_3(x)) gen_empty:cons5_3(0) <=> empty gen_empty:cons5_3(+(x, 1)) <=> cons(hole_a3_3, gen_empty:cons5_3(x)) The following defined symbols remain to be analysed: F, f ---------------------------------------- (13) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: F(z0, empty) -> c F(empty, cons(z0, z1)) -> c1(F(cons(z0, z1), z1)) F(cons(z0, z1), z2) -> c2(F(z2, z1)) The (relative) TRS S consists of the following rules: f(z0, empty) -> z0 f(empty, cons(z0, z1)) -> f(cons(z0, z1), z1) f(cons(z0, z1), z2) -> f(z2, z1) Rewrite Strategy: INNERMOST ---------------------------------------- (15) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (16) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(x, empty) -> x f(empty, cons(a, k)) -> f(cons(a, k), k) f(cons(a, k), y) -> f(y, k) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (17) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: f(z0, empty) -> z0 f(empty, cons(z0, z1)) -> f(cons(z0, z1), z1) f(cons(z0, z1), z2) -> f(z2, z1) Tuples: F(z0, empty) -> c F(empty, cons(z0, z1)) -> c1(F(cons(z0, z1), z1)) F(cons(z0, z1), z2) -> c2(F(z2, z1)) S tuples: F(z0, empty) -> c F(empty, cons(z0, z1)) -> c1(F(cons(z0, z1), z1)) F(cons(z0, z1), z2) -> c2(F(z2, z1)) K tuples:none Defined Rule Symbols: f_2 Defined Pair Symbols: F_2 Compound Symbols: c, c1_1, c2_1 ---------------------------------------- (19) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: F(z0, empty) -> c ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: f(z0, empty) -> z0 f(empty, cons(z0, z1)) -> f(cons(z0, z1), z1) f(cons(z0, z1), z2) -> f(z2, z1) Tuples: F(empty, cons(z0, z1)) -> c1(F(cons(z0, z1), z1)) F(cons(z0, z1), z2) -> c2(F(z2, z1)) S tuples: F(empty, cons(z0, z1)) -> c1(F(cons(z0, z1), z1)) F(cons(z0, z1), z2) -> c2(F(z2, z1)) K tuples:none Defined Rule Symbols: f_2 Defined Pair Symbols: F_2 Compound Symbols: c1_1, c2_1 ---------------------------------------- (21) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: f(z0, empty) -> z0 f(empty, cons(z0, z1)) -> f(cons(z0, z1), z1) f(cons(z0, z1), z2) -> f(z2, z1) ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F(empty, cons(z0, z1)) -> c1(F(cons(z0, z1), z1)) F(cons(z0, z1), z2) -> c2(F(z2, z1)) S tuples: F(empty, cons(z0, z1)) -> c1(F(cons(z0, z1), z1)) F(cons(z0, z1), z2) -> c2(F(z2, z1)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: F_2 Compound Symbols: c1_1, c2_1 ---------------------------------------- (23) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (24) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: F(empty, cons(z0, z1)) -> c1(F(cons(z0, z1), z1)) F(cons(z0, z1), z2) -> c2(F(z2, z1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (25) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (26) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: F(empty, cons(z0, z1)) -> c1(F(cons(z0, z1), z1)) F(cons(z0, z1), z2) -> c2(F(z2, z1)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (27) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (28) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: F(empty, cons(z0, z1)) -> c1(F(cons(z0, z1), z1)) [1] F(cons(z0, z1), z2) -> c2(F(z2, z1)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (29) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (30) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: F(empty, cons(z0, z1)) -> c1(F(cons(z0, z1), z1)) [1] F(cons(z0, z1), z2) -> c2(F(z2, z1)) [1] The TRS has the following type information: F :: empty:cons -> empty:cons -> c1:c2 empty :: empty:cons cons :: a -> empty:cons -> empty:cons c1 :: c1:c2 -> c1:c2 c2 :: c1:c2 -> c1:c2 Rewrite Strategy: INNERMOST ---------------------------------------- (31) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: F_2 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: const, const1 ---------------------------------------- (32) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: F(empty, cons(z0, z1)) -> c1(F(cons(z0, z1), z1)) [1] F(cons(z0, z1), z2) -> c2(F(z2, z1)) [1] The TRS has the following type information: F :: empty:cons -> empty:cons -> c1:c2 empty :: empty:cons cons :: a -> empty:cons -> empty:cons c1 :: c1:c2 -> c1:c2 c2 :: c1:c2 -> c1:c2 const :: c1:c2 const1 :: a Rewrite Strategy: INNERMOST ---------------------------------------- (33) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (34) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: F(empty, cons(z0, z1)) -> c1(F(cons(z0, z1), z1)) [1] F(cons(z0, z1), z2) -> c2(F(z2, z1)) [1] The TRS has the following type information: F :: empty:cons -> empty:cons -> c1:c2 empty :: empty:cons cons :: a -> empty:cons -> empty:cons c1 :: c1:c2 -> c1:c2 c2 :: c1:c2 -> c1:c2 const :: c1:c2 const1 :: a Rewrite Strategy: INNERMOST ---------------------------------------- (35) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: empty => 0 const => 0 const1 => 0 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: F(z, z') -{ 1 }-> 1 + F(z2, z1) :|: z1 >= 0, z' = z2, z0 >= 0, z = 1 + z0 + z1, z2 >= 0 F(z, z') -{ 1 }-> 1 + F(1 + z0 + z1, z1) :|: z' = 1 + z0 + z1, z1 >= 0, z0 >= 0, z = 0 ---------------------------------------- (37) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: F(z, z') -{ 1 }-> 1 + F(z', z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z' >= 0 F(z, z') -{ 1 }-> 1 + F(1 + z0 + z1, z1) :|: z' = 1 + z0 + z1, z1 >= 0, z0 >= 0, z = 0 ---------------------------------------- (39) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { F } ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: F(z, z') -{ 1 }-> 1 + F(z', z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z' >= 0 F(z, z') -{ 1 }-> 1 + F(1 + z0 + z1, z1) :|: z' = 1 + z0 + z1, z1 >= 0, z0 >= 0, z = 0 Function symbols to be analyzed: {F} ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: F(z, z') -{ 1 }-> 1 + F(z', z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z' >= 0 F(z, z') -{ 1 }-> 1 + F(1 + z0 + z1, z1) :|: z' = 1 + z0 + z1, z1 >= 0, z0 >= 0, z = 0 Function symbols to be analyzed: {F} ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: F after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: F(z, z') -{ 1 }-> 1 + F(z', z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z' >= 0 F(z, z') -{ 1 }-> 1 + F(1 + z0 + z1, z1) :|: z' = 1 + z0 + z1, z1 >= 0, z0 >= 0, z = 0 Function symbols to be analyzed: {F} Previous analysis results are: F: runtime: ?, size: O(1) [0] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: F after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: F(z, z') -{ 1 }-> 1 + F(z', z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z' >= 0 F(z, z') -{ 1 }-> 1 + F(1 + z0 + z1, z1) :|: z' = 1 + z0 + z1, z1 >= 0, z0 >= 0, z = 0 Function symbols to be analyzed: {F} Previous analysis results are: F: runtime: INF, size: O(1) [0] ---------------------------------------- (47) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: F(v0, v1) -> null_F [0] And the following fresh constants: null_F, const ---------------------------------------- (48) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: F(empty, cons(z0, z1)) -> c1(F(cons(z0, z1), z1)) [1] F(cons(z0, z1), z2) -> c2(F(z2, z1)) [1] F(v0, v1) -> null_F [0] The TRS has the following type information: F :: empty:cons -> empty:cons -> c1:c2:null_F empty :: empty:cons cons :: a -> empty:cons -> empty:cons c1 :: c1:c2:null_F -> c1:c2:null_F c2 :: c1:c2:null_F -> c1:c2:null_F null_F :: c1:c2:null_F const :: a Rewrite Strategy: INNERMOST ---------------------------------------- (49) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: empty => 0 null_F => 0 const => 0 ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: F(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 F(z, z') -{ 1 }-> 1 + F(z2, z1) :|: z1 >= 0, z' = z2, z0 >= 0, z = 1 + z0 + z1, z2 >= 0 F(z, z') -{ 1 }-> 1 + F(1 + z0 + z1, z1) :|: z' = 1 + z0 + z1, z1 >= 0, z0 >= 0, z = 0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (51) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace F(cons(z0, z1), z2) -> c2(F(z2, z1)) by F(cons(z0, cons(y0, y1)), empty) -> c2(F(empty, cons(y0, y1))) F(cons(z0, z1), cons(y0, y1)) -> c2(F(cons(y0, y1), z1)) ---------------------------------------- (52) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F(empty, cons(z0, z1)) -> c1(F(cons(z0, z1), z1)) F(cons(z0, cons(y0, y1)), empty) -> c2(F(empty, cons(y0, y1))) F(cons(z0, z1), cons(y0, y1)) -> c2(F(cons(y0, y1), z1)) S tuples: F(empty, cons(z0, z1)) -> c1(F(cons(z0, z1), z1)) F(cons(z0, cons(y0, y1)), empty) -> c2(F(empty, cons(y0, y1))) F(cons(z0, z1), cons(y0, y1)) -> c2(F(cons(y0, y1), z1)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: F_2 Compound Symbols: c1_1, c2_1 ---------------------------------------- (53) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace F(empty, cons(z0, z1)) -> c1(F(cons(z0, z1), z1)) by F(empty, cons(z0, cons(y2, y3))) -> c1(F(cons(z0, cons(y2, y3)), cons(y2, y3))) ---------------------------------------- (54) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F(cons(z0, cons(y0, y1)), empty) -> c2(F(empty, cons(y0, y1))) F(cons(z0, z1), cons(y0, y1)) -> c2(F(cons(y0, y1), z1)) F(empty, cons(z0, cons(y2, y3))) -> c1(F(cons(z0, cons(y2, y3)), cons(y2, y3))) S tuples: F(cons(z0, cons(y0, y1)), empty) -> c2(F(empty, cons(y0, y1))) F(cons(z0, z1), cons(y0, y1)) -> c2(F(cons(y0, y1), z1)) F(empty, cons(z0, cons(y2, y3))) -> c1(F(cons(z0, cons(y2, y3)), cons(y2, y3))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: F_2 Compound Symbols: c2_1, c1_1 ---------------------------------------- (55) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace F(cons(z0, cons(y0, y1)), empty) -> c2(F(empty, cons(y0, y1))) by F(cons(z0, cons(z1, cons(y1, y2))), empty) -> c2(F(empty, cons(z1, cons(y1, y2)))) ---------------------------------------- (56) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F(cons(z0, z1), cons(y0, y1)) -> c2(F(cons(y0, y1), z1)) F(empty, cons(z0, cons(y2, y3))) -> c1(F(cons(z0, cons(y2, y3)), cons(y2, y3))) F(cons(z0, cons(z1, cons(y1, y2))), empty) -> c2(F(empty, cons(z1, cons(y1, y2)))) S tuples: F(cons(z0, z1), cons(y0, y1)) -> c2(F(cons(y0, y1), z1)) F(empty, cons(z0, cons(y2, y3))) -> c1(F(cons(z0, cons(y2, y3)), cons(y2, y3))) F(cons(z0, cons(z1, cons(y1, y2))), empty) -> c2(F(empty, cons(z1, cons(y1, y2)))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: F_2 Compound Symbols: c2_1, c1_1 ---------------------------------------- (57) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace F(cons(z0, z1), cons(y0, y1)) -> c2(F(cons(y0, y1), z1)) by F(cons(z0, cons(y2, y3)), cons(z2, z3)) -> c2(F(cons(z2, z3), cons(y2, y3))) F(cons(z0, empty), cons(z2, cons(y1, cons(y2, y3)))) -> c2(F(cons(z2, cons(y1, cons(y2, y3))), empty)) ---------------------------------------- (58) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: F(empty, cons(z0, cons(y2, y3))) -> c1(F(cons(z0, cons(y2, y3)), cons(y2, y3))) F(cons(z0, cons(z1, cons(y1, y2))), empty) -> c2(F(empty, cons(z1, cons(y1, y2)))) F(cons(z0, cons(y2, y3)), cons(z2, z3)) -> c2(F(cons(z2, z3), cons(y2, y3))) F(cons(z0, empty), cons(z2, cons(y1, cons(y2, y3)))) -> c2(F(cons(z2, cons(y1, cons(y2, y3))), empty)) S tuples: F(empty, cons(z0, cons(y2, y3))) -> c1(F(cons(z0, cons(y2, y3)), cons(y2, y3))) F(cons(z0, cons(z1, cons(y1, y2))), empty) -> c2(F(empty, cons(z1, cons(y1, y2)))) F(cons(z0, cons(y2, y3)), cons(z2, z3)) -> c2(F(cons(z2, z3), cons(y2, y3))) F(cons(z0, empty), cons(z2, cons(y1, cons(y2, y3)))) -> c2(F(cons(z2, cons(y1, cons(y2, y3))), empty)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: F_2 Compound Symbols: c1_1, c2_1 ---------------------------------------- (59) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (60) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: f(x, empty) -> x [1] f(empty, cons(a, k)) -> f(cons(a, k), k) [1] f(cons(a, k), y) -> f(y, k) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (61) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (62) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, empty) -> x [1] f(empty, cons(a, k)) -> f(cons(a, k), k) [1] f(cons(a, k), y) -> f(y, k) [1] The TRS has the following type information: f :: empty:cons -> empty:cons -> empty:cons empty :: empty:cons cons :: a -> empty:cons -> empty:cons Rewrite Strategy: INNERMOST ---------------------------------------- (63) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: f_2 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (64) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, empty) -> x [1] f(empty, cons(a, k)) -> f(cons(a, k), k) [1] f(cons(a, k), y) -> f(y, k) [1] The TRS has the following type information: f :: empty:cons -> empty:cons -> empty:cons empty :: empty:cons cons :: a -> empty:cons -> empty:cons const :: a Rewrite Strategy: INNERMOST ---------------------------------------- (65) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (66) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, empty) -> x [1] f(empty, cons(a, k)) -> f(cons(a, k), k) [1] f(cons(a, k), y) -> f(y, k) [1] The TRS has the following type information: f :: empty:cons -> empty:cons -> empty:cons empty :: empty:cons cons :: a -> empty:cons -> empty:cons const :: a Rewrite Strategy: INNERMOST ---------------------------------------- (67) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: empty => 0 const => 0 ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 f(z, z') -{ 1 }-> f(y, k) :|: z = 1 + a + k, a >= 0, y >= 0, k >= 0, z' = y f(z, z') -{ 1 }-> f(1 + a + k, k) :|: z' = 1 + a + k, a >= 0, k >= 0, z = 0 ---------------------------------------- (69) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 f(z, z') -{ 1 }-> f(z', k) :|: z = 1 + a + k, a >= 0, z' >= 0, k >= 0 f(z, z') -{ 1 }-> f(1 + a + k, k) :|: z' = 1 + a + k, a >= 0, k >= 0, z = 0 ---------------------------------------- (71) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { f } ---------------------------------------- (72) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 f(z, z') -{ 1 }-> f(z', k) :|: z = 1 + a + k, a >= 0, z' >= 0, k >= 0 f(z, z') -{ 1 }-> f(1 + a + k, k) :|: z' = 1 + a + k, a >= 0, k >= 0, z = 0 Function symbols to be analyzed: {f} ---------------------------------------- (73) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (74) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 f(z, z') -{ 1 }-> f(z', k) :|: z = 1 + a + k, a >= 0, z' >= 0, k >= 0 f(z, z') -{ 1 }-> f(1 + a + k, k) :|: z' = 1 + a + k, a >= 0, k >= 0, z = 0 Function symbols to be analyzed: {f} ---------------------------------------- (75) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (76) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 f(z, z') -{ 1 }-> f(z', k) :|: z = 1 + a + k, a >= 0, z' >= 0, k >= 0 f(z, z') -{ 1 }-> f(1 + a + k, k) :|: z' = 1 + a + k, a >= 0, k >= 0, z = 0 Function symbols to be analyzed: {f} Previous analysis results are: f: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (77) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (78) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 f(z, z') -{ 1 }-> f(z', k) :|: z = 1 + a + k, a >= 0, z' >= 0, k >= 0 f(z, z') -{ 1 }-> f(1 + a + k, k) :|: z' = 1 + a + k, a >= 0, k >= 0, z = 0 Function symbols to be analyzed: {f} Previous analysis results are: f: runtime: INF, size: O(n^1) [z + z'] ---------------------------------------- (79) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: none And the following fresh constants: const ---------------------------------------- (80) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(x, empty) -> x [1] f(empty, cons(a, k)) -> f(cons(a, k), k) [1] f(cons(a, k), y) -> f(y, k) [1] The TRS has the following type information: f :: empty:cons -> empty:cons -> empty:cons empty :: empty:cons cons :: a -> empty:cons -> empty:cons const :: a Rewrite Strategy: INNERMOST ---------------------------------------- (81) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: empty => 0 const => 0 ---------------------------------------- (82) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 f(z, z') -{ 1 }-> f(y, k) :|: z = 1 + a + k, a >= 0, y >= 0, k >= 0, z' = y f(z, z') -{ 1 }-> f(1 + a + k, k) :|: z' = 1 + a + k, a >= 0, k >= 0, z = 0 Only complete derivations are relevant for the runtime complexity.