WORST_CASE(Omega(n^1),O(n^2)) proof of input_1uI4G28ozx.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxWeightedTrs (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedTrs (13) CompletionProof [UPPER BOUND(ID), 0 ms] (14) CpxTypedWeightedCompleteTrs (15) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) CompleteCoflocoProof [FINISHED, 225 ms] (18) BOUNDS(1, n^2) (19) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CdtProblem (21) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CpxRelTRS (23) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CpxRelTRS (25) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (26) typed CpxTrs (27) OrderProof [LOWER BOUND(ID), 0 ms] (28) typed CpxTrs (29) RewriteLemmaProof [LOWER BOUND(ID), 307 ms] (30) typed CpxTrs (31) RewriteLemmaProof [LOWER BOUND(ID), 88 ms] (32) BEST (33) proven lower bound (34) LowerBoundPropagationProof [FINISHED, 0 ms] (35) BOUNDS(n^1, INF) (36) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(t, x, y) -> f(g(x, y), x, s(y)) g(s(x), 0) -> t g(s(x), s(y)) -> g(x, y) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: f(t, z0, z1) -> f(g(z0, z1), z0, s(z1)) g(s(z0), 0) -> t g(s(z0), s(z1)) -> g(z0, z1) Tuples: F(t, z0, z1) -> c(F(g(z0, z1), z0, s(z1)), G(z0, z1)) G(s(z0), 0) -> c1 G(s(z0), s(z1)) -> c2(G(z0, z1)) S tuples: F(t, z0, z1) -> c(F(g(z0, z1), z0, s(z1)), G(z0, z1)) G(s(z0), 0) -> c1 G(s(z0), s(z1)) -> c2(G(z0, z1)) K tuples:none Defined Rule Symbols: f_3, g_2 Defined Pair Symbols: F_3, G_2 Compound Symbols: c_2, c1, c2_1 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: G(s(z0), 0) -> c1 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: f(t, z0, z1) -> f(g(z0, z1), z0, s(z1)) g(s(z0), 0) -> t g(s(z0), s(z1)) -> g(z0, z1) Tuples: F(t, z0, z1) -> c(F(g(z0, z1), z0, s(z1)), G(z0, z1)) G(s(z0), s(z1)) -> c2(G(z0, z1)) S tuples: F(t, z0, z1) -> c(F(g(z0, z1), z0, s(z1)), G(z0, z1)) G(s(z0), s(z1)) -> c2(G(z0, z1)) K tuples:none Defined Rule Symbols: f_3, g_2 Defined Pair Symbols: F_3, G_2 Compound Symbols: c_2, c2_1 ---------------------------------------- (5) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: f(t, z0, z1) -> f(g(z0, z1), z0, s(z1)) ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: g(s(z0), 0) -> t g(s(z0), s(z1)) -> g(z0, z1) Tuples: F(t, z0, z1) -> c(F(g(z0, z1), z0, s(z1)), G(z0, z1)) G(s(z0), s(z1)) -> c2(G(z0, z1)) S tuples: F(t, z0, z1) -> c(F(g(z0, z1), z0, s(z1)), G(z0, z1)) G(s(z0), s(z1)) -> c2(G(z0, z1)) K tuples:none Defined Rule Symbols: g_2 Defined Pair Symbols: F_3, G_2 Compound Symbols: c_2, c2_1 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: F(t, z0, z1) -> c(F(g(z0, z1), z0, s(z1)), G(z0, z1)) G(s(z0), s(z1)) -> c2(G(z0, z1)) The (relative) TRS S consists of the following rules: g(s(z0), 0) -> t g(s(z0), s(z1)) -> g(z0, z1) Rewrite Strategy: INNERMOST ---------------------------------------- (9) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: F(t, z0, z1) -> c(F(g(z0, z1), z0, s(z1)), G(z0, z1)) [1] G(s(z0), s(z1)) -> c2(G(z0, z1)) [1] g(s(z0), 0) -> t [0] g(s(z0), s(z1)) -> g(z0, z1) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: F(t, z0, z1) -> c(F(g(z0, z1), z0, s(z1)), G(z0, z1)) [1] G(s(z0), s(z1)) -> c2(G(z0, z1)) [1] g(s(z0), 0) -> t [0] g(s(z0), s(z1)) -> g(z0, z1) [0] The TRS has the following type information: F :: t -> s:0 -> s:0 -> c t :: t c :: c -> c2 -> c g :: s:0 -> s:0 -> t s :: s:0 -> s:0 G :: s:0 -> s:0 -> c2 c2 :: c2 -> c2 0 :: s:0 Rewrite Strategy: INNERMOST ---------------------------------------- (13) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: g(v0, v1) -> null_g [0] F(v0, v1, v2) -> null_F [0] G(v0, v1) -> null_G [0] And the following fresh constants: null_g, null_F, null_G ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: F(t, z0, z1) -> c(F(g(z0, z1), z0, s(z1)), G(z0, z1)) [1] G(s(z0), s(z1)) -> c2(G(z0, z1)) [1] g(s(z0), 0) -> t [0] g(s(z0), s(z1)) -> g(z0, z1) [0] g(v0, v1) -> null_g [0] F(v0, v1, v2) -> null_F [0] G(v0, v1) -> null_G [0] The TRS has the following type information: F :: t:null_g -> s:0 -> s:0 -> c:null_F t :: t:null_g c :: c:null_F -> c2:null_G -> c:null_F g :: s:0 -> s:0 -> t:null_g s :: s:0 -> s:0 G :: s:0 -> s:0 -> c2:null_G c2 :: c2:null_G -> c2:null_G 0 :: s:0 null_g :: t:null_g null_F :: c:null_F null_G :: c2:null_G Rewrite Strategy: INNERMOST ---------------------------------------- (15) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: t => 1 0 => 0 null_g => 0 null_F => 0 null_G => 0 ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: F(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 F(z, z', z'') -{ 1 }-> 1 + F(g(z0, z1), z0, 1 + z1) + G(z0, z1) :|: z1 >= 0, z = 1, z0 >= 0, z' = z0, z'' = z1 G(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 G(z, z') -{ 1 }-> 1 + G(z0, z1) :|: z1 >= 0, z = 1 + z0, z0 >= 0, z' = 1 + z1 g(z, z') -{ 0 }-> g(z0, z1) :|: z1 >= 0, z = 1 + z0, z0 >= 0, z' = 1 + z1 g(z, z') -{ 0 }-> 1 :|: z = 1 + z0, z0 >= 0, z' = 0 g(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (17) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V, V2),0,[fun(V1, V, V2, Out)],[V1 >= 0,V >= 0,V2 >= 0]). eq(start(V1, V, V2),0,[fun1(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V2),0,[g(V1, V, Out)],[V1 >= 0,V >= 0]). eq(fun(V1, V, V2, Out),1,[g(V4, V3, Ret010),fun(Ret010, V4, 1 + V3, Ret01),fun1(V4, V3, Ret1)],[Out = 1 + Ret01 + Ret1,V3 >= 0,V1 = 1,V4 >= 0,V = V4,V2 = V3]). eq(fun1(V1, V, Out),1,[fun1(V6, V5, Ret11)],[Out = 1 + Ret11,V5 >= 0,V1 = 1 + V6,V6 >= 0,V = 1 + V5]). eq(g(V1, V, Out),0,[],[Out = 1,V1 = 1 + V7,V7 >= 0,V = 0]). eq(g(V1, V, Out),0,[g(V8, V9, Ret)],[Out = Ret,V9 >= 0,V1 = 1 + V8,V8 >= 0,V = 1 + V9]). eq(g(V1, V, Out),0,[],[Out = 0,V11 >= 0,V10 >= 0,V1 = V11,V = V10]). eq(fun(V1, V, V2, Out),0,[],[Out = 0,V13 >= 0,V2 = V14,V12 >= 0,V1 = V13,V = V12,V14 >= 0]). eq(fun1(V1, V, Out),0,[],[Out = 0,V16 >= 0,V15 >= 0,V1 = V16,V = V15]). input_output_vars(fun(V1,V,V2,Out),[V1,V,V2],[Out]). input_output_vars(fun1(V1,V,Out),[V1,V],[Out]). input_output_vars(g(V1,V,Out),[V1,V],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive : [fun1/3] 1. recursive : [g/3] 2. recursive [non_tail] : [fun/4] 3. non_recursive : [start/3] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into fun1/3 1. SCC is partially evaluated into g/3 2. SCC is partially evaluated into fun/4 3. SCC is partially evaluated into start/3 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations fun1/3 * CE 7 is refined into CE [11] * CE 6 is refined into CE [12] ### Cost equations --> "Loop" of fun1/3 * CEs [12] --> Loop 9 * CEs [11] --> Loop 10 ### Ranking functions of CR fun1(V1,V,Out) * RF of phase [9]: [V,V1] #### Partial ranking functions of CR fun1(V1,V,Out) * Partial RF of phase [9]: - RF of loop [9:1]: V V1 ### Specialization of cost equations g/3 * CE 10 is refined into CE [13] * CE 8 is refined into CE [14] * CE 9 is refined into CE [15] ### Cost equations --> "Loop" of g/3 * CEs [15] --> Loop 11 * CEs [13] --> Loop 12 * CEs [14] --> Loop 13 ### Ranking functions of CR g(V1,V,Out) * RF of phase [11]: [V,V1] #### Partial ranking functions of CR g(V1,V,Out) * Partial RF of phase [11]: - RF of loop [11:1]: V V1 ### Specialization of cost equations fun/4 * CE 5 is refined into CE [16] * CE 4 is refined into CE [17,18,19,20,21] ### Cost equations --> "Loop" of fun/4 * CEs [20] --> Loop 14 * CEs [21] --> Loop 15 * CEs [19] --> Loop 16 * CEs [18] --> Loop 17 * CEs [17] --> Loop 18 * CEs [16] --> Loop 19 ### Ranking functions of CR fun(V1,V,V2,Out) * RF of phase [14,15]: [V-V2] #### Partial ranking functions of CR fun(V1,V,V2,Out) * Partial RF of phase [14,15]: - RF of loop [14:1,15:1]: V-V2 ### Specialization of cost equations start/3 * CE 1 is refined into CE [22,23,24,25,26,27,28] * CE 2 is refined into CE [29,30] * CE 3 is refined into CE [31,32,33] ### Cost equations --> "Loop" of start/3 * CEs [31] --> Loop 20 * CEs [22,23,24,25,26,27,28,29,30,32,33] --> Loop 21 ### Ranking functions of CR start(V1,V,V2) #### Partial ranking functions of CR start(V1,V,V2) Computing Bounds ===================================== #### Cost of chains of fun1(V1,V,Out): * Chain [[9],10]: 1*it(9)+0 Such that:it(9) =< Out with precondition: [Out>=1,V1>=Out,V>=Out] * Chain [10]: 0 with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of g(V1,V,Out): * Chain [[11],13]: 0 with precondition: [Out=1,V>=1,V1>=V+1] * Chain [[11],12]: 0 with precondition: [Out=0,V1>=1,V>=1] * Chain [13]: 0 with precondition: [V=0,Out=1,V1>=1] * Chain [12]: 0 with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of fun(V1,V,V2,Out): * Chain [[14,15],19]: 2*it(14)+1*s(3)+0 Such that:aux(1) =< V aux(4) =< V-V2 it(14) =< aux(4) s(3) =< it(14)*aux(1) with precondition: [V1=1,V2>=1,Out>=1,V>=V2+1] * Chain [[14,15],17,19]: 2*it(14)+1*s(3)+1 Such that:aux(1) =< V aux(5) =< V-V2 it(14) =< aux(5) s(3) =< it(14)*aux(1) with precondition: [V1=1,V2>=1,Out>=2,V>=V2+1] * Chain [[14,15],16,19]: 2*it(14)+1*s(3)+1*s(4)+1 Such that:aux(1) =< V s(4) =< V+1 aux(6) =< V-V2 it(14) =< aux(6) s(3) =< it(14)*aux(1) with precondition: [V1=1,V2>=1,Out>=3,V>=V2+1] * Chain [19]: 0 with precondition: [Out=0,V1>=0,V>=0,V2>=0] * Chain [18,[14,15],19]: 2*it(14)+1*s(3)+1 Such that:aux(7) =< V it(14) =< aux(7) s(3) =< it(14)*aux(7) with precondition: [V1=1,V2=0,V>=2,Out>=2] * Chain [18,[14,15],17,19]: 2*it(14)+1*s(3)+2 Such that:aux(8) =< V it(14) =< aux(8) s(3) =< it(14)*aux(8) with precondition: [V1=1,V2=0,V>=2,Out>=3] * Chain [18,[14,15],16,19]: 2*it(14)+1*s(3)+1*s(4)+2 Such that:s(4) =< V+1 aux(9) =< V it(14) =< aux(9) s(3) =< it(14)*aux(9) with precondition: [V1=1,V2=0,V>=2,Out>=4] * Chain [18,19]: 1 with precondition: [V1=1,V2=0,Out=1,V>=1] * Chain [18,17,19]: 2 with precondition: [V1=1,V2=0,Out=2,V>=1] * Chain [18,16,19]: 1*s(4)+2 Such that:s(4) =< 2 with precondition: [V1=1,V2=0,Out=3,V>=1] * Chain [17,19]: 1 with precondition: [V1=1,Out=1,V>=0,V2>=0] * Chain [16,19]: 1*s(4)+1 Such that:s(4) =< V2+1 with precondition: [V1=1,Out>=2,V+1>=Out,V2+1>=Out] #### Cost of chains of start(V1,V,V2): * Chain [21]: 1*s(28)+2*s(29)+7*s(31)+3*s(32)+6*s(36)+3*s(37)+1*s(38)+2 Such that:s(28) =< 2 s(35) =< V-V2 s(38) =< V2+1 aux(13) =< V aux(14) =< V+1 s(31) =< aux(13) s(29) =< aux(14) s(32) =< s(31)*aux(13) s(36) =< s(35) s(37) =< s(36)*aux(13) with precondition: [V1>=0,V>=0] * Chain [20]: 0 with precondition: [V=0,V1>=1] Closed-form bounds of start(V1,V,V2): ------------------------------------- * Chain [21] with precondition: [V1>=0,V>=0] - Upper bound: 7*V+4+3*V*V+3*V*nat(V-V2)+(2*V+2)+nat(V2+1)+nat(V-V2)*6 - Complexity: n^2 * Chain [20] with precondition: [V=0,V1>=1] - Upper bound: 0 - Complexity: constant ### Maximum cost of start(V1,V,V2): 7*V+4+3*V*V+3*V*nat(V-V2)+(2*V+2)+nat(V2+1)+nat(V-V2)*6 Asymptotic class: n^2 * Total analysis performed in 302 ms. ---------------------------------------- (18) BOUNDS(1, n^2) ---------------------------------------- (19) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: f(t, z0, z1) -> f(g(z0, z1), z0, s(z1)) g(s(z0), 0) -> t g(s(z0), s(z1)) -> g(z0, z1) Tuples: F(t, z0, z1) -> c(F(g(z0, z1), z0, s(z1)), G(z0, z1)) G(s(z0), 0) -> c1 G(s(z0), s(z1)) -> c2(G(z0, z1)) S tuples: F(t, z0, z1) -> c(F(g(z0, z1), z0, s(z1)), G(z0, z1)) G(s(z0), 0) -> c1 G(s(z0), s(z1)) -> c2(G(z0, z1)) K tuples:none Defined Rule Symbols: f_3, g_2 Defined Pair Symbols: F_3, G_2 Compound Symbols: c_2, c1, c2_1 ---------------------------------------- (21) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (22) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: F(t, z0, z1) -> c(F(g(z0, z1), z0, s(z1)), G(z0, z1)) G(s(z0), 0) -> c1 G(s(z0), s(z1)) -> c2(G(z0, z1)) The (relative) TRS S consists of the following rules: f(t, z0, z1) -> f(g(z0, z1), z0, s(z1)) g(s(z0), 0) -> t g(s(z0), s(z1)) -> g(z0, z1) Rewrite Strategy: INNERMOST ---------------------------------------- (23) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (24) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: F(t, z0, z1) -> c(F(g(z0, z1), z0, s(z1)), G(z0, z1)) G(s(z0), 0') -> c1 G(s(z0), s(z1)) -> c2(G(z0, z1)) The (relative) TRS S consists of the following rules: f(t, z0, z1) -> f(g(z0, z1), z0, s(z1)) g(s(z0), 0') -> t g(s(z0), s(z1)) -> g(z0, z1) Rewrite Strategy: INNERMOST ---------------------------------------- (25) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (26) Obligation: Innermost TRS: Rules: F(t, z0, z1) -> c(F(g(z0, z1), z0, s(z1)), G(z0, z1)) G(s(z0), 0') -> c1 G(s(z0), s(z1)) -> c2(G(z0, z1)) f(t, z0, z1) -> f(g(z0, z1), z0, s(z1)) g(s(z0), 0') -> t g(s(z0), s(z1)) -> g(z0, z1) Types: F :: t -> s:0' -> s:0' -> c t :: t c :: c -> c1:c2 -> c g :: s:0' -> s:0' -> t s :: s:0' -> s:0' G :: s:0' -> s:0' -> c1:c2 0' :: s:0' c1 :: c1:c2 c2 :: c1:c2 -> c1:c2 f :: t -> s:0' -> s:0' -> f hole_c1_3 :: c hole_t2_3 :: t hole_s:0'3_3 :: s:0' hole_c1:c24_3 :: c1:c2 hole_f5_3 :: f gen_c6_3 :: Nat -> c gen_s:0'7_3 :: Nat -> s:0' gen_c1:c28_3 :: Nat -> c1:c2 ---------------------------------------- (27) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: F, g, G, f They will be analysed ascendingly in the following order: g < F G < F g < f ---------------------------------------- (28) Obligation: Innermost TRS: Rules: F(t, z0, z1) -> c(F(g(z0, z1), z0, s(z1)), G(z0, z1)) G(s(z0), 0') -> c1 G(s(z0), s(z1)) -> c2(G(z0, z1)) f(t, z0, z1) -> f(g(z0, z1), z0, s(z1)) g(s(z0), 0') -> t g(s(z0), s(z1)) -> g(z0, z1) Types: F :: t -> s:0' -> s:0' -> c t :: t c :: c -> c1:c2 -> c g :: s:0' -> s:0' -> t s :: s:0' -> s:0' G :: s:0' -> s:0' -> c1:c2 0' :: s:0' c1 :: c1:c2 c2 :: c1:c2 -> c1:c2 f :: t -> s:0' -> s:0' -> f hole_c1_3 :: c hole_t2_3 :: t hole_s:0'3_3 :: s:0' hole_c1:c24_3 :: c1:c2 hole_f5_3 :: f gen_c6_3 :: Nat -> c gen_s:0'7_3 :: Nat -> s:0' gen_c1:c28_3 :: Nat -> c1:c2 Generator Equations: gen_c6_3(0) <=> hole_c1_3 gen_c6_3(+(x, 1)) <=> c(gen_c6_3(x), c1) gen_s:0'7_3(0) <=> 0' gen_s:0'7_3(+(x, 1)) <=> s(gen_s:0'7_3(x)) gen_c1:c28_3(0) <=> c1 gen_c1:c28_3(+(x, 1)) <=> c2(gen_c1:c28_3(x)) The following defined symbols remain to be analysed: g, F, G, f They will be analysed ascendingly in the following order: g < F G < F g < f ---------------------------------------- (29) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: g(gen_s:0'7_3(+(1, n10_3)), gen_s:0'7_3(n10_3)) -> t, rt in Omega(0) Induction Base: g(gen_s:0'7_3(+(1, 0)), gen_s:0'7_3(0)) ->_R^Omega(0) t Induction Step: g(gen_s:0'7_3(+(1, +(n10_3, 1))), gen_s:0'7_3(+(n10_3, 1))) ->_R^Omega(0) g(gen_s:0'7_3(+(1, n10_3)), gen_s:0'7_3(n10_3)) ->_IH t We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (30) Obligation: Innermost TRS: Rules: F(t, z0, z1) -> c(F(g(z0, z1), z0, s(z1)), G(z0, z1)) G(s(z0), 0') -> c1 G(s(z0), s(z1)) -> c2(G(z0, z1)) f(t, z0, z1) -> f(g(z0, z1), z0, s(z1)) g(s(z0), 0') -> t g(s(z0), s(z1)) -> g(z0, z1) Types: F :: t -> s:0' -> s:0' -> c t :: t c :: c -> c1:c2 -> c g :: s:0' -> s:0' -> t s :: s:0' -> s:0' G :: s:0' -> s:0' -> c1:c2 0' :: s:0' c1 :: c1:c2 c2 :: c1:c2 -> c1:c2 f :: t -> s:0' -> s:0' -> f hole_c1_3 :: c hole_t2_3 :: t hole_s:0'3_3 :: s:0' hole_c1:c24_3 :: c1:c2 hole_f5_3 :: f gen_c6_3 :: Nat -> c gen_s:0'7_3 :: Nat -> s:0' gen_c1:c28_3 :: Nat -> c1:c2 Lemmas: g(gen_s:0'7_3(+(1, n10_3)), gen_s:0'7_3(n10_3)) -> t, rt in Omega(0) Generator Equations: gen_c6_3(0) <=> hole_c1_3 gen_c6_3(+(x, 1)) <=> c(gen_c6_3(x), c1) gen_s:0'7_3(0) <=> 0' gen_s:0'7_3(+(x, 1)) <=> s(gen_s:0'7_3(x)) gen_c1:c28_3(0) <=> c1 gen_c1:c28_3(+(x, 1)) <=> c2(gen_c1:c28_3(x)) The following defined symbols remain to be analysed: G, F, f They will be analysed ascendingly in the following order: G < F ---------------------------------------- (31) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: G(gen_s:0'7_3(+(1, n155_3)), gen_s:0'7_3(n155_3)) -> gen_c1:c28_3(n155_3), rt in Omega(1 + n155_3) Induction Base: G(gen_s:0'7_3(+(1, 0)), gen_s:0'7_3(0)) ->_R^Omega(1) c1 Induction Step: G(gen_s:0'7_3(+(1, +(n155_3, 1))), gen_s:0'7_3(+(n155_3, 1))) ->_R^Omega(1) c2(G(gen_s:0'7_3(+(1, n155_3)), gen_s:0'7_3(n155_3))) ->_IH c2(gen_c1:c28_3(c156_3)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (32) Complex Obligation (BEST) ---------------------------------------- (33) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: F(t, z0, z1) -> c(F(g(z0, z1), z0, s(z1)), G(z0, z1)) G(s(z0), 0') -> c1 G(s(z0), s(z1)) -> c2(G(z0, z1)) f(t, z0, z1) -> f(g(z0, z1), z0, s(z1)) g(s(z0), 0') -> t g(s(z0), s(z1)) -> g(z0, z1) Types: F :: t -> s:0' -> s:0' -> c t :: t c :: c -> c1:c2 -> c g :: s:0' -> s:0' -> t s :: s:0' -> s:0' G :: s:0' -> s:0' -> c1:c2 0' :: s:0' c1 :: c1:c2 c2 :: c1:c2 -> c1:c2 f :: t -> s:0' -> s:0' -> f hole_c1_3 :: c hole_t2_3 :: t hole_s:0'3_3 :: s:0' hole_c1:c24_3 :: c1:c2 hole_f5_3 :: f gen_c6_3 :: Nat -> c gen_s:0'7_3 :: Nat -> s:0' gen_c1:c28_3 :: Nat -> c1:c2 Lemmas: g(gen_s:0'7_3(+(1, n10_3)), gen_s:0'7_3(n10_3)) -> t, rt in Omega(0) Generator Equations: gen_c6_3(0) <=> hole_c1_3 gen_c6_3(+(x, 1)) <=> c(gen_c6_3(x), c1) gen_s:0'7_3(0) <=> 0' gen_s:0'7_3(+(x, 1)) <=> s(gen_s:0'7_3(x)) gen_c1:c28_3(0) <=> c1 gen_c1:c28_3(+(x, 1)) <=> c2(gen_c1:c28_3(x)) The following defined symbols remain to be analysed: G, F, f They will be analysed ascendingly in the following order: G < F ---------------------------------------- (34) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (35) BOUNDS(n^1, INF) ---------------------------------------- (36) Obligation: Innermost TRS: Rules: F(t, z0, z1) -> c(F(g(z0, z1), z0, s(z1)), G(z0, z1)) G(s(z0), 0') -> c1 G(s(z0), s(z1)) -> c2(G(z0, z1)) f(t, z0, z1) -> f(g(z0, z1), z0, s(z1)) g(s(z0), 0') -> t g(s(z0), s(z1)) -> g(z0, z1) Types: F :: t -> s:0' -> s:0' -> c t :: t c :: c -> c1:c2 -> c g :: s:0' -> s:0' -> t s :: s:0' -> s:0' G :: s:0' -> s:0' -> c1:c2 0' :: s:0' c1 :: c1:c2 c2 :: c1:c2 -> c1:c2 f :: t -> s:0' -> s:0' -> f hole_c1_3 :: c hole_t2_3 :: t hole_s:0'3_3 :: s:0' hole_c1:c24_3 :: c1:c2 hole_f5_3 :: f gen_c6_3 :: Nat -> c gen_s:0'7_3 :: Nat -> s:0' gen_c1:c28_3 :: Nat -> c1:c2 Lemmas: g(gen_s:0'7_3(+(1, n10_3)), gen_s:0'7_3(n10_3)) -> t, rt in Omega(0) G(gen_s:0'7_3(+(1, n155_3)), gen_s:0'7_3(n155_3)) -> gen_c1:c28_3(n155_3), rt in Omega(1 + n155_3) Generator Equations: gen_c6_3(0) <=> hole_c1_3 gen_c6_3(+(x, 1)) <=> c(gen_c6_3(x), c1) gen_s:0'7_3(0) <=> 0' gen_s:0'7_3(+(x, 1)) <=> s(gen_s:0'7_3(x)) gen_c1:c28_3(0) <=> c1 gen_c1:c28_3(+(x, 1)) <=> c2(gen_c1:c28_3(x)) The following defined symbols remain to be analysed: F, f