WORST_CASE(Omega(n^1),O(n^1)) proof of input_u1Dccbbup8.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsProof [FINISHED, 0 ms] (4) BOUNDS(1, n^1) (5) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 6 ms] (12) typed CpxTrs (13) OrderProof [LOWER BOUND(ID), 0 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 283 ms] (16) BEST (17) proven lower bound (18) LowerBoundPropagationProof [FINISHED, 0 ms] (19) BOUNDS(n^1, INF) (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 41 ms] (22) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(s(x)) -> s(s(f(p(s(x))))) f(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(s(x)) -> s(s(f(p(s(x))))) f(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (3) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 2. The certificate found is represented by the following graph. "[4, 5, 6, 7, 8, 9, 10, 11, 12, 13] {(4,5,[f_1|0, p_1|0, 0|1, s_1|1]), (4,6,[s_1|1]), (5,5,[s_1|0, 0|0]), (6,7,[s_1|1]), (7,8,[f_1|1]), (7,10,[s_1|2]), (7,5,[0|2]), (8,9,[p_1|1]), (8,5,[s_1|1, 0|1]), (9,5,[s_1|1]), (10,11,[s_1|2]), (11,12,[f_1|2]), (11,10,[s_1|2]), (11,5,[0|2]), (12,13,[p_1|2]), (12,5,[s_1|1, 0|1]), (13,5,[s_1|2])}" ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: f(s(z0)) -> s(s(f(p(s(z0))))) f(0) -> 0 p(s(z0)) -> z0 Tuples: F(s(z0)) -> c(F(p(s(z0))), P(s(z0))) F(0) -> c1 P(s(z0)) -> c2 S tuples: F(s(z0)) -> c(F(p(s(z0))), P(s(z0))) F(0) -> c1 P(s(z0)) -> c2 K tuples:none Defined Rule Symbols: f_1, p_1 Defined Pair Symbols: F_1, P_1 Compound Symbols: c_2, c1, c2 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: F(s(z0)) -> c(F(p(s(z0))), P(s(z0))) F(0) -> c1 P(s(z0)) -> c2 The (relative) TRS S consists of the following rules: f(s(z0)) -> s(s(f(p(s(z0))))) f(0) -> 0 p(s(z0)) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (9) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: F(s(z0)) -> c(F(p(s(z0))), P(s(z0))) F(0') -> c1 P(s(z0)) -> c2 The (relative) TRS S consists of the following rules: f(s(z0)) -> s(s(f(p(s(z0))))) f(0') -> 0' p(s(z0)) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (12) Obligation: Innermost TRS: Rules: F(s(z0)) -> c(F(p(s(z0))), P(s(z0))) F(0') -> c1 P(s(z0)) -> c2 f(s(z0)) -> s(s(f(p(s(z0))))) f(0') -> 0' p(s(z0)) -> z0 Types: F :: s:0' -> c:c1 s :: s:0' -> s:0' c :: c:c1 -> c2 -> c:c1 p :: s:0' -> s:0' P :: s:0' -> c2 0' :: s:0' c1 :: c:c1 c2 :: c2 f :: s:0' -> s:0' hole_c:c11_3 :: c:c1 hole_s:0'2_3 :: s:0' hole_c23_3 :: c2 gen_c:c14_3 :: Nat -> c:c1 gen_s:0'5_3 :: Nat -> s:0' ---------------------------------------- (13) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: F, f ---------------------------------------- (14) Obligation: Innermost TRS: Rules: F(s(z0)) -> c(F(p(s(z0))), P(s(z0))) F(0') -> c1 P(s(z0)) -> c2 f(s(z0)) -> s(s(f(p(s(z0))))) f(0') -> 0' p(s(z0)) -> z0 Types: F :: s:0' -> c:c1 s :: s:0' -> s:0' c :: c:c1 -> c2 -> c:c1 p :: s:0' -> s:0' P :: s:0' -> c2 0' :: s:0' c1 :: c:c1 c2 :: c2 f :: s:0' -> s:0' hole_c:c11_3 :: c:c1 hole_s:0'2_3 :: s:0' hole_c23_3 :: c2 gen_c:c14_3 :: Nat -> c:c1 gen_s:0'5_3 :: Nat -> s:0' Generator Equations: gen_c:c14_3(0) <=> c1 gen_c:c14_3(+(x, 1)) <=> c(gen_c:c14_3(x), c2) gen_s:0'5_3(0) <=> 0' gen_s:0'5_3(+(x, 1)) <=> s(gen_s:0'5_3(x)) The following defined symbols remain to be analysed: F, f ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: F(gen_s:0'5_3(n7_3)) -> gen_c:c14_3(n7_3), rt in Omega(1 + n7_3) Induction Base: F(gen_s:0'5_3(0)) ->_R^Omega(1) c1 Induction Step: F(gen_s:0'5_3(+(n7_3, 1))) ->_R^Omega(1) c(F(p(s(gen_s:0'5_3(n7_3)))), P(s(gen_s:0'5_3(n7_3)))) ->_R^Omega(0) c(F(gen_s:0'5_3(n7_3)), P(s(gen_s:0'5_3(n7_3)))) ->_IH c(gen_c:c14_3(c8_3), P(s(gen_s:0'5_3(n7_3)))) ->_R^Omega(1) c(gen_c:c14_3(n7_3), c2) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Complex Obligation (BEST) ---------------------------------------- (17) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: F(s(z0)) -> c(F(p(s(z0))), P(s(z0))) F(0') -> c1 P(s(z0)) -> c2 f(s(z0)) -> s(s(f(p(s(z0))))) f(0') -> 0' p(s(z0)) -> z0 Types: F :: s:0' -> c:c1 s :: s:0' -> s:0' c :: c:c1 -> c2 -> c:c1 p :: s:0' -> s:0' P :: s:0' -> c2 0' :: s:0' c1 :: c:c1 c2 :: c2 f :: s:0' -> s:0' hole_c:c11_3 :: c:c1 hole_s:0'2_3 :: s:0' hole_c23_3 :: c2 gen_c:c14_3 :: Nat -> c:c1 gen_s:0'5_3 :: Nat -> s:0' Generator Equations: gen_c:c14_3(0) <=> c1 gen_c:c14_3(+(x, 1)) <=> c(gen_c:c14_3(x), c2) gen_s:0'5_3(0) <=> 0' gen_s:0'5_3(+(x, 1)) <=> s(gen_s:0'5_3(x)) The following defined symbols remain to be analysed: F, f ---------------------------------------- (18) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (19) BOUNDS(n^1, INF) ---------------------------------------- (20) Obligation: Innermost TRS: Rules: F(s(z0)) -> c(F(p(s(z0))), P(s(z0))) F(0') -> c1 P(s(z0)) -> c2 f(s(z0)) -> s(s(f(p(s(z0))))) f(0') -> 0' p(s(z0)) -> z0 Types: F :: s:0' -> c:c1 s :: s:0' -> s:0' c :: c:c1 -> c2 -> c:c1 p :: s:0' -> s:0' P :: s:0' -> c2 0' :: s:0' c1 :: c:c1 c2 :: c2 f :: s:0' -> s:0' hole_c:c11_3 :: c:c1 hole_s:0'2_3 :: s:0' hole_c23_3 :: c2 gen_c:c14_3 :: Nat -> c:c1 gen_s:0'5_3 :: Nat -> s:0' Lemmas: F(gen_s:0'5_3(n7_3)) -> gen_c:c14_3(n7_3), rt in Omega(1 + n7_3) Generator Equations: gen_c:c14_3(0) <=> c1 gen_c:c14_3(+(x, 1)) <=> c(gen_c:c14_3(x), c2) gen_s:0'5_3(0) <=> 0' gen_s:0'5_3(+(x, 1)) <=> s(gen_s:0'5_3(x)) The following defined symbols remain to be analysed: f ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_s:0'5_3(n183_3)) -> gen_s:0'5_3(*(2, n183_3)), rt in Omega(0) Induction Base: f(gen_s:0'5_3(0)) ->_R^Omega(0) 0' Induction Step: f(gen_s:0'5_3(+(n183_3, 1))) ->_R^Omega(0) s(s(f(p(s(gen_s:0'5_3(n183_3)))))) ->_R^Omega(0) s(s(f(gen_s:0'5_3(n183_3)))) ->_IH s(s(gen_s:0'5_3(*(2, c184_3)))) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (22) BOUNDS(1, INF)