WORST_CASE(Omega(n^1),O(n^1)) proof of input_tA8UYxiVMl.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsTAProof [FINISHED, 0 ms] (4) BOUNDS(1, n^1) (5) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (12) typed CpxTrs (13) OrderProof [LOWER BOUND(ID), 0 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 19.5 s] (16) BEST (17) proven lower bound (18) LowerBoundPropagationProof [FINISHED, 0 ms] (19) BOUNDS(n^1, INF) (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 797 ms] (22) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(S(x), x2) -> f(x2, x) f(0, x2) -> 0 S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(S(x), x2) -> f(x2, x) f(0, x2) -> 0 S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (3) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1] transitions: S0(0) -> 0 00() -> 0 f0(0, 0) -> 1 f1(0, 0) -> 1 01() -> 1 ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: f(S(z0), z1) -> f(z1, z0) f(0, z0) -> 0 Tuples: F(S(z0), z1) -> c(F(z1, z0)) F(0, z0) -> c1 S tuples: F(S(z0), z1) -> c(F(z1, z0)) F(0, z0) -> c1 K tuples:none Defined Rule Symbols: f_2 Defined Pair Symbols: F_2 Compound Symbols: c_1, c1 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: F(S(z0), z1) -> c(F(z1, z0)) F(0, z0) -> c1 The (relative) TRS S consists of the following rules: f(S(z0), z1) -> f(z1, z0) f(0, z0) -> 0 Rewrite Strategy: INNERMOST ---------------------------------------- (9) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: F(S(z0), z1) -> c(F(z1, z0)) F(0', z0) -> c1 The (relative) TRS S consists of the following rules: f(S(z0), z1) -> f(z1, z0) f(0', z0) -> 0' Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (12) Obligation: Innermost TRS: Rules: F(S(z0), z1) -> c(F(z1, z0)) F(0', z0) -> c1 f(S(z0), z1) -> f(z1, z0) f(0', z0) -> 0' Types: F :: S:0' -> S:0' -> c:c1 S :: S:0' -> S:0' c :: c:c1 -> c:c1 0' :: S:0' c1 :: c:c1 f :: S:0' -> S:0' -> S:0' hole_c:c11_2 :: c:c1 hole_S:0'2_2 :: S:0' gen_c:c13_2 :: Nat -> c:c1 gen_S:0'4_2 :: Nat -> S:0' ---------------------------------------- (13) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: F, f ---------------------------------------- (14) Obligation: Innermost TRS: Rules: F(S(z0), z1) -> c(F(z1, z0)) F(0', z0) -> c1 f(S(z0), z1) -> f(z1, z0) f(0', z0) -> 0' Types: F :: S:0' -> S:0' -> c:c1 S :: S:0' -> S:0' c :: c:c1 -> c:c1 0' :: S:0' c1 :: c:c1 f :: S:0' -> S:0' -> S:0' hole_c:c11_2 :: c:c1 hole_S:0'2_2 :: S:0' gen_c:c13_2 :: Nat -> c:c1 gen_S:0'4_2 :: Nat -> S:0' Generator Equations: gen_c:c13_2(0) <=> c1 gen_c:c13_2(+(x, 1)) <=> c(gen_c:c13_2(x)) gen_S:0'4_2(0) <=> 0' gen_S:0'4_2(+(x, 1)) <=> S(gen_S:0'4_2(x)) The following defined symbols remain to be analysed: F, f ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: F(gen_S:0'4_2(n6_2), gen_S:0'4_2(n6_2)) -> gen_c:c13_2(*(2, n6_2)), rt in Omega(1 + n6_2) Induction Base: F(gen_S:0'4_2(0), gen_S:0'4_2(0)) ->_R^Omega(1) c1 Induction Step: F(gen_S:0'4_2(+(n6_2, 1)), gen_S:0'4_2(+(n6_2, 1))) ->_R^Omega(1) c(F(gen_S:0'4_2(+(n6_2, 1)), gen_S:0'4_2(n6_2))) ->_R^Omega(1) c(c(F(gen_S:0'4_2(n6_2), gen_S:0'4_2(n6_2)))) ->_IH c(c(gen_c:c13_2(*(2, c7_2)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Complex Obligation (BEST) ---------------------------------------- (17) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: F(S(z0), z1) -> c(F(z1, z0)) F(0', z0) -> c1 f(S(z0), z1) -> f(z1, z0) f(0', z0) -> 0' Types: F :: S:0' -> S:0' -> c:c1 S :: S:0' -> S:0' c :: c:c1 -> c:c1 0' :: S:0' c1 :: c:c1 f :: S:0' -> S:0' -> S:0' hole_c:c11_2 :: c:c1 hole_S:0'2_2 :: S:0' gen_c:c13_2 :: Nat -> c:c1 gen_S:0'4_2 :: Nat -> S:0' Generator Equations: gen_c:c13_2(0) <=> c1 gen_c:c13_2(+(x, 1)) <=> c(gen_c:c13_2(x)) gen_S:0'4_2(0) <=> 0' gen_S:0'4_2(+(x, 1)) <=> S(gen_S:0'4_2(x)) The following defined symbols remain to be analysed: F, f ---------------------------------------- (18) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (19) BOUNDS(n^1, INF) ---------------------------------------- (20) Obligation: Innermost TRS: Rules: F(S(z0), z1) -> c(F(z1, z0)) F(0', z0) -> c1 f(S(z0), z1) -> f(z1, z0) f(0', z0) -> 0' Types: F :: S:0' -> S:0' -> c:c1 S :: S:0' -> S:0' c :: c:c1 -> c:c1 0' :: S:0' c1 :: c:c1 f :: S:0' -> S:0' -> S:0' hole_c:c11_2 :: c:c1 hole_S:0'2_2 :: S:0' gen_c:c13_2 :: Nat -> c:c1 gen_S:0'4_2 :: Nat -> S:0' Lemmas: F(gen_S:0'4_2(n6_2), gen_S:0'4_2(n6_2)) -> gen_c:c13_2(*(2, n6_2)), rt in Omega(1 + n6_2) Generator Equations: gen_c:c13_2(0) <=> c1 gen_c:c13_2(+(x, 1)) <=> c(gen_c:c13_2(x)) gen_S:0'4_2(0) <=> 0' gen_S:0'4_2(+(x, 1)) <=> S(gen_S:0'4_2(x)) The following defined symbols remain to be analysed: f ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_S:0'4_2(n8103_2), gen_S:0'4_2(n8103_2)) -> gen_S:0'4_2(0), rt in Omega(0) Induction Base: f(gen_S:0'4_2(0), gen_S:0'4_2(0)) ->_R^Omega(0) 0' Induction Step: f(gen_S:0'4_2(+(n8103_2, 1)), gen_S:0'4_2(+(n8103_2, 1))) ->_R^Omega(0) f(gen_S:0'4_2(+(n8103_2, 1)), gen_S:0'4_2(n8103_2)) ->_R^Omega(0) f(gen_S:0'4_2(n8103_2), gen_S:0'4_2(n8103_2)) ->_IH gen_S:0'4_2(0) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (22) BOUNDS(1, INF)