WORST_CASE(Omega(n^1),O(n^1)) proof of input_JfMMBkk9jf.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (8) CpxRNTS (9) CompleteCoflocoProof [FINISHED, 230 ms] (10) BOUNDS(1, n^1) (11) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRelTRS (15) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRelTRS (17) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (18) typed CpxTrs (19) OrderProof [LOWER BOUND(ID), 0 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 288 ms] (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 138 ms] (24) BEST (25) proven lower bound (26) LowerBoundPropagationProof [FINISHED, 0 ms] (27) BOUNDS(n^1, INF) (28) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), y, x) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), y, x) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), y, x) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] The TRS has the following type information: cond :: true:false -> 0:s -> 0:s -> cond true :: true:false gr :: 0:s -> 0:s -> true:false 0 :: 0:s false :: true:false s :: 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: cond(v0, v1, v2) -> null_cond [0] And the following fresh constants: null_cond ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), y, x) [1] gr(0, x) -> false [1] gr(s(x), 0) -> true [1] gr(s(x), s(y)) -> gr(x, y) [1] cond(v0, v1, v2) -> null_cond [0] The TRS has the following type information: cond :: true:false -> 0:s -> 0:s -> null_cond true :: true:false gr :: 0:s -> 0:s -> true:false 0 :: 0:s false :: true:false s :: 0:s -> 0:s null_cond :: null_cond Rewrite Strategy: INNERMOST ---------------------------------------- (7) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: true => 1 0 => 0 false => 0 null_cond => 0 ---------------------------------------- (8) Obligation: Complexity RNTS consisting of the following rules: cond(z, z', z'') -{ 1 }-> cond(gr(x, y), y, x) :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 cond(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 gr(z, z') -{ 1 }-> gr(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x gr(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 gr(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (9) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V, V2),0,[cond(V1, V, V2, Out)],[V1 >= 0,V >= 0,V2 >= 0]). eq(start(V1, V, V2),0,[gr(V1, V, Out)],[V1 >= 0,V >= 0]). eq(cond(V1, V, V2, Out),1,[gr(V4, V3, Ret0),cond(Ret0, V3, V4, Ret)],[Out = Ret,V = V4,V2 = V3,V1 = 1,V4 >= 0,V3 >= 0]). eq(gr(V1, V, Out),1,[],[Out = 0,V = V5,V5 >= 0,V1 = 0]). eq(gr(V1, V, Out),1,[],[Out = 1,V6 >= 0,V1 = 1 + V6,V = 0]). eq(gr(V1, V, Out),1,[gr(V7, V8, Ret1)],[Out = Ret1,V = 1 + V8,V7 >= 0,V8 >= 0,V1 = 1 + V7]). eq(cond(V1, V, V2, Out),0,[],[Out = 0,V10 >= 0,V2 = V11,V9 >= 0,V1 = V10,V = V9,V11 >= 0]). input_output_vars(cond(V1,V,V2,Out),[V1,V,V2],[Out]). input_output_vars(gr(V1,V,Out),[V1,V],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive : [gr/3] 1. recursive : [cond/4] 2. non_recursive : [start/3] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into gr/3 1. SCC is partially evaluated into cond/4 2. SCC is partially evaluated into start/3 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations gr/3 * CE 7 is refined into CE [8] * CE 6 is refined into CE [9] * CE 5 is refined into CE [10] ### Cost equations --> "Loop" of gr/3 * CEs [9] --> Loop 7 * CEs [10] --> Loop 8 * CEs [8] --> Loop 9 ### Ranking functions of CR gr(V1,V,Out) * RF of phase [9]: [V,V1] #### Partial ranking functions of CR gr(V1,V,Out) * Partial RF of phase [9]: - RF of loop [9:1]: V V1 ### Specialization of cost equations cond/4 * CE 4 is refined into CE [11] * CE 3 is refined into CE [12,13,14,15] ### Cost equations --> "Loop" of cond/4 * CEs [15] --> Loop 10 * CEs [14] --> Loop 11 * CEs [13] --> Loop 12 * CEs [12] --> Loop 13 * CEs [11] --> Loop 14 ### Ranking functions of CR cond(V1,V,V2,Out) #### Partial ranking functions of CR cond(V1,V,V2,Out) ### Specialization of cost equations start/3 * CE 1 is refined into CE [16,17,18,19] * CE 2 is refined into CE [20,21,22,23] ### Cost equations --> "Loop" of start/3 * CEs [23] --> Loop 15 * CEs [21] --> Loop 16 * CEs [19] --> Loop 17 * CEs [18,22] --> Loop 18 * CEs [16,17] --> Loop 19 * CEs [20] --> Loop 20 ### Ranking functions of CR start(V1,V,V2) #### Partial ranking functions of CR start(V1,V,V2) Computing Bounds ===================================== #### Cost of chains of gr(V1,V,Out): * Chain [[9],8]: 1*it(9)+1 Such that:it(9) =< V1 with precondition: [Out=0,V1>=1,V>=V1] * Chain [[9],7]: 1*it(9)+1 Such that:it(9) =< V with precondition: [Out=1,V>=1,V1>=V+1] * Chain [8]: 1 with precondition: [V1=0,Out=0,V>=0] * Chain [7]: 1 with precondition: [V=0,Out=1,V1>=1] #### Cost of chains of cond(V1,V,V2,Out): * Chain [14]: 0 with precondition: [Out=0,V1>=0,V>=0,V2>=0] * Chain [13,14]: 2 with precondition: [V1=1,V=0,Out=0,V2>=0] * Chain [12,14]: 2 with precondition: [V1=1,V2=0,Out=0,V>=1] * Chain [12,13,14]: 4 with precondition: [V1=1,V2=0,Out=0,V>=1] * Chain [11,14]: 1*s(1)+2 Such that:s(1) =< V with precondition: [V1=1,Out=0,V>=1,V2>=V] * Chain [10,14]: 1*s(2)+2 Such that:s(2) =< V2 with precondition: [V1=1,Out=0,V2>=1,V>=V2+1] * Chain [10,11,14]: 2*s(1)+4 Such that:aux(1) =< V2 s(1) =< aux(1) with precondition: [V1=1,Out=0,V2>=1,V>=V2+1] #### Cost of chains of start(V1,V,V2): * Chain [20]: 1 with precondition: [V1=0,V>=0] * Chain [19]: 4 with precondition: [V1>=0,V>=0,V2>=0] * Chain [18]: 1*s(6)+1*s(7)+2 Such that:s(7) =< V1 s(6) =< V with precondition: [V1>=1,V>=V1] * Chain [17]: 3*s(9)+4 Such that:s(8) =< V2 s(9) =< s(8) with precondition: [V1=1,V2>=1,V>=V2+1] * Chain [16]: 1 with precondition: [V=0,V1>=1] * Chain [15]: 1*s(10)+1 Such that:s(10) =< V with precondition: [V>=1,V1>=V+1] Closed-form bounds of start(V1,V,V2): ------------------------------------- * Chain [20] with precondition: [V1=0,V>=0] - Upper bound: 1 - Complexity: constant * Chain [19] with precondition: [V1>=0,V>=0,V2>=0] - Upper bound: 4 - Complexity: constant * Chain [18] with precondition: [V1>=1,V>=V1] - Upper bound: V1+V+2 - Complexity: n * Chain [17] with precondition: [V1=1,V2>=1,V>=V2+1] - Upper bound: 3*V2+4 - Complexity: n * Chain [16] with precondition: [V=0,V1>=1] - Upper bound: 1 - Complexity: constant * Chain [15] with precondition: [V>=1,V1>=V+1] - Upper bound: V+1 - Complexity: n ### Maximum cost of start(V1,V,V2): max([V1+V+1,max([3,nat(V2)*3+3])])+1 Asymptotic class: n * Total analysis performed in 159 ms. ---------------------------------------- (10) BOUNDS(1, n^1) ---------------------------------------- (11) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: cond(true, z0, z1) -> cond(gr(z0, z1), z1, z0) gr(0, z0) -> false gr(s(z0), 0) -> true gr(s(z0), s(z1)) -> gr(z0, z1) Tuples: COND(true, z0, z1) -> c(COND(gr(z0, z1), z1, z0), GR(z0, z1)) GR(0, z0) -> c1 GR(s(z0), 0) -> c2 GR(s(z0), s(z1)) -> c3(GR(z0, z1)) S tuples: COND(true, z0, z1) -> c(COND(gr(z0, z1), z1, z0), GR(z0, z1)) GR(0, z0) -> c1 GR(s(z0), 0) -> c2 GR(s(z0), s(z1)) -> c3(GR(z0, z1)) K tuples:none Defined Rule Symbols: cond_3, gr_2 Defined Pair Symbols: COND_3, GR_2 Compound Symbols: c_2, c1, c2, c3_1 ---------------------------------------- (13) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (14) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: COND(true, z0, z1) -> c(COND(gr(z0, z1), z1, z0), GR(z0, z1)) GR(0, z0) -> c1 GR(s(z0), 0) -> c2 GR(s(z0), s(z1)) -> c3(GR(z0, z1)) The (relative) TRS S consists of the following rules: cond(true, z0, z1) -> cond(gr(z0, z1), z1, z0) gr(0, z0) -> false gr(s(z0), 0) -> true gr(s(z0), s(z1)) -> gr(z0, z1) Rewrite Strategy: INNERMOST ---------------------------------------- (15) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (16) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: COND(true, z0, z1) -> c(COND(gr(z0, z1), z1, z0), GR(z0, z1)) GR(0', z0) -> c1 GR(s(z0), 0') -> c2 GR(s(z0), s(z1)) -> c3(GR(z0, z1)) The (relative) TRS S consists of the following rules: cond(true, z0, z1) -> cond(gr(z0, z1), z1, z0) gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) Rewrite Strategy: INNERMOST ---------------------------------------- (17) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (18) Obligation: Innermost TRS: Rules: COND(true, z0, z1) -> c(COND(gr(z0, z1), z1, z0), GR(z0, z1)) GR(0', z0) -> c1 GR(s(z0), 0') -> c2 GR(s(z0), s(z1)) -> c3(GR(z0, z1)) cond(true, z0, z1) -> cond(gr(z0, z1), z1, z0) gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) Types: COND :: true:false -> 0':s -> 0':s -> c true :: true:false c :: c -> c1:c2:c3 -> c gr :: 0':s -> 0':s -> true:false GR :: 0':s -> 0':s -> c1:c2:c3 0' :: 0':s c1 :: c1:c2:c3 s :: 0':s -> 0':s c2 :: c1:c2:c3 c3 :: c1:c2:c3 -> c1:c2:c3 cond :: true:false -> 0':s -> 0':s -> cond false :: true:false hole_c1_4 :: c hole_true:false2_4 :: true:false hole_0':s3_4 :: 0':s hole_c1:c2:c34_4 :: c1:c2:c3 hole_cond5_4 :: cond gen_c6_4 :: Nat -> c gen_0':s7_4 :: Nat -> 0':s gen_c1:c2:c38_4 :: Nat -> c1:c2:c3 ---------------------------------------- (19) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: COND, gr, GR, cond They will be analysed ascendingly in the following order: gr < COND GR < COND gr < cond ---------------------------------------- (20) Obligation: Innermost TRS: Rules: COND(true, z0, z1) -> c(COND(gr(z0, z1), z1, z0), GR(z0, z1)) GR(0', z0) -> c1 GR(s(z0), 0') -> c2 GR(s(z0), s(z1)) -> c3(GR(z0, z1)) cond(true, z0, z1) -> cond(gr(z0, z1), z1, z0) gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) Types: COND :: true:false -> 0':s -> 0':s -> c true :: true:false c :: c -> c1:c2:c3 -> c gr :: 0':s -> 0':s -> true:false GR :: 0':s -> 0':s -> c1:c2:c3 0' :: 0':s c1 :: c1:c2:c3 s :: 0':s -> 0':s c2 :: c1:c2:c3 c3 :: c1:c2:c3 -> c1:c2:c3 cond :: true:false -> 0':s -> 0':s -> cond false :: true:false hole_c1_4 :: c hole_true:false2_4 :: true:false hole_0':s3_4 :: 0':s hole_c1:c2:c34_4 :: c1:c2:c3 hole_cond5_4 :: cond gen_c6_4 :: Nat -> c gen_0':s7_4 :: Nat -> 0':s gen_c1:c2:c38_4 :: Nat -> c1:c2:c3 Generator Equations: gen_c6_4(0) <=> hole_c1_4 gen_c6_4(+(x, 1)) <=> c(gen_c6_4(x), c1) gen_0':s7_4(0) <=> 0' gen_0':s7_4(+(x, 1)) <=> s(gen_0':s7_4(x)) gen_c1:c2:c38_4(0) <=> c1 gen_c1:c2:c38_4(+(x, 1)) <=> c3(gen_c1:c2:c38_4(x)) The following defined symbols remain to be analysed: gr, COND, GR, cond They will be analysed ascendingly in the following order: gr < COND GR < COND gr < cond ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: gr(gen_0':s7_4(n10_4), gen_0':s7_4(n10_4)) -> false, rt in Omega(0) Induction Base: gr(gen_0':s7_4(0), gen_0':s7_4(0)) ->_R^Omega(0) false Induction Step: gr(gen_0':s7_4(+(n10_4, 1)), gen_0':s7_4(+(n10_4, 1))) ->_R^Omega(0) gr(gen_0':s7_4(n10_4), gen_0':s7_4(n10_4)) ->_IH false We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (22) Obligation: Innermost TRS: Rules: COND(true, z0, z1) -> c(COND(gr(z0, z1), z1, z0), GR(z0, z1)) GR(0', z0) -> c1 GR(s(z0), 0') -> c2 GR(s(z0), s(z1)) -> c3(GR(z0, z1)) cond(true, z0, z1) -> cond(gr(z0, z1), z1, z0) gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) Types: COND :: true:false -> 0':s -> 0':s -> c true :: true:false c :: c -> c1:c2:c3 -> c gr :: 0':s -> 0':s -> true:false GR :: 0':s -> 0':s -> c1:c2:c3 0' :: 0':s c1 :: c1:c2:c3 s :: 0':s -> 0':s c2 :: c1:c2:c3 c3 :: c1:c2:c3 -> c1:c2:c3 cond :: true:false -> 0':s -> 0':s -> cond false :: true:false hole_c1_4 :: c hole_true:false2_4 :: true:false hole_0':s3_4 :: 0':s hole_c1:c2:c34_4 :: c1:c2:c3 hole_cond5_4 :: cond gen_c6_4 :: Nat -> c gen_0':s7_4 :: Nat -> 0':s gen_c1:c2:c38_4 :: Nat -> c1:c2:c3 Lemmas: gr(gen_0':s7_4(n10_4), gen_0':s7_4(n10_4)) -> false, rt in Omega(0) Generator Equations: gen_c6_4(0) <=> hole_c1_4 gen_c6_4(+(x, 1)) <=> c(gen_c6_4(x), c1) gen_0':s7_4(0) <=> 0' gen_0':s7_4(+(x, 1)) <=> s(gen_0':s7_4(x)) gen_c1:c2:c38_4(0) <=> c1 gen_c1:c2:c38_4(+(x, 1)) <=> c3(gen_c1:c2:c38_4(x)) The following defined symbols remain to be analysed: GR, COND, cond They will be analysed ascendingly in the following order: GR < COND ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: GR(gen_0':s7_4(n253_4), gen_0':s7_4(n253_4)) -> gen_c1:c2:c38_4(n253_4), rt in Omega(1 + n253_4) Induction Base: GR(gen_0':s7_4(0), gen_0':s7_4(0)) ->_R^Omega(1) c1 Induction Step: GR(gen_0':s7_4(+(n253_4, 1)), gen_0':s7_4(+(n253_4, 1))) ->_R^Omega(1) c3(GR(gen_0':s7_4(n253_4), gen_0':s7_4(n253_4))) ->_IH c3(gen_c1:c2:c38_4(c254_4)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Complex Obligation (BEST) ---------------------------------------- (25) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: COND(true, z0, z1) -> c(COND(gr(z0, z1), z1, z0), GR(z0, z1)) GR(0', z0) -> c1 GR(s(z0), 0') -> c2 GR(s(z0), s(z1)) -> c3(GR(z0, z1)) cond(true, z0, z1) -> cond(gr(z0, z1), z1, z0) gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) Types: COND :: true:false -> 0':s -> 0':s -> c true :: true:false c :: c -> c1:c2:c3 -> c gr :: 0':s -> 0':s -> true:false GR :: 0':s -> 0':s -> c1:c2:c3 0' :: 0':s c1 :: c1:c2:c3 s :: 0':s -> 0':s c2 :: c1:c2:c3 c3 :: c1:c2:c3 -> c1:c2:c3 cond :: true:false -> 0':s -> 0':s -> cond false :: true:false hole_c1_4 :: c hole_true:false2_4 :: true:false hole_0':s3_4 :: 0':s hole_c1:c2:c34_4 :: c1:c2:c3 hole_cond5_4 :: cond gen_c6_4 :: Nat -> c gen_0':s7_4 :: Nat -> 0':s gen_c1:c2:c38_4 :: Nat -> c1:c2:c3 Lemmas: gr(gen_0':s7_4(n10_4), gen_0':s7_4(n10_4)) -> false, rt in Omega(0) Generator Equations: gen_c6_4(0) <=> hole_c1_4 gen_c6_4(+(x, 1)) <=> c(gen_c6_4(x), c1) gen_0':s7_4(0) <=> 0' gen_0':s7_4(+(x, 1)) <=> s(gen_0':s7_4(x)) gen_c1:c2:c38_4(0) <=> c1 gen_c1:c2:c38_4(+(x, 1)) <=> c3(gen_c1:c2:c38_4(x)) The following defined symbols remain to be analysed: GR, COND, cond They will be analysed ascendingly in the following order: GR < COND ---------------------------------------- (26) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (27) BOUNDS(n^1, INF) ---------------------------------------- (28) Obligation: Innermost TRS: Rules: COND(true, z0, z1) -> c(COND(gr(z0, z1), z1, z0), GR(z0, z1)) GR(0', z0) -> c1 GR(s(z0), 0') -> c2 GR(s(z0), s(z1)) -> c3(GR(z0, z1)) cond(true, z0, z1) -> cond(gr(z0, z1), z1, z0) gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) Types: COND :: true:false -> 0':s -> 0':s -> c true :: true:false c :: c -> c1:c2:c3 -> c gr :: 0':s -> 0':s -> true:false GR :: 0':s -> 0':s -> c1:c2:c3 0' :: 0':s c1 :: c1:c2:c3 s :: 0':s -> 0':s c2 :: c1:c2:c3 c3 :: c1:c2:c3 -> c1:c2:c3 cond :: true:false -> 0':s -> 0':s -> cond false :: true:false hole_c1_4 :: c hole_true:false2_4 :: true:false hole_0':s3_4 :: 0':s hole_c1:c2:c34_4 :: c1:c2:c3 hole_cond5_4 :: cond gen_c6_4 :: Nat -> c gen_0':s7_4 :: Nat -> 0':s gen_c1:c2:c38_4 :: Nat -> c1:c2:c3 Lemmas: gr(gen_0':s7_4(n10_4), gen_0':s7_4(n10_4)) -> false, rt in Omega(0) GR(gen_0':s7_4(n253_4), gen_0':s7_4(n253_4)) -> gen_c1:c2:c38_4(n253_4), rt in Omega(1 + n253_4) Generator Equations: gen_c6_4(0) <=> hole_c1_4 gen_c6_4(+(x, 1)) <=> c(gen_c6_4(x), c1) gen_0':s7_4(0) <=> 0' gen_0':s7_4(+(x, 1)) <=> s(gen_0':s7_4(x)) gen_c1:c2:c38_4(0) <=> c1 gen_c1:c2:c38_4(+(x, 1)) <=> c3(gen_c1:c2:c38_4(x)) The following defined symbols remain to be analysed: COND, cond