WORST_CASE(Omega(n^1),O(n^2)) proof of input_IcrLDXD7B6.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxWeightedTrs (13) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxTypedWeightedTrs (15) CompletionProof [UPPER BOUND(ID), 0 ms] (16) CpxTypedWeightedCompleteTrs (17) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) CompleteCoflocoProof [FINISHED, 1677 ms] (20) BOUNDS(1, n^2) (21) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CdtProblem (23) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CpxRelTRS (25) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (26) CpxRelTRS (27) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (28) typed CpxTrs (29) OrderProof [LOWER BOUND(ID), 0 ms] (30) typed CpxTrs (31) RewriteLemmaProof [LOWER BOUND(ID), 265 ms] (32) typed CpxTrs (33) RewriteLemmaProof [LOWER BOUND(ID), 169 ms] (34) BEST (35) proven lower bound (36) LowerBoundPropagationProof [FINISHED, 0 ms] (37) BOUNDS(n^1, INF) (38) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(x, y), x, y) cond2(true, x, y) -> cond1(gr(x, 0), y, y) cond2(false, x, y) -> cond1(gr(x, 0), p(x), y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: cond1(true, z0, z1) -> cond2(gr(z0, z1), z0, z1) cond2(true, z0, z1) -> cond1(gr(z0, 0), z1, z1) cond2(false, z0, z1) -> cond1(gr(z0, 0), p(z0), z1) gr(0, z0) -> false gr(s(z0), 0) -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0) -> 0 p(s(z0)) -> z0 Tuples: COND1(true, z0, z1) -> c(COND2(gr(z0, z1), z0, z1), GR(z0, z1)) COND2(true, z0, z1) -> c1(COND1(gr(z0, 0), z1, z1), GR(z0, 0)) COND2(false, z0, z1) -> c2(COND1(gr(z0, 0), p(z0), z1), GR(z0, 0)) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1), P(z0)) GR(0, z0) -> c4 GR(s(z0), 0) -> c5 GR(s(z0), s(z1)) -> c6(GR(z0, z1)) P(0) -> c7 P(s(z0)) -> c8 S tuples: COND1(true, z0, z1) -> c(COND2(gr(z0, z1), z0, z1), GR(z0, z1)) COND2(true, z0, z1) -> c1(COND1(gr(z0, 0), z1, z1), GR(z0, 0)) COND2(false, z0, z1) -> c2(COND1(gr(z0, 0), p(z0), z1), GR(z0, 0)) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1), P(z0)) GR(0, z0) -> c4 GR(s(z0), 0) -> c5 GR(s(z0), s(z1)) -> c6(GR(z0, z1)) P(0) -> c7 P(s(z0)) -> c8 K tuples:none Defined Rule Symbols: cond1_3, cond2_3, gr_2, p_1 Defined Pair Symbols: COND1_3, COND2_3, GR_2, P_1 Compound Symbols: c_2, c1_2, c2_2, c3_2, c4, c5, c6_1, c7, c8 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 4 trailing nodes: GR(0, z0) -> c4 P(s(z0)) -> c8 P(0) -> c7 GR(s(z0), 0) -> c5 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: cond1(true, z0, z1) -> cond2(gr(z0, z1), z0, z1) cond2(true, z0, z1) -> cond1(gr(z0, 0), z1, z1) cond2(false, z0, z1) -> cond1(gr(z0, 0), p(z0), z1) gr(0, z0) -> false gr(s(z0), 0) -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0) -> 0 p(s(z0)) -> z0 Tuples: COND1(true, z0, z1) -> c(COND2(gr(z0, z1), z0, z1), GR(z0, z1)) COND2(true, z0, z1) -> c1(COND1(gr(z0, 0), z1, z1), GR(z0, 0)) COND2(false, z0, z1) -> c2(COND1(gr(z0, 0), p(z0), z1), GR(z0, 0)) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1), P(z0)) GR(s(z0), s(z1)) -> c6(GR(z0, z1)) S tuples: COND1(true, z0, z1) -> c(COND2(gr(z0, z1), z0, z1), GR(z0, z1)) COND2(true, z0, z1) -> c1(COND1(gr(z0, 0), z1, z1), GR(z0, 0)) COND2(false, z0, z1) -> c2(COND1(gr(z0, 0), p(z0), z1), GR(z0, 0)) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1), P(z0)) GR(s(z0), s(z1)) -> c6(GR(z0, z1)) K tuples:none Defined Rule Symbols: cond1_3, cond2_3, gr_2, p_1 Defined Pair Symbols: COND1_3, COND2_3, GR_2 Compound Symbols: c_2, c1_2, c2_2, c3_2, c6_1 ---------------------------------------- (5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 3 trailing tuple parts ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: cond1(true, z0, z1) -> cond2(gr(z0, z1), z0, z1) cond2(true, z0, z1) -> cond1(gr(z0, 0), z1, z1) cond2(false, z0, z1) -> cond1(gr(z0, 0), p(z0), z1) gr(0, z0) -> false gr(s(z0), 0) -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0) -> 0 p(s(z0)) -> z0 Tuples: COND1(true, z0, z1) -> c(COND2(gr(z0, z1), z0, z1), GR(z0, z1)) GR(s(z0), s(z1)) -> c6(GR(z0, z1)) COND2(true, z0, z1) -> c1(COND1(gr(z0, 0), z1, z1)) COND2(false, z0, z1) -> c2(COND1(gr(z0, 0), p(z0), z1)) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1)) S tuples: COND1(true, z0, z1) -> c(COND2(gr(z0, z1), z0, z1), GR(z0, z1)) GR(s(z0), s(z1)) -> c6(GR(z0, z1)) COND2(true, z0, z1) -> c1(COND1(gr(z0, 0), z1, z1)) COND2(false, z0, z1) -> c2(COND1(gr(z0, 0), p(z0), z1)) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1)) K tuples:none Defined Rule Symbols: cond1_3, cond2_3, gr_2, p_1 Defined Pair Symbols: COND1_3, GR_2, COND2_3 Compound Symbols: c_2, c6_1, c1_1, c2_1, c3_1 ---------------------------------------- (7) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: cond1(true, z0, z1) -> cond2(gr(z0, z1), z0, z1) cond2(true, z0, z1) -> cond1(gr(z0, 0), z1, z1) cond2(false, z0, z1) -> cond1(gr(z0, 0), p(z0), z1) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: gr(0, z0) -> false gr(s(z0), 0) -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0) -> 0 p(s(z0)) -> z0 Tuples: COND1(true, z0, z1) -> c(COND2(gr(z0, z1), z0, z1), GR(z0, z1)) GR(s(z0), s(z1)) -> c6(GR(z0, z1)) COND2(true, z0, z1) -> c1(COND1(gr(z0, 0), z1, z1)) COND2(false, z0, z1) -> c2(COND1(gr(z0, 0), p(z0), z1)) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1)) S tuples: COND1(true, z0, z1) -> c(COND2(gr(z0, z1), z0, z1), GR(z0, z1)) GR(s(z0), s(z1)) -> c6(GR(z0, z1)) COND2(true, z0, z1) -> c1(COND1(gr(z0, 0), z1, z1)) COND2(false, z0, z1) -> c2(COND1(gr(z0, 0), p(z0), z1)) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1)) K tuples:none Defined Rule Symbols: gr_2, p_1 Defined Pair Symbols: COND1_3, GR_2, COND2_3 Compound Symbols: c_2, c6_1, c1_1, c2_1, c3_1 ---------------------------------------- (9) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: COND1(true, z0, z1) -> c(COND2(gr(z0, z1), z0, z1), GR(z0, z1)) GR(s(z0), s(z1)) -> c6(GR(z0, z1)) COND2(true, z0, z1) -> c1(COND1(gr(z0, 0), z1, z1)) COND2(false, z0, z1) -> c2(COND1(gr(z0, 0), p(z0), z1)) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1)) The (relative) TRS S consists of the following rules: gr(0, z0) -> false gr(s(z0), 0) -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0) -> 0 p(s(z0)) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (11) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (12) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: COND1(true, z0, z1) -> c(COND2(gr(z0, z1), z0, z1), GR(z0, z1)) [1] GR(s(z0), s(z1)) -> c6(GR(z0, z1)) [1] COND2(true, z0, z1) -> c1(COND1(gr(z0, 0), z1, z1)) [1] COND2(false, z0, z1) -> c2(COND1(gr(z0, 0), p(z0), z1)) [1] COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1)) [1] gr(0, z0) -> false [0] gr(s(z0), 0) -> true [0] gr(s(z0), s(z1)) -> gr(z0, z1) [0] p(0) -> 0 [0] p(s(z0)) -> z0 [0] Rewrite Strategy: INNERMOST ---------------------------------------- (13) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: COND1(true, z0, z1) -> c(COND2(gr(z0, z1), z0, z1), GR(z0, z1)) [1] GR(s(z0), s(z1)) -> c6(GR(z0, z1)) [1] COND2(true, z0, z1) -> c1(COND1(gr(z0, 0), z1, z1)) [1] COND2(false, z0, z1) -> c2(COND1(gr(z0, 0), p(z0), z1)) [1] COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1)) [1] gr(0, z0) -> false [0] gr(s(z0), 0) -> true [0] gr(s(z0), s(z1)) -> gr(z0, z1) [0] p(0) -> 0 [0] p(s(z0)) -> z0 [0] The TRS has the following type information: COND1 :: true:false -> s:0 -> s:0 -> c true :: true:false c :: c1:c2:c3 -> c6 -> c COND2 :: true:false -> s:0 -> s:0 -> c1:c2:c3 gr :: s:0 -> s:0 -> true:false GR :: s:0 -> s:0 -> c6 s :: s:0 -> s:0 c6 :: c6 -> c6 c1 :: c -> c1:c2:c3 0 :: s:0 false :: true:false c2 :: c -> c1:c2:c3 p :: s:0 -> s:0 c3 :: c -> c1:c2:c3 Rewrite Strategy: INNERMOST ---------------------------------------- (15) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: gr(v0, v1) -> null_gr [0] p(v0) -> null_p [0] COND1(v0, v1, v2) -> null_COND1 [0] GR(v0, v1) -> null_GR [0] COND2(v0, v1, v2) -> null_COND2 [0] And the following fresh constants: null_gr, null_p, null_COND1, null_GR, null_COND2 ---------------------------------------- (16) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: COND1(true, z0, z1) -> c(COND2(gr(z0, z1), z0, z1), GR(z0, z1)) [1] GR(s(z0), s(z1)) -> c6(GR(z0, z1)) [1] COND2(true, z0, z1) -> c1(COND1(gr(z0, 0), z1, z1)) [1] COND2(false, z0, z1) -> c2(COND1(gr(z0, 0), p(z0), z1)) [1] COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1)) [1] gr(0, z0) -> false [0] gr(s(z0), 0) -> true [0] gr(s(z0), s(z1)) -> gr(z0, z1) [0] p(0) -> 0 [0] p(s(z0)) -> z0 [0] gr(v0, v1) -> null_gr [0] p(v0) -> null_p [0] COND1(v0, v1, v2) -> null_COND1 [0] GR(v0, v1) -> null_GR [0] COND2(v0, v1, v2) -> null_COND2 [0] The TRS has the following type information: COND1 :: true:false:null_gr -> s:0:null_p -> s:0:null_p -> c:null_COND1 true :: true:false:null_gr c :: c1:c2:c3:null_COND2 -> c6:null_GR -> c:null_COND1 COND2 :: true:false:null_gr -> s:0:null_p -> s:0:null_p -> c1:c2:c3:null_COND2 gr :: s:0:null_p -> s:0:null_p -> true:false:null_gr GR :: s:0:null_p -> s:0:null_p -> c6:null_GR s :: s:0:null_p -> s:0:null_p c6 :: c6:null_GR -> c6:null_GR c1 :: c:null_COND1 -> c1:c2:c3:null_COND2 0 :: s:0:null_p false :: true:false:null_gr c2 :: c:null_COND1 -> c1:c2:c3:null_COND2 p :: s:0:null_p -> s:0:null_p c3 :: c:null_COND1 -> c1:c2:c3:null_COND2 null_gr :: true:false:null_gr null_p :: s:0:null_p null_COND1 :: c:null_COND1 null_GR :: c6:null_GR null_COND2 :: c1:c2:c3:null_COND2 Rewrite Strategy: INNERMOST ---------------------------------------- (17) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: true => 2 0 => 0 false => 1 null_gr => 0 null_p => 0 null_COND1 => 0 null_GR => 0 null_COND2 => 0 ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 COND1(z, z', z'') -{ 1 }-> 1 + COND2(gr(z0, z1), z0, z1) + GR(z0, z1) :|: z = 2, z1 >= 0, z0 >= 0, z' = z0, z'' = z1 COND2(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(gr(z0, 0), z1, z1) :|: z = 2, z1 >= 0, z0 >= 0, z' = z0, z'' = z1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(gr(z0, 0), p(z0), z1) :|: z1 >= 0, z = 1, z0 >= 0, z' = z0, z'' = z1 GR(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 GR(z, z') -{ 1 }-> 1 + GR(z0, z1) :|: z1 >= 0, z = 1 + z0, z0 >= 0, z' = 1 + z1 gr(z, z') -{ 0 }-> gr(z0, z1) :|: z1 >= 0, z = 1 + z0, z0 >= 0, z' = 1 + z1 gr(z, z') -{ 0 }-> 2 :|: z = 1 + z0, z0 >= 0, z' = 0 gr(z, z') -{ 0 }-> 1 :|: z0 >= 0, z = 0, z' = z0 gr(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 p(z) -{ 0 }-> z0 :|: z = 1 + z0, z0 >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (19) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V, V2),0,[fun(V1, V, V2, Out)],[V1 >= 0,V >= 0,V2 >= 0]). eq(start(V1, V, V2),0,[fun2(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V2),0,[fun1(V1, V, V2, Out)],[V1 >= 0,V >= 0,V2 >= 0]). eq(start(V1, V, V2),0,[gr(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V2),0,[p(V1, Out)],[V1 >= 0]). eq(fun(V1, V, V2, Out),1,[gr(V4, V3, Ret010),fun1(Ret010, V4, V3, Ret01),fun2(V4, V3, Ret1)],[Out = 1 + Ret01 + Ret1,V1 = 2,V3 >= 0,V4 >= 0,V = V4,V2 = V3]). eq(fun2(V1, V, Out),1,[fun2(V6, V5, Ret11)],[Out = 1 + Ret11,V5 >= 0,V1 = 1 + V6,V6 >= 0,V = 1 + V5]). eq(fun1(V1, V, V2, Out),1,[gr(V8, 0, Ret10),fun(Ret10, V7, V7, Ret12)],[Out = 1 + Ret12,V1 = 2,V7 >= 0,V8 >= 0,V = V8,V2 = V7]). eq(fun1(V1, V, V2, Out),1,[gr(V9, 0, Ret101),p(V9, Ret111),fun(Ret101, Ret111, V10, Ret13)],[Out = 1 + Ret13,V10 >= 0,V1 = 1,V9 >= 0,V = V9,V2 = V10]). eq(gr(V1, V, Out),0,[],[Out = 1,V11 >= 0,V1 = 0,V = V11]). eq(gr(V1, V, Out),0,[],[Out = 2,V1 = 1 + V12,V12 >= 0,V = 0]). eq(gr(V1, V, Out),0,[gr(V14, V13, Ret)],[Out = Ret,V13 >= 0,V1 = 1 + V14,V14 >= 0,V = 1 + V13]). eq(p(V1, Out),0,[],[Out = 0,V1 = 0]). eq(p(V1, Out),0,[],[Out = V15,V1 = 1 + V15,V15 >= 0]). eq(gr(V1, V, Out),0,[],[Out = 0,V17 >= 0,V16 >= 0,V1 = V17,V = V16]). eq(p(V1, Out),0,[],[Out = 0,V18 >= 0,V1 = V18]). eq(fun(V1, V, V2, Out),0,[],[Out = 0,V20 >= 0,V2 = V21,V19 >= 0,V1 = V20,V = V19,V21 >= 0]). eq(fun2(V1, V, Out),0,[],[Out = 0,V22 >= 0,V23 >= 0,V1 = V22,V = V23]). eq(fun1(V1, V, V2, Out),0,[],[Out = 0,V24 >= 0,V2 = V25,V26 >= 0,V1 = V24,V = V26,V25 >= 0]). input_output_vars(fun(V1,V,V2,Out),[V1,V,V2],[Out]). input_output_vars(fun2(V1,V,Out),[V1,V],[Out]). input_output_vars(fun1(V1,V,V2,Out),[V1,V,V2],[Out]). input_output_vars(gr(V1,V,Out),[V1,V],[Out]). input_output_vars(p(V1,Out),[V1],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive : [gr/3] 1. non_recursive : [p/2] 2. recursive : [fun2/3] 3. recursive [non_tail] : [fun/4,fun1/4] 4. non_recursive : [start/3] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into gr/3 1. SCC is partially evaluated into p/2 2. SCC is partially evaluated into fun2/3 3. SCC is partially evaluated into fun1/4 4. SCC is partially evaluated into start/3 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations gr/3 * CE 10 is refined into CE [20] * CE 8 is refined into CE [21] * CE 7 is refined into CE [22] * CE 9 is refined into CE [23] ### Cost equations --> "Loop" of gr/3 * CEs [23] --> Loop 15 * CEs [20] --> Loop 16 * CEs [21] --> Loop 17 * CEs [22] --> Loop 18 ### Ranking functions of CR gr(V1,V,Out) * RF of phase [15]: [V,V1] #### Partial ranking functions of CR gr(V1,V,Out) * Partial RF of phase [15]: - RF of loop [15:1]: V V1 ### Specialization of cost equations p/2 * CE 19 is refined into CE [24] * CE 18 is refined into CE [25] ### Cost equations --> "Loop" of p/2 * CEs [24] --> Loop 19 * CEs [25] --> Loop 20 ### Ranking functions of CR p(V1,Out) #### Partial ranking functions of CR p(V1,Out) ### Specialization of cost equations fun2/3 * CE 17 is refined into CE [26] * CE 16 is refined into CE [27] ### Cost equations --> "Loop" of fun2/3 * CEs [27] --> Loop 21 * CEs [26] --> Loop 22 ### Ranking functions of CR fun2(V1,V,Out) * RF of phase [21]: [V,V1] #### Partial ranking functions of CR fun2(V1,V,Out) * Partial RF of phase [21]: - RF of loop [21:1]: V V1 ### Specialization of cost equations fun1/4 * CE 15 is refined into CE [28] * CE 12 is refined into CE [29,30,31] * CE 11 is refined into CE [32,33,34,35,36] * CE 14 is refined into CE [37,38,39,40,41] * CE 13 is refined into CE [42,43,44,45,46,47,48,49,50,51] ### Cost equations --> "Loop" of fun1/4 * CEs [41] --> Loop 23 * CEs [40] --> Loop 24 * CEs [39] --> Loop 25 * CEs [38] --> Loop 26 * CEs [37] --> Loop 27 * CEs [51] --> Loop 28 * CEs [50] --> Loop 29 * CEs [49] --> Loop 30 * CEs [48] --> Loop 31 * CEs [47] --> Loop 32 * CEs [46] --> Loop 33 * CEs [43] --> Loop 34 * CEs [45] --> Loop 35 * CEs [42,44] --> Loop 36 * CEs [28] --> Loop 37 * CEs [29,30,31] --> Loop 38 * CEs [32,33,34,35,36] --> Loop 39 ### Ranking functions of CR fun1(V1,V,V2,Out) * RF of phase [30,31]: [V-1] #### Partial ranking functions of CR fun1(V1,V,V2,Out) * Partial RF of phase [30,31]: - RF of loop [30:1,31:1]: V-1 ### Specialization of cost equations start/3 * CE 1 is refined into CE [52] * CE 2 is refined into CE [53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88] * CE 3 is refined into CE [89,90] * CE 4 is refined into CE [91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113] * CE 5 is refined into CE [114,115,116,117,118] * CE 6 is refined into CE [119,120] ### Cost equations --> "Loop" of start/3 * CEs [115] --> Loop 40 * CEs [55,56,57,58,106] --> Loop 41 * CEs [53,54,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,105,107,108,109,110,111,112] --> Loop 42 * CEs [91,92,93,94,95,96,97,98,99,100,101,102,103,104] --> Loop 43 * CEs [52,89,90,113,114,116,117,118,119,120] --> Loop 44 ### Ranking functions of CR start(V1,V,V2) #### Partial ranking functions of CR start(V1,V,V2) Computing Bounds ===================================== #### Cost of chains of gr(V1,V,Out): * Chain [[15],18]: 0 with precondition: [Out=1,V1>=1,V>=V1] * Chain [[15],17]: 0 with precondition: [Out=2,V>=1,V1>=V+1] * Chain [[15],16]: 0 with precondition: [Out=0,V1>=1,V>=1] * Chain [18]: 0 with precondition: [V1=0,Out=1,V>=0] * Chain [17]: 0 with precondition: [V=0,Out=2,V1>=1] * Chain [16]: 0 with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of p(V1,Out): * Chain [20]: 0 with precondition: [Out=0,V1>=0] * Chain [19]: 0 with precondition: [V1=Out+1,V1>=1] #### Cost of chains of fun2(V1,V,Out): * Chain [[21],22]: 1*it(21)+0 Such that:it(21) =< Out with precondition: [Out>=1,V1>=Out,V>=Out] * Chain [22]: 0 with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of fun1(V1,V,V2,Out): * Chain [[30,31],39]: 4*it(30)+1*s(3)+1 Such that:aux(4) =< V it(30) =< aux(4) s(3) =< it(30)*aux(4) with precondition: [V1=1,V>=2,Out>=3,V2+1>=V] * Chain [[30,31],37]: 4*it(30)+1*s(3)+0 Such that:aux(5) =< V it(30) =< aux(5) s(3) =< it(30)*aux(5) with precondition: [V1=1,V>=2,Out>=2,V2+1>=V] * Chain [[30,31],36,39]: 4*it(30)+1*s(3)+3 Such that:aux(6) =< V it(30) =< aux(6) s(3) =< it(30)*aux(6) with precondition: [V1=1,V>=2,Out>=5,V2+1>=V] * Chain [[30,31],36,37]: 4*it(30)+1*s(3)+2 Such that:aux(7) =< V it(30) =< aux(7) s(3) =< it(30)*aux(7) with precondition: [V1=1,V>=2,Out>=4,V2+1>=V] * Chain [[30,31],34,37]: 4*it(30)+1*s(3)+2 Such that:aux(8) =< V it(30) =< aux(8) s(3) =< it(30)*aux(8) with precondition: [V1=1,V>=2,Out>=4,V2+1>=V] * Chain [[30,31],33,37]: 4*it(30)+1*s(3)+2 Such that:aux(9) =< V it(30) =< aux(9) s(3) =< it(30)*aux(9) with precondition: [V1=1,V>=2,Out>=4,V2+1>=V] * Chain [[30,31],32,37]: 4*it(30)+1*s(3)+1*s(4)+2 Such that:s(4) =< V2 aux(10) =< V it(30) =< aux(10) s(3) =< it(30)*aux(10) with precondition: [V1=1,V>=3,Out>=5,V2+1>=V] * Chain [39]: 1 with precondition: [V1=1,Out=1,V>=0,V2>=0] * Chain [38]: 1 with precondition: [V1=2,Out=1,V>=0,V2>=0] * Chain [37]: 0 with precondition: [Out=0,V1>=0,V>=0,V2>=0] * Chain [36,39]: 3 with precondition: [V1=1,Out=3,V>=1,V2>=0] * Chain [36,37]: 2 with precondition: [V1=1,Out=2,V>=1,V2>=0] * Chain [35,38]: 3 with precondition: [V1=1,V2=0,Out=3,V>=2] * Chain [35,37]: 2 with precondition: [V1=1,V2=0,Out=2,V>=2] * Chain [35,27,39]: 5 with precondition: [V1=1,V2=0,Out=5,V>=2] * Chain [35,27,37]: 4 with precondition: [V1=1,V2=0,Out=4,V>=2] * Chain [35,26,37]: 4 with precondition: [V1=1,V2=0,Out=4,V>=2] * Chain [34,37]: 2 with precondition: [V1=1,Out=2,V>=1,V2>=0] * Chain [33,37]: 2 with precondition: [V1=1,Out=2,V>=1,V2>=0] * Chain [32,37]: 1*s(4)+2 Such that:s(4) =< V2 with precondition: [V1=1,Out>=3,V+1>=Out,V2+2>=Out] * Chain [29,38]: 3 with precondition: [V1=1,Out=3,V2>=1,V>=V2+2] * Chain [29,37]: 2 with precondition: [V1=1,Out=2,V2>=1,V>=V2+2] * Chain [29,26,37]: 4 with precondition: [V1=1,Out=4,V2>=1,V>=V2+2] * Chain [29,25,37]: 1*s(5)+4 Such that:s(5) =< V2 with precondition: [V1=1,Out>=5,V>=V2+2,V2+4>=Out] * Chain [29,24,[30,31],39]: 4*it(30)+1*s(3)+5 Such that:aux(4) =< V2 it(30) =< aux(4) s(3) =< it(30)*aux(4) with precondition: [V1=1,V2>=2,Out>=7,V>=V2+2] * Chain [29,24,[30,31],37]: 4*it(30)+1*s(3)+4 Such that:aux(5) =< V2 it(30) =< aux(5) s(3) =< it(30)*aux(5) with precondition: [V1=1,V2>=2,Out>=6,V>=V2+2] * Chain [29,24,[30,31],36,39]: 4*it(30)+1*s(3)+7 Such that:aux(6) =< V2 it(30) =< aux(6) s(3) =< it(30)*aux(6) with precondition: [V1=1,V2>=2,Out>=9,V>=V2+2] * Chain [29,24,[30,31],36,37]: 4*it(30)+1*s(3)+6 Such that:aux(7) =< V2 it(30) =< aux(7) s(3) =< it(30)*aux(7) with precondition: [V1=1,V2>=2,Out>=8,V>=V2+2] * Chain [29,24,[30,31],34,37]: 4*it(30)+1*s(3)+6 Such that:aux(8) =< V2 it(30) =< aux(8) s(3) =< it(30)*aux(8) with precondition: [V1=1,V2>=2,Out>=8,V>=V2+2] * Chain [29,24,[30,31],33,37]: 4*it(30)+1*s(3)+6 Such that:aux(9) =< V2 it(30) =< aux(9) s(3) =< it(30)*aux(9) with precondition: [V1=1,V2>=2,Out>=8,V>=V2+2] * Chain [29,24,[30,31],32,37]: 5*it(30)+1*s(3)+6 Such that:aux(11) =< V2 it(30) =< aux(11) s(3) =< it(30)*aux(11) with precondition: [V1=1,V2>=3,Out>=9,V>=V2+2] * Chain [29,24,39]: 5 with precondition: [V1=1,Out=5,V2>=1,V>=V2+2] * Chain [29,24,37]: 4 with precondition: [V1=1,Out=4,V2>=1,V>=V2+2] * Chain [29,24,36,39]: 7 with precondition: [V1=1,Out=7,V2>=1,V>=V2+2] * Chain [29,24,36,37]: 6 with precondition: [V1=1,Out=6,V2>=1,V>=V2+2] * Chain [29,24,34,37]: 6 with precondition: [V1=1,Out=6,V2>=1,V>=V2+2] * Chain [29,24,33,37]: 6 with precondition: [V1=1,Out=6,V2>=1,V>=V2+2] * Chain [29,24,32,37]: 1*s(4)+6 Such that:s(4) =< V2 with precondition: [V1=1,Out>=7,V>=V2+2,V2+5>=Out] * Chain [29,23,[30,31],39]: 5*it(30)+1*s(3)+5 Such that:aux(12) =< V2 it(30) =< aux(12) s(3) =< it(30)*aux(12) with precondition: [V1=1,V2>=2,Out>=8,V>=V2+2] * Chain [29,23,[30,31],37]: 5*it(30)+1*s(3)+4 Such that:aux(13) =< V2 it(30) =< aux(13) s(3) =< it(30)*aux(13) with precondition: [V1=1,V2>=2,Out>=7,V>=V2+2] * Chain [29,23,[30,31],36,39]: 5*it(30)+1*s(3)+7 Such that:aux(14) =< V2 it(30) =< aux(14) s(3) =< it(30)*aux(14) with precondition: [V1=1,V2>=2,Out>=10,V>=V2+2] * Chain [29,23,[30,31],36,37]: 5*it(30)+1*s(3)+6 Such that:aux(15) =< V2 it(30) =< aux(15) s(3) =< it(30)*aux(15) with precondition: [V1=1,V2>=2,Out>=9,V>=V2+2] * Chain [29,23,[30,31],34,37]: 5*it(30)+1*s(3)+6 Such that:aux(16) =< V2 it(30) =< aux(16) s(3) =< it(30)*aux(16) with precondition: [V1=1,V2>=2,Out>=9,V>=V2+2] * Chain [29,23,[30,31],33,37]: 5*it(30)+1*s(3)+6 Such that:aux(17) =< V2 it(30) =< aux(17) s(3) =< it(30)*aux(17) with precondition: [V1=1,V2>=2,Out>=9,V>=V2+2] * Chain [29,23,[30,31],32,37]: 6*it(30)+1*s(3)+6 Such that:aux(18) =< V2 it(30) =< aux(18) s(3) =< it(30)*aux(18) with precondition: [V1=1,V2>=3,Out>=10,V>=V2+2] * Chain [29,23,39]: 1*s(6)+5 Such that:s(6) =< V2 with precondition: [V1=1,Out>=6,V>=V2+2,V2+5>=Out] * Chain [29,23,37]: 1*s(6)+4 Such that:s(6) =< V2 with precondition: [V1=1,Out>=5,V>=V2+2,V2+4>=Out] * Chain [29,23,36,39]: 1*s(6)+7 Such that:s(6) =< V2 with precondition: [V1=1,Out>=8,V>=V2+2,V2+7>=Out] * Chain [29,23,36,37]: 1*s(6)+6 Such that:s(6) =< V2 with precondition: [V1=1,Out>=7,V>=V2+2,V2+6>=Out] * Chain [29,23,34,37]: 1*s(6)+6 Such that:s(6) =< V2 with precondition: [V1=1,Out>=7,V>=V2+2,V2+6>=Out] * Chain [29,23,33,37]: 1*s(6)+6 Such that:s(6) =< V2 with precondition: [V1=1,Out>=7,V>=V2+2,V2+6>=Out] * Chain [29,23,32,37]: 2*s(4)+6 Such that:aux(19) =< V2 s(4) =< aux(19) with precondition: [V1=1,V2>=2,Out>=8,V>=V2+2,2*V2+5>=Out] * Chain [28,38]: 1*s(7)+3 Such that:s(7) =< V2 with precondition: [V1=1,Out>=4,V>=V2+2,V2+3>=Out] * Chain [28,37]: 1*s(7)+2 Such that:s(7) =< V2 with precondition: [V1=1,Out>=3,V>=V2+2,V2+2>=Out] * Chain [28,26,37]: 1*s(7)+4 Such that:s(7) =< V2 with precondition: [V1=1,Out>=5,V>=V2+2,V2+4>=Out] * Chain [28,25,37]: 2*s(5)+4 Such that:aux(20) =< V2 s(5) =< aux(20) with precondition: [V1=1,Out>=6,V>=V2+2,2*V2+4>=Out] * Chain [28,24,[30,31],39]: 5*it(30)+1*s(3)+5 Such that:aux(21) =< V2 it(30) =< aux(21) s(3) =< it(30)*aux(21) with precondition: [V1=1,V2>=2,Out>=8,V>=V2+2] * Chain [28,24,[30,31],37]: 5*it(30)+1*s(3)+4 Such that:aux(22) =< V2 it(30) =< aux(22) s(3) =< it(30)*aux(22) with precondition: [V1=1,V2>=2,Out>=7,V>=V2+2] * Chain [28,24,[30,31],36,39]: 5*it(30)+1*s(3)+7 Such that:aux(23) =< V2 it(30) =< aux(23) s(3) =< it(30)*aux(23) with precondition: [V1=1,V2>=2,Out>=10,V>=V2+2] * Chain [28,24,[30,31],36,37]: 5*it(30)+1*s(3)+6 Such that:aux(24) =< V2 it(30) =< aux(24) s(3) =< it(30)*aux(24) with precondition: [V1=1,V2>=2,Out>=9,V>=V2+2] * Chain [28,24,[30,31],34,37]: 5*it(30)+1*s(3)+6 Such that:aux(25) =< V2 it(30) =< aux(25) s(3) =< it(30)*aux(25) with precondition: [V1=1,V2>=2,Out>=9,V>=V2+2] * Chain [28,24,[30,31],33,37]: 5*it(30)+1*s(3)+6 Such that:aux(26) =< V2 it(30) =< aux(26) s(3) =< it(30)*aux(26) with precondition: [V1=1,V2>=2,Out>=9,V>=V2+2] * Chain [28,24,[30,31],32,37]: 6*it(30)+1*s(3)+6 Such that:aux(27) =< V2 it(30) =< aux(27) s(3) =< it(30)*aux(27) with precondition: [V1=1,V2>=3,Out>=10,V>=V2+2] * Chain [28,24,39]: 1*s(7)+5 Such that:s(7) =< V2 with precondition: [V1=1,Out>=6,V>=V2+2,V2+5>=Out] * Chain [28,24,37]: 1*s(7)+4 Such that:s(7) =< V2 with precondition: [V1=1,Out>=5,V>=V2+2,V2+4>=Out] * Chain [28,24,36,39]: 1*s(7)+7 Such that:s(7) =< V2 with precondition: [V1=1,Out>=8,V>=V2+2,V2+7>=Out] * Chain [28,24,36,37]: 1*s(7)+6 Such that:s(7) =< V2 with precondition: [V1=1,Out>=7,V>=V2+2,V2+6>=Out] * Chain [28,24,34,37]: 1*s(7)+6 Such that:s(7) =< V2 with precondition: [V1=1,Out>=7,V>=V2+2,V2+6>=Out] * Chain [28,24,33,37]: 1*s(7)+6 Such that:s(7) =< V2 with precondition: [V1=1,Out>=7,V>=V2+2,V2+6>=Out] * Chain [28,24,32,37]: 2*s(4)+6 Such that:aux(28) =< V2 s(4) =< aux(28) with precondition: [V1=1,V2>=2,Out>=8,V>=V2+2,2*V2+5>=Out] * Chain [28,23,[30,31],39]: 6*it(30)+1*s(3)+5 Such that:aux(29) =< V2 it(30) =< aux(29) s(3) =< it(30)*aux(29) with precondition: [V1=1,V2>=2,Out>=9,V>=V2+2] * Chain [28,23,[30,31],37]: 6*it(30)+1*s(3)+4 Such that:aux(30) =< V2 it(30) =< aux(30) s(3) =< it(30)*aux(30) with precondition: [V1=1,V2>=2,Out>=8,V>=V2+2] * Chain [28,23,[30,31],36,39]: 6*it(30)+1*s(3)+7 Such that:aux(31) =< V2 it(30) =< aux(31) s(3) =< it(30)*aux(31) with precondition: [V1=1,V2>=2,Out>=11,V>=V2+2] * Chain [28,23,[30,31],36,37]: 6*it(30)+1*s(3)+6 Such that:aux(32) =< V2 it(30) =< aux(32) s(3) =< it(30)*aux(32) with precondition: [V1=1,V2>=2,Out>=10,V>=V2+2] * Chain [28,23,[30,31],34,37]: 6*it(30)+1*s(3)+6 Such that:aux(33) =< V2 it(30) =< aux(33) s(3) =< it(30)*aux(33) with precondition: [V1=1,V2>=2,Out>=10,V>=V2+2] * Chain [28,23,[30,31],33,37]: 6*it(30)+1*s(3)+6 Such that:aux(34) =< V2 it(30) =< aux(34) s(3) =< it(30)*aux(34) with precondition: [V1=1,V2>=2,Out>=10,V>=V2+2] * Chain [28,23,[30,31],32,37]: 7*it(30)+1*s(3)+6 Such that:aux(35) =< V2 it(30) =< aux(35) s(3) =< it(30)*aux(35) with precondition: [V1=1,V2>=3,Out>=11,V>=V2+2] * Chain [28,23,39]: 2*s(6)+5 Such that:aux(36) =< V2 s(6) =< aux(36) with precondition: [V1=1,Out>=7,V>=V2+2,2*V2+5>=Out] * Chain [28,23,37]: 2*s(6)+4 Such that:aux(37) =< V2 s(6) =< aux(37) with precondition: [V1=1,Out>=6,V>=V2+2,2*V2+4>=Out] * Chain [28,23,36,39]: 2*s(6)+7 Such that:aux(38) =< V2 s(6) =< aux(38) with precondition: [V1=1,Out>=9,V>=V2+2,2*V2+7>=Out] * Chain [28,23,36,37]: 2*s(6)+6 Such that:aux(39) =< V2 s(6) =< aux(39) with precondition: [V1=1,Out>=8,V>=V2+2,2*V2+6>=Out] * Chain [28,23,34,37]: 2*s(6)+6 Such that:aux(40) =< V2 s(6) =< aux(40) with precondition: [V1=1,Out>=8,V>=V2+2,2*V2+6>=Out] * Chain [28,23,33,37]: 2*s(6)+6 Such that:aux(41) =< V2 s(6) =< aux(41) with precondition: [V1=1,Out>=8,V>=V2+2,2*V2+6>=Out] * Chain [28,23,32,37]: 3*s(4)+6 Such that:aux(42) =< V2 s(4) =< aux(42) with precondition: [V1=1,V2>=2,Out>=9,V>=V2+2,3*V2+5>=Out] * Chain [27,39]: 3 with precondition: [V1=2,V2=0,Out=3,V>=1] * Chain [27,37]: 2 with precondition: [V1=2,V2=0,Out=2,V>=1] * Chain [26,37]: 2 with precondition: [V1=2,Out=2,V>=1,V2>=0] * Chain [25,37]: 1*s(5)+2 Such that:s(5) =< V2 with precondition: [V1=2,V>=1,Out>=3,V2+2>=Out] * Chain [24,[30,31],39]: 4*it(30)+1*s(3)+3 Such that:aux(4) =< V2 it(30) =< aux(4) s(3) =< it(30)*aux(4) with precondition: [V1=2,V>=1,V2>=2,Out>=5] * Chain [24,[30,31],37]: 4*it(30)+1*s(3)+2 Such that:aux(5) =< V2 it(30) =< aux(5) s(3) =< it(30)*aux(5) with precondition: [V1=2,V>=1,V2>=2,Out>=4] * Chain [24,[30,31],36,39]: 4*it(30)+1*s(3)+5 Such that:aux(6) =< V2 it(30) =< aux(6) s(3) =< it(30)*aux(6) with precondition: [V1=2,V>=1,V2>=2,Out>=7] * Chain [24,[30,31],36,37]: 4*it(30)+1*s(3)+4 Such that:aux(7) =< V2 it(30) =< aux(7) s(3) =< it(30)*aux(7) with precondition: [V1=2,V>=1,V2>=2,Out>=6] * Chain [24,[30,31],34,37]: 4*it(30)+1*s(3)+4 Such that:aux(8) =< V2 it(30) =< aux(8) s(3) =< it(30)*aux(8) with precondition: [V1=2,V>=1,V2>=2,Out>=6] * Chain [24,[30,31],33,37]: 4*it(30)+1*s(3)+4 Such that:aux(9) =< V2 it(30) =< aux(9) s(3) =< it(30)*aux(9) with precondition: [V1=2,V>=1,V2>=2,Out>=6] * Chain [24,[30,31],32,37]: 5*it(30)+1*s(3)+4 Such that:aux(11) =< V2 it(30) =< aux(11) s(3) =< it(30)*aux(11) with precondition: [V1=2,V>=1,V2>=3,Out>=7] * Chain [24,39]: 3 with precondition: [V1=2,Out=3,V>=1,V2>=1] * Chain [24,37]: 2 with precondition: [V1=2,Out=2,V>=1,V2>=1] * Chain [24,36,39]: 5 with precondition: [V1=2,Out=5,V>=1,V2>=1] * Chain [24,36,37]: 4 with precondition: [V1=2,Out=4,V>=1,V2>=1] * Chain [24,34,37]: 4 with precondition: [V1=2,Out=4,V>=1,V2>=1] * Chain [24,33,37]: 4 with precondition: [V1=2,Out=4,V>=1,V2>=1] * Chain [24,32,37]: 1*s(4)+4 Such that:s(4) =< V2 with precondition: [V1=2,V>=1,Out>=5,V2+3>=Out] * Chain [23,[30,31],39]: 5*it(30)+1*s(3)+3 Such that:aux(12) =< V2 it(30) =< aux(12) s(3) =< it(30)*aux(12) with precondition: [V1=2,V>=1,V2>=2,Out>=6] * Chain [23,[30,31],37]: 5*it(30)+1*s(3)+2 Such that:aux(13) =< V2 it(30) =< aux(13) s(3) =< it(30)*aux(13) with precondition: [V1=2,V>=1,V2>=2,Out>=5] * Chain [23,[30,31],36,39]: 5*it(30)+1*s(3)+5 Such that:aux(14) =< V2 it(30) =< aux(14) s(3) =< it(30)*aux(14) with precondition: [V1=2,V>=1,V2>=2,Out>=8] * Chain [23,[30,31],36,37]: 5*it(30)+1*s(3)+4 Such that:aux(15) =< V2 it(30) =< aux(15) s(3) =< it(30)*aux(15) with precondition: [V1=2,V>=1,V2>=2,Out>=7] * Chain [23,[30,31],34,37]: 5*it(30)+1*s(3)+4 Such that:aux(16) =< V2 it(30) =< aux(16) s(3) =< it(30)*aux(16) with precondition: [V1=2,V>=1,V2>=2,Out>=7] * Chain [23,[30,31],33,37]: 5*it(30)+1*s(3)+4 Such that:aux(17) =< V2 it(30) =< aux(17) s(3) =< it(30)*aux(17) with precondition: [V1=2,V>=1,V2>=2,Out>=7] * Chain [23,[30,31],32,37]: 6*it(30)+1*s(3)+4 Such that:aux(18) =< V2 it(30) =< aux(18) s(3) =< it(30)*aux(18) with precondition: [V1=2,V>=1,V2>=3,Out>=8] * Chain [23,39]: 1*s(6)+3 Such that:s(6) =< V2 with precondition: [V1=2,V>=1,Out>=4,V2+3>=Out] * Chain [23,37]: 1*s(6)+2 Such that:s(6) =< V2 with precondition: [V1=2,V>=1,Out>=3,V2+2>=Out] * Chain [23,36,39]: 1*s(6)+5 Such that:s(6) =< V2 with precondition: [V1=2,V>=1,Out>=6,V2+5>=Out] * Chain [23,36,37]: 1*s(6)+4 Such that:s(6) =< V2 with precondition: [V1=2,V>=1,Out>=5,V2+4>=Out] * Chain [23,34,37]: 1*s(6)+4 Such that:s(6) =< V2 with precondition: [V1=2,V>=1,Out>=5,V2+4>=Out] * Chain [23,33,37]: 1*s(6)+4 Such that:s(6) =< V2 with precondition: [V1=2,V>=1,Out>=5,V2+4>=Out] * Chain [23,32,37]: 2*s(4)+4 Such that:aux(19) =< V2 s(4) =< aux(19) with precondition: [V1=2,V>=1,V2>=2,Out>=6,2*V2+3>=Out] #### Cost of chains of start(V1,V,V2): * Chain [44]: 1*s(201)+0 Such that:s(201) =< V with precondition: [V1>=0] * Chain [43]: 184*s(202)+28*s(211)+7*s(212)+28*s(215)+7 Such that:s(210) =< V aux(54) =< V2 s(202) =< aux(54) s(211) =< s(210) s(212) =< s(211)*s(210) s(215) =< s(202)*aux(54) with precondition: [V1=1,V>=0,V2>=0] * Chain [42]: 240*s(222)+62*s(223)+14*s(229)+42*s(260)+6 Such that:aux(61) =< V aux(62) =< V2 s(223) =< aux(61) s(222) =< aux(62) s(229) =< s(223)*aux(61) s(260) =< s(222)*aux(62) with precondition: [V1=2,V>=0,V2>=0] * Chain [41]: 4 with precondition: [V1=2,V2=0,V>=1] * Chain [40]: 0 with precondition: [V=0,V1>=1] Closed-form bounds of start(V1,V,V2): ------------------------------------- * Chain [44] with precondition: [V1>=0] - Upper bound: nat(V) - Complexity: n * Chain [43] with precondition: [V1=1,V>=0,V2>=0] - Upper bound: 28*V+7+7*V*V+184*V2+28*V2*V2 - Complexity: n^2 * Chain [42] with precondition: [V1=2,V>=0,V2>=0] - Upper bound: 62*V+6+14*V*V+240*V2+42*V2*V2 - Complexity: n^2 * Chain [41] with precondition: [V1=2,V2=0,V>=1] - Upper bound: 4 - Complexity: constant * Chain [40] with precondition: [V=0,V1>=1] - Upper bound: 0 - Complexity: constant ### Maximum cost of start(V1,V,V2): max([4,nat(V)*27+6+nat(V)*7*nat(V)+nat(V2)*184+nat(V2)*28*nat(V2)+max([1,nat(V)*7*nat(V)+nat(V)*34+nat(V2)*56+nat(V2)*14*nat(V2)])+nat(V)]) Asymptotic class: n^2 * Total analysis performed in 1600 ms. ---------------------------------------- (20) BOUNDS(1, n^2) ---------------------------------------- (21) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: cond1(true, z0, z1) -> cond2(gr(z0, z1), z0, z1) cond2(true, z0, z1) -> cond1(gr(z0, 0), z1, z1) cond2(false, z0, z1) -> cond1(gr(z0, 0), p(z0), z1) gr(0, z0) -> false gr(s(z0), 0) -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0) -> 0 p(s(z0)) -> z0 Tuples: COND1(true, z0, z1) -> c(COND2(gr(z0, z1), z0, z1), GR(z0, z1)) COND2(true, z0, z1) -> c1(COND1(gr(z0, 0), z1, z1), GR(z0, 0)) COND2(false, z0, z1) -> c2(COND1(gr(z0, 0), p(z0), z1), GR(z0, 0)) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1), P(z0)) GR(0, z0) -> c4 GR(s(z0), 0) -> c5 GR(s(z0), s(z1)) -> c6(GR(z0, z1)) P(0) -> c7 P(s(z0)) -> c8 S tuples: COND1(true, z0, z1) -> c(COND2(gr(z0, z1), z0, z1), GR(z0, z1)) COND2(true, z0, z1) -> c1(COND1(gr(z0, 0), z1, z1), GR(z0, 0)) COND2(false, z0, z1) -> c2(COND1(gr(z0, 0), p(z0), z1), GR(z0, 0)) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1), P(z0)) GR(0, z0) -> c4 GR(s(z0), 0) -> c5 GR(s(z0), s(z1)) -> c6(GR(z0, z1)) P(0) -> c7 P(s(z0)) -> c8 K tuples:none Defined Rule Symbols: cond1_3, cond2_3, gr_2, p_1 Defined Pair Symbols: COND1_3, COND2_3, GR_2, P_1 Compound Symbols: c_2, c1_2, c2_2, c3_2, c4, c5, c6_1, c7, c8 ---------------------------------------- (23) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (24) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: COND1(true, z0, z1) -> c(COND2(gr(z0, z1), z0, z1), GR(z0, z1)) COND2(true, z0, z1) -> c1(COND1(gr(z0, 0), z1, z1), GR(z0, 0)) COND2(false, z0, z1) -> c2(COND1(gr(z0, 0), p(z0), z1), GR(z0, 0)) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1), P(z0)) GR(0, z0) -> c4 GR(s(z0), 0) -> c5 GR(s(z0), s(z1)) -> c6(GR(z0, z1)) P(0) -> c7 P(s(z0)) -> c8 The (relative) TRS S consists of the following rules: cond1(true, z0, z1) -> cond2(gr(z0, z1), z0, z1) cond2(true, z0, z1) -> cond1(gr(z0, 0), z1, z1) cond2(false, z0, z1) -> cond1(gr(z0, 0), p(z0), z1) gr(0, z0) -> false gr(s(z0), 0) -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0) -> 0 p(s(z0)) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (25) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (26) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: COND1(true, z0, z1) -> c(COND2(gr(z0, z1), z0, z1), GR(z0, z1)) COND2(true, z0, z1) -> c1(COND1(gr(z0, 0'), z1, z1), GR(z0, 0')) COND2(false, z0, z1) -> c2(COND1(gr(z0, 0'), p(z0), z1), GR(z0, 0')) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0'), p(z0), z1), P(z0)) GR(0', z0) -> c4 GR(s(z0), 0') -> c5 GR(s(z0), s(z1)) -> c6(GR(z0, z1)) P(0') -> c7 P(s(z0)) -> c8 The (relative) TRS S consists of the following rules: cond1(true, z0, z1) -> cond2(gr(z0, z1), z0, z1) cond2(true, z0, z1) -> cond1(gr(z0, 0'), z1, z1) cond2(false, z0, z1) -> cond1(gr(z0, 0'), p(z0), z1) gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0') -> 0' p(s(z0)) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (27) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (28) Obligation: Innermost TRS: Rules: COND1(true, z0, z1) -> c(COND2(gr(z0, z1), z0, z1), GR(z0, z1)) COND2(true, z0, z1) -> c1(COND1(gr(z0, 0'), z1, z1), GR(z0, 0')) COND2(false, z0, z1) -> c2(COND1(gr(z0, 0'), p(z0), z1), GR(z0, 0')) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0'), p(z0), z1), P(z0)) GR(0', z0) -> c4 GR(s(z0), 0') -> c5 GR(s(z0), s(z1)) -> c6(GR(z0, z1)) P(0') -> c7 P(s(z0)) -> c8 cond1(true, z0, z1) -> cond2(gr(z0, z1), z0, z1) cond2(true, z0, z1) -> cond1(gr(z0, 0'), z1, z1) cond2(false, z0, z1) -> cond1(gr(z0, 0'), p(z0), z1) gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0') -> 0' p(s(z0)) -> z0 Types: COND1 :: true:false -> 0':s -> 0':s -> c true :: true:false c :: c1:c2:c3 -> c4:c5:c6 -> c COND2 :: true:false -> 0':s -> 0':s -> c1:c2:c3 gr :: 0':s -> 0':s -> true:false GR :: 0':s -> 0':s -> c4:c5:c6 c1 :: c -> c4:c5:c6 -> c1:c2:c3 0' :: 0':s false :: true:false c2 :: c -> c4:c5:c6 -> c1:c2:c3 p :: 0':s -> 0':s c3 :: c -> c7:c8 -> c1:c2:c3 P :: 0':s -> c7:c8 c4 :: c4:c5:c6 s :: 0':s -> 0':s c5 :: c4:c5:c6 c6 :: c4:c5:c6 -> c4:c5:c6 c7 :: c7:c8 c8 :: c7:c8 cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2 cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2 hole_c1_9 :: c hole_true:false2_9 :: true:false hole_0':s3_9 :: 0':s hole_c1:c2:c34_9 :: c1:c2:c3 hole_c4:c5:c65_9 :: c4:c5:c6 hole_c7:c86_9 :: c7:c8 hole_cond1:cond27_9 :: cond1:cond2 gen_0':s8_9 :: Nat -> 0':s gen_c4:c5:c69_9 :: Nat -> c4:c5:c6 ---------------------------------------- (29) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: COND1, COND2, gr, GR, cond1, cond2 They will be analysed ascendingly in the following order: COND1 = COND2 gr < COND1 GR < COND1 gr < COND2 GR < COND2 gr < cond1 gr < cond2 cond1 = cond2 ---------------------------------------- (30) Obligation: Innermost TRS: Rules: COND1(true, z0, z1) -> c(COND2(gr(z0, z1), z0, z1), GR(z0, z1)) COND2(true, z0, z1) -> c1(COND1(gr(z0, 0'), z1, z1), GR(z0, 0')) COND2(false, z0, z1) -> c2(COND1(gr(z0, 0'), p(z0), z1), GR(z0, 0')) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0'), p(z0), z1), P(z0)) GR(0', z0) -> c4 GR(s(z0), 0') -> c5 GR(s(z0), s(z1)) -> c6(GR(z0, z1)) P(0') -> c7 P(s(z0)) -> c8 cond1(true, z0, z1) -> cond2(gr(z0, z1), z0, z1) cond2(true, z0, z1) -> cond1(gr(z0, 0'), z1, z1) cond2(false, z0, z1) -> cond1(gr(z0, 0'), p(z0), z1) gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0') -> 0' p(s(z0)) -> z0 Types: COND1 :: true:false -> 0':s -> 0':s -> c true :: true:false c :: c1:c2:c3 -> c4:c5:c6 -> c COND2 :: true:false -> 0':s -> 0':s -> c1:c2:c3 gr :: 0':s -> 0':s -> true:false GR :: 0':s -> 0':s -> c4:c5:c6 c1 :: c -> c4:c5:c6 -> c1:c2:c3 0' :: 0':s false :: true:false c2 :: c -> c4:c5:c6 -> c1:c2:c3 p :: 0':s -> 0':s c3 :: c -> c7:c8 -> c1:c2:c3 P :: 0':s -> c7:c8 c4 :: c4:c5:c6 s :: 0':s -> 0':s c5 :: c4:c5:c6 c6 :: c4:c5:c6 -> c4:c5:c6 c7 :: c7:c8 c8 :: c7:c8 cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2 cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2 hole_c1_9 :: c hole_true:false2_9 :: true:false hole_0':s3_9 :: 0':s hole_c1:c2:c34_9 :: c1:c2:c3 hole_c4:c5:c65_9 :: c4:c5:c6 hole_c7:c86_9 :: c7:c8 hole_cond1:cond27_9 :: cond1:cond2 gen_0':s8_9 :: Nat -> 0':s gen_c4:c5:c69_9 :: Nat -> c4:c5:c6 Generator Equations: gen_0':s8_9(0) <=> 0' gen_0':s8_9(+(x, 1)) <=> s(gen_0':s8_9(x)) gen_c4:c5:c69_9(0) <=> c4 gen_c4:c5:c69_9(+(x, 1)) <=> c6(gen_c4:c5:c69_9(x)) The following defined symbols remain to be analysed: gr, COND1, COND2, GR, cond1, cond2 They will be analysed ascendingly in the following order: COND1 = COND2 gr < COND1 GR < COND1 gr < COND2 GR < COND2 gr < cond1 gr < cond2 cond1 = cond2 ---------------------------------------- (31) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: gr(gen_0':s8_9(n11_9), gen_0':s8_9(n11_9)) -> false, rt in Omega(0) Induction Base: gr(gen_0':s8_9(0), gen_0':s8_9(0)) ->_R^Omega(0) false Induction Step: gr(gen_0':s8_9(+(n11_9, 1)), gen_0':s8_9(+(n11_9, 1))) ->_R^Omega(0) gr(gen_0':s8_9(n11_9), gen_0':s8_9(n11_9)) ->_IH false We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (32) Obligation: Innermost TRS: Rules: COND1(true, z0, z1) -> c(COND2(gr(z0, z1), z0, z1), GR(z0, z1)) COND2(true, z0, z1) -> c1(COND1(gr(z0, 0'), z1, z1), GR(z0, 0')) COND2(false, z0, z1) -> c2(COND1(gr(z0, 0'), p(z0), z1), GR(z0, 0')) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0'), p(z0), z1), P(z0)) GR(0', z0) -> c4 GR(s(z0), 0') -> c5 GR(s(z0), s(z1)) -> c6(GR(z0, z1)) P(0') -> c7 P(s(z0)) -> c8 cond1(true, z0, z1) -> cond2(gr(z0, z1), z0, z1) cond2(true, z0, z1) -> cond1(gr(z0, 0'), z1, z1) cond2(false, z0, z1) -> cond1(gr(z0, 0'), p(z0), z1) gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0') -> 0' p(s(z0)) -> z0 Types: COND1 :: true:false -> 0':s -> 0':s -> c true :: true:false c :: c1:c2:c3 -> c4:c5:c6 -> c COND2 :: true:false -> 0':s -> 0':s -> c1:c2:c3 gr :: 0':s -> 0':s -> true:false GR :: 0':s -> 0':s -> c4:c5:c6 c1 :: c -> c4:c5:c6 -> c1:c2:c3 0' :: 0':s false :: true:false c2 :: c -> c4:c5:c6 -> c1:c2:c3 p :: 0':s -> 0':s c3 :: c -> c7:c8 -> c1:c2:c3 P :: 0':s -> c7:c8 c4 :: c4:c5:c6 s :: 0':s -> 0':s c5 :: c4:c5:c6 c6 :: c4:c5:c6 -> c4:c5:c6 c7 :: c7:c8 c8 :: c7:c8 cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2 cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2 hole_c1_9 :: c hole_true:false2_9 :: true:false hole_0':s3_9 :: 0':s hole_c1:c2:c34_9 :: c1:c2:c3 hole_c4:c5:c65_9 :: c4:c5:c6 hole_c7:c86_9 :: c7:c8 hole_cond1:cond27_9 :: cond1:cond2 gen_0':s8_9 :: Nat -> 0':s gen_c4:c5:c69_9 :: Nat -> c4:c5:c6 Lemmas: gr(gen_0':s8_9(n11_9), gen_0':s8_9(n11_9)) -> false, rt in Omega(0) Generator Equations: gen_0':s8_9(0) <=> 0' gen_0':s8_9(+(x, 1)) <=> s(gen_0':s8_9(x)) gen_c4:c5:c69_9(0) <=> c4 gen_c4:c5:c69_9(+(x, 1)) <=> c6(gen_c4:c5:c69_9(x)) The following defined symbols remain to be analysed: GR, COND1, COND2, cond1, cond2 They will be analysed ascendingly in the following order: COND1 = COND2 GR < COND1 GR < COND2 cond1 = cond2 ---------------------------------------- (33) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: GR(gen_0':s8_9(n316_9), gen_0':s8_9(n316_9)) -> gen_c4:c5:c69_9(n316_9), rt in Omega(1 + n316_9) Induction Base: GR(gen_0':s8_9(0), gen_0':s8_9(0)) ->_R^Omega(1) c4 Induction Step: GR(gen_0':s8_9(+(n316_9, 1)), gen_0':s8_9(+(n316_9, 1))) ->_R^Omega(1) c6(GR(gen_0':s8_9(n316_9), gen_0':s8_9(n316_9))) ->_IH c6(gen_c4:c5:c69_9(c317_9)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (34) Complex Obligation (BEST) ---------------------------------------- (35) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: COND1(true, z0, z1) -> c(COND2(gr(z0, z1), z0, z1), GR(z0, z1)) COND2(true, z0, z1) -> c1(COND1(gr(z0, 0'), z1, z1), GR(z0, 0')) COND2(false, z0, z1) -> c2(COND1(gr(z0, 0'), p(z0), z1), GR(z0, 0')) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0'), p(z0), z1), P(z0)) GR(0', z0) -> c4 GR(s(z0), 0') -> c5 GR(s(z0), s(z1)) -> c6(GR(z0, z1)) P(0') -> c7 P(s(z0)) -> c8 cond1(true, z0, z1) -> cond2(gr(z0, z1), z0, z1) cond2(true, z0, z1) -> cond1(gr(z0, 0'), z1, z1) cond2(false, z0, z1) -> cond1(gr(z0, 0'), p(z0), z1) gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0') -> 0' p(s(z0)) -> z0 Types: COND1 :: true:false -> 0':s -> 0':s -> c true :: true:false c :: c1:c2:c3 -> c4:c5:c6 -> c COND2 :: true:false -> 0':s -> 0':s -> c1:c2:c3 gr :: 0':s -> 0':s -> true:false GR :: 0':s -> 0':s -> c4:c5:c6 c1 :: c -> c4:c5:c6 -> c1:c2:c3 0' :: 0':s false :: true:false c2 :: c -> c4:c5:c6 -> c1:c2:c3 p :: 0':s -> 0':s c3 :: c -> c7:c8 -> c1:c2:c3 P :: 0':s -> c7:c8 c4 :: c4:c5:c6 s :: 0':s -> 0':s c5 :: c4:c5:c6 c6 :: c4:c5:c6 -> c4:c5:c6 c7 :: c7:c8 c8 :: c7:c8 cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2 cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2 hole_c1_9 :: c hole_true:false2_9 :: true:false hole_0':s3_9 :: 0':s hole_c1:c2:c34_9 :: c1:c2:c3 hole_c4:c5:c65_9 :: c4:c5:c6 hole_c7:c86_9 :: c7:c8 hole_cond1:cond27_9 :: cond1:cond2 gen_0':s8_9 :: Nat -> 0':s gen_c4:c5:c69_9 :: Nat -> c4:c5:c6 Lemmas: gr(gen_0':s8_9(n11_9), gen_0':s8_9(n11_9)) -> false, rt in Omega(0) Generator Equations: gen_0':s8_9(0) <=> 0' gen_0':s8_9(+(x, 1)) <=> s(gen_0':s8_9(x)) gen_c4:c5:c69_9(0) <=> c4 gen_c4:c5:c69_9(+(x, 1)) <=> c6(gen_c4:c5:c69_9(x)) The following defined symbols remain to be analysed: GR, COND1, COND2, cond1, cond2 They will be analysed ascendingly in the following order: COND1 = COND2 GR < COND1 GR < COND2 cond1 = cond2 ---------------------------------------- (36) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (37) BOUNDS(n^1, INF) ---------------------------------------- (38) Obligation: Innermost TRS: Rules: COND1(true, z0, z1) -> c(COND2(gr(z0, z1), z0, z1), GR(z0, z1)) COND2(true, z0, z1) -> c1(COND1(gr(z0, 0'), z1, z1), GR(z0, 0')) COND2(false, z0, z1) -> c2(COND1(gr(z0, 0'), p(z0), z1), GR(z0, 0')) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0'), p(z0), z1), P(z0)) GR(0', z0) -> c4 GR(s(z0), 0') -> c5 GR(s(z0), s(z1)) -> c6(GR(z0, z1)) P(0') -> c7 P(s(z0)) -> c8 cond1(true, z0, z1) -> cond2(gr(z0, z1), z0, z1) cond2(true, z0, z1) -> cond1(gr(z0, 0'), z1, z1) cond2(false, z0, z1) -> cond1(gr(z0, 0'), p(z0), z1) gr(0', z0) -> false gr(s(z0), 0') -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0') -> 0' p(s(z0)) -> z0 Types: COND1 :: true:false -> 0':s -> 0':s -> c true :: true:false c :: c1:c2:c3 -> c4:c5:c6 -> c COND2 :: true:false -> 0':s -> 0':s -> c1:c2:c3 gr :: 0':s -> 0':s -> true:false GR :: 0':s -> 0':s -> c4:c5:c6 c1 :: c -> c4:c5:c6 -> c1:c2:c3 0' :: 0':s false :: true:false c2 :: c -> c4:c5:c6 -> c1:c2:c3 p :: 0':s -> 0':s c3 :: c -> c7:c8 -> c1:c2:c3 P :: 0':s -> c7:c8 c4 :: c4:c5:c6 s :: 0':s -> 0':s c5 :: c4:c5:c6 c6 :: c4:c5:c6 -> c4:c5:c6 c7 :: c7:c8 c8 :: c7:c8 cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2 cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2 hole_c1_9 :: c hole_true:false2_9 :: true:false hole_0':s3_9 :: 0':s hole_c1:c2:c34_9 :: c1:c2:c3 hole_c4:c5:c65_9 :: c4:c5:c6 hole_c7:c86_9 :: c7:c8 hole_cond1:cond27_9 :: cond1:cond2 gen_0':s8_9 :: Nat -> 0':s gen_c4:c5:c69_9 :: Nat -> c4:c5:c6 Lemmas: gr(gen_0':s8_9(n11_9), gen_0':s8_9(n11_9)) -> false, rt in Omega(0) GR(gen_0':s8_9(n316_9), gen_0':s8_9(n316_9)) -> gen_c4:c5:c69_9(n316_9), rt in Omega(1 + n316_9) Generator Equations: gen_0':s8_9(0) <=> 0' gen_0':s8_9(+(x, 1)) <=> s(gen_0':s8_9(x)) gen_c4:c5:c69_9(0) <=> c4 gen_c4:c5:c69_9(+(x, 1)) <=> c6(gen_c4:c5:c69_9(x)) The following defined symbols remain to be analysed: cond2, COND1, COND2, cond1 They will be analysed ascendingly in the following order: COND1 = COND2 cond1 = cond2