WORST_CASE(Omega(n^1),O(n^2)) proof of input_MccRPH4FDi.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRNTS (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) IntTrsBoundProof [UPPER BOUND(ID), 231 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 100 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 142 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 43 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 326 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 127 ms] (32) CpxRNTS (33) FinalProof [FINISHED, 0 ms] (34) BOUNDS(1, n^2) (35) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (36) CdtProblem (37) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (38) CpxRelTRS (39) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (40) CpxRelTRS (41) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (42) typed CpxTrs (43) OrderProof [LOWER BOUND(ID), 0 ms] (44) typed CpxTrs (45) RewriteLemmaProof [LOWER BOUND(ID), 211 ms] (46) typed CpxTrs (47) RewriteLemmaProof [LOWER BOUND(ID), 86 ms] (48) BEST (49) proven lower bound (50) LowerBoundPropagationProof [FINISHED, 0 ms] (51) BOUNDS(n^1, INF) (52) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: cond(true, x) -> cond(odd(x), p(x)) odd(0) -> false odd(s(0)) -> true odd(s(s(x))) -> odd(x) p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: cond(true, x) -> cond(odd(x), p(x)) [1] odd(0) -> false [1] odd(s(0)) -> true [1] odd(s(s(x))) -> odd(x) [1] p(0) -> 0 [1] p(s(x)) -> x [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond(true, x) -> cond(odd(x), p(x)) [1] odd(0) -> false [1] odd(s(0)) -> true [1] odd(s(s(x))) -> odd(x) [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond :: true:false -> 0:s -> cond true :: true:false odd :: 0:s -> true:false p :: 0:s -> 0:s 0 :: 0:s false :: true:false s :: 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: cond_2 (c) The following functions are completely defined: odd_1 p_1 Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond(true, x) -> cond(odd(x), p(x)) [1] odd(0) -> false [1] odd(s(0)) -> true [1] odd(s(s(x))) -> odd(x) [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond :: true:false -> 0:s -> cond true :: true:false odd :: 0:s -> true:false p :: 0:s -> 0:s 0 :: 0:s false :: true:false s :: 0:s -> 0:s const :: cond Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: cond(true, 0) -> cond(false, 0) [3] cond(true, s(0)) -> cond(true, 0) [3] cond(true, s(s(x'))) -> cond(odd(x'), s(x')) [3] odd(0) -> false [1] odd(s(0)) -> true [1] odd(s(s(x))) -> odd(x) [1] p(0) -> 0 [1] p(s(x)) -> x [1] The TRS has the following type information: cond :: true:false -> 0:s -> cond true :: true:false odd :: 0:s -> true:false p :: 0:s -> 0:s 0 :: 0:s false :: true:false s :: 0:s -> 0:s const :: cond Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: true => 1 0 => 0 false => 0 const => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 }-> cond(odd(x'), 1 + x') :|: z' = 1 + (1 + x'), z = 1, x' >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 }-> odd(x) :|: x >= 0, z = 1 + (1 + x) odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x p(z) -{ 1 }-> 0 :|: z = 0 ---------------------------------------- (11) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 }-> cond(odd(z' - 2), 1 + (z' - 2)) :|: z = 1, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 }-> odd(z - 2) :|: z - 2 >= 0 odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 ---------------------------------------- (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { odd } { p } { cond } ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 }-> cond(odd(z' - 2), 1 + (z' - 2)) :|: z = 1, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 }-> odd(z - 2) :|: z - 2 >= 0 odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {odd}, {p}, {cond} ---------------------------------------- (15) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 }-> cond(odd(z' - 2), 1 + (z' - 2)) :|: z = 1, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 }-> odd(z - 2) :|: z - 2 >= 0 odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {odd}, {p}, {cond} ---------------------------------------- (17) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: odd after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 }-> cond(odd(z' - 2), 1 + (z' - 2)) :|: z = 1, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 }-> odd(z - 2) :|: z - 2 >= 0 odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {odd}, {p}, {cond} Previous analysis results are: odd: runtime: ?, size: O(1) [1] ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: odd after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 }-> cond(odd(z' - 2), 1 + (z' - 2)) :|: z = 1, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 }-> odd(z - 2) :|: z - 2 >= 0 odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {cond} Previous analysis results are: odd: runtime: O(n^1) [2 + z], size: O(1) [1] ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 + z' }-> cond(s, 1 + (z' - 2)) :|: s >= 0, s <= 1, z = 1, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 + z }-> s' :|: s' >= 0, s' <= 1, z - 2 >= 0 odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {cond} Previous analysis results are: odd: runtime: O(n^1) [2 + z], size: O(1) [1] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: p after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 + z' }-> cond(s, 1 + (z' - 2)) :|: s >= 0, s <= 1, z = 1, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 + z }-> s' :|: s' >= 0, s' <= 1, z - 2 >= 0 odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {cond} Previous analysis results are: odd: runtime: O(n^1) [2 + z], size: O(1) [1] p: runtime: ?, size: O(n^1) [z] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: p after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 + z' }-> cond(s, 1 + (z' - 2)) :|: s >= 0, s <= 1, z = 1, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 + z }-> s' :|: s' >= 0, s' <= 1, z - 2 >= 0 odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond} Previous analysis results are: odd: runtime: O(n^1) [2 + z], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 + z' }-> cond(s, 1 + (z' - 2)) :|: s >= 0, s <= 1, z = 1, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 + z }-> s' :|: s' >= 0, s' <= 1, z - 2 >= 0 odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond} Previous analysis results are: odd: runtime: O(n^1) [2 + z], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: cond after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 + z' }-> cond(s, 1 + (z' - 2)) :|: s >= 0, s <= 1, z = 1, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 + z }-> s' :|: s' >= 0, s' <= 1, z - 2 >= 0 odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {cond} Previous analysis results are: odd: runtime: O(n^1) [2 + z], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] cond: runtime: ?, size: O(1) [0] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: cond after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 9 + 4*z' + z'^2 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: cond(z, z') -{ 3 + z' }-> cond(s, 1 + (z' - 2)) :|: s >= 0, s <= 1, z = 1, z' - 2 >= 0 cond(z, z') -{ 3 }-> cond(1, 0) :|: z = 1, z' = 1 + 0 cond(z, z') -{ 3 }-> cond(0, 0) :|: z = 1, z' = 0 odd(z) -{ 1 + z }-> s' :|: s' >= 0, s' <= 1, z - 2 >= 0 odd(z) -{ 1 }-> 1 :|: z = 1 + 0 odd(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> 0 :|: z = 0 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: odd: runtime: O(n^1) [2 + z], size: O(1) [1] p: runtime: O(1) [1], size: O(n^1) [z] cond: runtime: O(n^2) [9 + 4*z' + z'^2], size: O(1) [0] ---------------------------------------- (33) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (34) BOUNDS(1, n^2) ---------------------------------------- (35) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (36) Obligation: Complexity Dependency Tuples Problem Rules: cond(true, z0) -> cond(odd(z0), p(z0)) odd(0) -> false odd(s(0)) -> true odd(s(s(z0))) -> odd(z0) p(0) -> 0 p(s(z0)) -> z0 Tuples: COND(true, z0) -> c(COND(odd(z0), p(z0)), ODD(z0)) COND(true, z0) -> c1(COND(odd(z0), p(z0)), P(z0)) ODD(0) -> c2 ODD(s(0)) -> c3 ODD(s(s(z0))) -> c4(ODD(z0)) P(0) -> c5 P(s(z0)) -> c6 S tuples: COND(true, z0) -> c(COND(odd(z0), p(z0)), ODD(z0)) COND(true, z0) -> c1(COND(odd(z0), p(z0)), P(z0)) ODD(0) -> c2 ODD(s(0)) -> c3 ODD(s(s(z0))) -> c4(ODD(z0)) P(0) -> c5 P(s(z0)) -> c6 K tuples:none Defined Rule Symbols: cond_2, odd_1, p_1 Defined Pair Symbols: COND_2, ODD_1, P_1 Compound Symbols: c_2, c1_2, c2, c3, c4_1, c5, c6 ---------------------------------------- (37) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (38) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: COND(true, z0) -> c(COND(odd(z0), p(z0)), ODD(z0)) COND(true, z0) -> c1(COND(odd(z0), p(z0)), P(z0)) ODD(0) -> c2 ODD(s(0)) -> c3 ODD(s(s(z0))) -> c4(ODD(z0)) P(0) -> c5 P(s(z0)) -> c6 The (relative) TRS S consists of the following rules: cond(true, z0) -> cond(odd(z0), p(z0)) odd(0) -> false odd(s(0)) -> true odd(s(s(z0))) -> odd(z0) p(0) -> 0 p(s(z0)) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (39) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (40) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: COND(true, z0) -> c(COND(odd(z0), p(z0)), ODD(z0)) COND(true, z0) -> c1(COND(odd(z0), p(z0)), P(z0)) ODD(0') -> c2 ODD(s(0')) -> c3 ODD(s(s(z0))) -> c4(ODD(z0)) P(0') -> c5 P(s(z0)) -> c6 The (relative) TRS S consists of the following rules: cond(true, z0) -> cond(odd(z0), p(z0)) odd(0') -> false odd(s(0')) -> true odd(s(s(z0))) -> odd(z0) p(0') -> 0' p(s(z0)) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (41) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (42) Obligation: Innermost TRS: Rules: COND(true, z0) -> c(COND(odd(z0), p(z0)), ODD(z0)) COND(true, z0) -> c1(COND(odd(z0), p(z0)), P(z0)) ODD(0') -> c2 ODD(s(0')) -> c3 ODD(s(s(z0))) -> c4(ODD(z0)) P(0') -> c5 P(s(z0)) -> c6 cond(true, z0) -> cond(odd(z0), p(z0)) odd(0') -> false odd(s(0')) -> true odd(s(s(z0))) -> odd(z0) p(0') -> 0' p(s(z0)) -> z0 Types: COND :: true:false -> 0':s -> c:c1 true :: true:false c :: c:c1 -> c2:c3:c4 -> c:c1 odd :: 0':s -> true:false p :: 0':s -> 0':s ODD :: 0':s -> c2:c3:c4 c1 :: c:c1 -> c5:c6 -> c:c1 P :: 0':s -> c5:c6 0' :: 0':s c2 :: c2:c3:c4 s :: 0':s -> 0':s c3 :: c2:c3:c4 c4 :: c2:c3:c4 -> c2:c3:c4 c5 :: c5:c6 c6 :: c5:c6 cond :: true:false -> 0':s -> cond false :: true:false hole_c:c11_7 :: c:c1 hole_true:false2_7 :: true:false hole_0':s3_7 :: 0':s hole_c2:c3:c44_7 :: c2:c3:c4 hole_c5:c65_7 :: c5:c6 hole_cond6_7 :: cond gen_c:c17_7 :: Nat -> c:c1 gen_0':s8_7 :: Nat -> 0':s gen_c2:c3:c49_7 :: Nat -> c2:c3:c4 ---------------------------------------- (43) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: COND, odd, ODD, cond They will be analysed ascendingly in the following order: odd < COND ODD < COND odd < cond ---------------------------------------- (44) Obligation: Innermost TRS: Rules: COND(true, z0) -> c(COND(odd(z0), p(z0)), ODD(z0)) COND(true, z0) -> c1(COND(odd(z0), p(z0)), P(z0)) ODD(0') -> c2 ODD(s(0')) -> c3 ODD(s(s(z0))) -> c4(ODD(z0)) P(0') -> c5 P(s(z0)) -> c6 cond(true, z0) -> cond(odd(z0), p(z0)) odd(0') -> false odd(s(0')) -> true odd(s(s(z0))) -> odd(z0) p(0') -> 0' p(s(z0)) -> z0 Types: COND :: true:false -> 0':s -> c:c1 true :: true:false c :: c:c1 -> c2:c3:c4 -> c:c1 odd :: 0':s -> true:false p :: 0':s -> 0':s ODD :: 0':s -> c2:c3:c4 c1 :: c:c1 -> c5:c6 -> c:c1 P :: 0':s -> c5:c6 0' :: 0':s c2 :: c2:c3:c4 s :: 0':s -> 0':s c3 :: c2:c3:c4 c4 :: c2:c3:c4 -> c2:c3:c4 c5 :: c5:c6 c6 :: c5:c6 cond :: true:false -> 0':s -> cond false :: true:false hole_c:c11_7 :: c:c1 hole_true:false2_7 :: true:false hole_0':s3_7 :: 0':s hole_c2:c3:c44_7 :: c2:c3:c4 hole_c5:c65_7 :: c5:c6 hole_cond6_7 :: cond gen_c:c17_7 :: Nat -> c:c1 gen_0':s8_7 :: Nat -> 0':s gen_c2:c3:c49_7 :: Nat -> c2:c3:c4 Generator Equations: gen_c:c17_7(0) <=> hole_c:c11_7 gen_c:c17_7(+(x, 1)) <=> c(gen_c:c17_7(x), c2) gen_0':s8_7(0) <=> 0' gen_0':s8_7(+(x, 1)) <=> s(gen_0':s8_7(x)) gen_c2:c3:c49_7(0) <=> c2 gen_c2:c3:c49_7(+(x, 1)) <=> c4(gen_c2:c3:c49_7(x)) The following defined symbols remain to be analysed: odd, COND, ODD, cond They will be analysed ascendingly in the following order: odd < COND ODD < COND odd < cond ---------------------------------------- (45) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: odd(gen_0':s8_7(*(2, n11_7))) -> false, rt in Omega(0) Induction Base: odd(gen_0':s8_7(*(2, 0))) ->_R^Omega(0) false Induction Step: odd(gen_0':s8_7(*(2, +(n11_7, 1)))) ->_R^Omega(0) odd(gen_0':s8_7(*(2, n11_7))) ->_IH false We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (46) Obligation: Innermost TRS: Rules: COND(true, z0) -> c(COND(odd(z0), p(z0)), ODD(z0)) COND(true, z0) -> c1(COND(odd(z0), p(z0)), P(z0)) ODD(0') -> c2 ODD(s(0')) -> c3 ODD(s(s(z0))) -> c4(ODD(z0)) P(0') -> c5 P(s(z0)) -> c6 cond(true, z0) -> cond(odd(z0), p(z0)) odd(0') -> false odd(s(0')) -> true odd(s(s(z0))) -> odd(z0) p(0') -> 0' p(s(z0)) -> z0 Types: COND :: true:false -> 0':s -> c:c1 true :: true:false c :: c:c1 -> c2:c3:c4 -> c:c1 odd :: 0':s -> true:false p :: 0':s -> 0':s ODD :: 0':s -> c2:c3:c4 c1 :: c:c1 -> c5:c6 -> c:c1 P :: 0':s -> c5:c6 0' :: 0':s c2 :: c2:c3:c4 s :: 0':s -> 0':s c3 :: c2:c3:c4 c4 :: c2:c3:c4 -> c2:c3:c4 c5 :: c5:c6 c6 :: c5:c6 cond :: true:false -> 0':s -> cond false :: true:false hole_c:c11_7 :: c:c1 hole_true:false2_7 :: true:false hole_0':s3_7 :: 0':s hole_c2:c3:c44_7 :: c2:c3:c4 hole_c5:c65_7 :: c5:c6 hole_cond6_7 :: cond gen_c:c17_7 :: Nat -> c:c1 gen_0':s8_7 :: Nat -> 0':s gen_c2:c3:c49_7 :: Nat -> c2:c3:c4 Lemmas: odd(gen_0':s8_7(*(2, n11_7))) -> false, rt in Omega(0) Generator Equations: gen_c:c17_7(0) <=> hole_c:c11_7 gen_c:c17_7(+(x, 1)) <=> c(gen_c:c17_7(x), c2) gen_0':s8_7(0) <=> 0' gen_0':s8_7(+(x, 1)) <=> s(gen_0':s8_7(x)) gen_c2:c3:c49_7(0) <=> c2 gen_c2:c3:c49_7(+(x, 1)) <=> c4(gen_c2:c3:c49_7(x)) The following defined symbols remain to be analysed: ODD, COND, cond They will be analysed ascendingly in the following order: ODD < COND ---------------------------------------- (47) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ODD(gen_0':s8_7(*(2, n171_7))) -> gen_c2:c3:c49_7(n171_7), rt in Omega(1 + n171_7) Induction Base: ODD(gen_0':s8_7(*(2, 0))) ->_R^Omega(1) c2 Induction Step: ODD(gen_0':s8_7(*(2, +(n171_7, 1)))) ->_R^Omega(1) c4(ODD(gen_0':s8_7(*(2, n171_7)))) ->_IH c4(gen_c2:c3:c49_7(c172_7)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (48) Complex Obligation (BEST) ---------------------------------------- (49) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: COND(true, z0) -> c(COND(odd(z0), p(z0)), ODD(z0)) COND(true, z0) -> c1(COND(odd(z0), p(z0)), P(z0)) ODD(0') -> c2 ODD(s(0')) -> c3 ODD(s(s(z0))) -> c4(ODD(z0)) P(0') -> c5 P(s(z0)) -> c6 cond(true, z0) -> cond(odd(z0), p(z0)) odd(0') -> false odd(s(0')) -> true odd(s(s(z0))) -> odd(z0) p(0') -> 0' p(s(z0)) -> z0 Types: COND :: true:false -> 0':s -> c:c1 true :: true:false c :: c:c1 -> c2:c3:c4 -> c:c1 odd :: 0':s -> true:false p :: 0':s -> 0':s ODD :: 0':s -> c2:c3:c4 c1 :: c:c1 -> c5:c6 -> c:c1 P :: 0':s -> c5:c6 0' :: 0':s c2 :: c2:c3:c4 s :: 0':s -> 0':s c3 :: c2:c3:c4 c4 :: c2:c3:c4 -> c2:c3:c4 c5 :: c5:c6 c6 :: c5:c6 cond :: true:false -> 0':s -> cond false :: true:false hole_c:c11_7 :: c:c1 hole_true:false2_7 :: true:false hole_0':s3_7 :: 0':s hole_c2:c3:c44_7 :: c2:c3:c4 hole_c5:c65_7 :: c5:c6 hole_cond6_7 :: cond gen_c:c17_7 :: Nat -> c:c1 gen_0':s8_7 :: Nat -> 0':s gen_c2:c3:c49_7 :: Nat -> c2:c3:c4 Lemmas: odd(gen_0':s8_7(*(2, n11_7))) -> false, rt in Omega(0) Generator Equations: gen_c:c17_7(0) <=> hole_c:c11_7 gen_c:c17_7(+(x, 1)) <=> c(gen_c:c17_7(x), c2) gen_0':s8_7(0) <=> 0' gen_0':s8_7(+(x, 1)) <=> s(gen_0':s8_7(x)) gen_c2:c3:c49_7(0) <=> c2 gen_c2:c3:c49_7(+(x, 1)) <=> c4(gen_c2:c3:c49_7(x)) The following defined symbols remain to be analysed: ODD, COND, cond They will be analysed ascendingly in the following order: ODD < COND ---------------------------------------- (50) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (51) BOUNDS(n^1, INF) ---------------------------------------- (52) Obligation: Innermost TRS: Rules: COND(true, z0) -> c(COND(odd(z0), p(z0)), ODD(z0)) COND(true, z0) -> c1(COND(odd(z0), p(z0)), P(z0)) ODD(0') -> c2 ODD(s(0')) -> c3 ODD(s(s(z0))) -> c4(ODD(z0)) P(0') -> c5 P(s(z0)) -> c6 cond(true, z0) -> cond(odd(z0), p(z0)) odd(0') -> false odd(s(0')) -> true odd(s(s(z0))) -> odd(z0) p(0') -> 0' p(s(z0)) -> z0 Types: COND :: true:false -> 0':s -> c:c1 true :: true:false c :: c:c1 -> c2:c3:c4 -> c:c1 odd :: 0':s -> true:false p :: 0':s -> 0':s ODD :: 0':s -> c2:c3:c4 c1 :: c:c1 -> c5:c6 -> c:c1 P :: 0':s -> c5:c6 0' :: 0':s c2 :: c2:c3:c4 s :: 0':s -> 0':s c3 :: c2:c3:c4 c4 :: c2:c3:c4 -> c2:c3:c4 c5 :: c5:c6 c6 :: c5:c6 cond :: true:false -> 0':s -> cond false :: true:false hole_c:c11_7 :: c:c1 hole_true:false2_7 :: true:false hole_0':s3_7 :: 0':s hole_c2:c3:c44_7 :: c2:c3:c4 hole_c5:c65_7 :: c5:c6 hole_cond6_7 :: cond gen_c:c17_7 :: Nat -> c:c1 gen_0':s8_7 :: Nat -> 0':s gen_c2:c3:c49_7 :: Nat -> c2:c3:c4 Lemmas: odd(gen_0':s8_7(*(2, n11_7))) -> false, rt in Omega(0) ODD(gen_0':s8_7(*(2, n171_7))) -> gen_c2:c3:c49_7(n171_7), rt in Omega(1 + n171_7) Generator Equations: gen_c:c17_7(0) <=> hole_c:c11_7 gen_c:c17_7(+(x, 1)) <=> c(gen_c:c17_7(x), c2) gen_0':s8_7(0) <=> 0' gen_0':s8_7(+(x, 1)) <=> s(gen_0':s8_7(x)) gen_c2:c3:c49_7(0) <=> c2 gen_c2:c3:c49_7(+(x, 1)) <=> c4(gen_c2:c3:c49_7(x)) The following defined symbols remain to be analysed: COND, cond