WORST_CASE(?,O(n^1)) proof of input_9fP3MqTuLT.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxWeightedTrs (13) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxTypedWeightedTrs (15) CompletionProof [UPPER BOUND(ID), 0 ms] (16) CpxTypedWeightedCompleteTrs (17) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxTypedWeightedCompleteTrs (19) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CpxRNTS (23) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CpxRNTS (25) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 158 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 73 ms] (30) CpxRNTS (31) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 5346 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 2661 ms] (36) CpxRNTS (37) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 148 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 12 ms] (42) CpxRNTS (43) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 198 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 22 ms] (48) CpxRNTS (49) FinalProof [FINISHED, 0 ms] (50) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(y, 0), x, y) cond2(true, x, y) -> cond2(gr(y, 0), x, p(y)) cond2(false, x, y) -> cond1(gr(x, 0), p(x), y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: cond1(true, z0, z1) -> cond2(gr(z1, 0), z0, z1) cond2(true, z0, z1) -> cond2(gr(z1, 0), z0, p(z1)) cond2(false, z0, z1) -> cond1(gr(z0, 0), p(z0), z1) gr(0, z0) -> false gr(s(z0), 0) -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0) -> 0 p(s(z0)) -> z0 Tuples: COND1(true, z0, z1) -> c(COND2(gr(z1, 0), z0, z1), GR(z1, 0)) COND2(true, z0, z1) -> c1(COND2(gr(z1, 0), z0, p(z1)), GR(z1, 0)) COND2(true, z0, z1) -> c2(COND2(gr(z1, 0), z0, p(z1)), P(z1)) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1), GR(z0, 0)) COND2(false, z0, z1) -> c4(COND1(gr(z0, 0), p(z0), z1), P(z0)) GR(0, z0) -> c5 GR(s(z0), 0) -> c6 GR(s(z0), s(z1)) -> c7(GR(z0, z1)) P(0) -> c8 P(s(z0)) -> c9 S tuples: COND1(true, z0, z1) -> c(COND2(gr(z1, 0), z0, z1), GR(z1, 0)) COND2(true, z0, z1) -> c1(COND2(gr(z1, 0), z0, p(z1)), GR(z1, 0)) COND2(true, z0, z1) -> c2(COND2(gr(z1, 0), z0, p(z1)), P(z1)) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1), GR(z0, 0)) COND2(false, z0, z1) -> c4(COND1(gr(z0, 0), p(z0), z1), P(z0)) GR(0, z0) -> c5 GR(s(z0), 0) -> c6 GR(s(z0), s(z1)) -> c7(GR(z0, z1)) P(0) -> c8 P(s(z0)) -> c9 K tuples:none Defined Rule Symbols: cond1_3, cond2_3, gr_2, p_1 Defined Pair Symbols: COND1_3, COND2_3, GR_2, P_1 Compound Symbols: c_2, c1_2, c2_2, c3_2, c4_2, c5, c6, c7_1, c8, c9 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 4 trailing nodes: P(0) -> c8 P(s(z0)) -> c9 GR(0, z0) -> c5 GR(s(z0), 0) -> c6 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: cond1(true, z0, z1) -> cond2(gr(z1, 0), z0, z1) cond2(true, z0, z1) -> cond2(gr(z1, 0), z0, p(z1)) cond2(false, z0, z1) -> cond1(gr(z0, 0), p(z0), z1) gr(0, z0) -> false gr(s(z0), 0) -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0) -> 0 p(s(z0)) -> z0 Tuples: COND1(true, z0, z1) -> c(COND2(gr(z1, 0), z0, z1), GR(z1, 0)) COND2(true, z0, z1) -> c1(COND2(gr(z1, 0), z0, p(z1)), GR(z1, 0)) COND2(true, z0, z1) -> c2(COND2(gr(z1, 0), z0, p(z1)), P(z1)) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1), GR(z0, 0)) COND2(false, z0, z1) -> c4(COND1(gr(z0, 0), p(z0), z1), P(z0)) GR(s(z0), s(z1)) -> c7(GR(z0, z1)) S tuples: COND1(true, z0, z1) -> c(COND2(gr(z1, 0), z0, z1), GR(z1, 0)) COND2(true, z0, z1) -> c1(COND2(gr(z1, 0), z0, p(z1)), GR(z1, 0)) COND2(true, z0, z1) -> c2(COND2(gr(z1, 0), z0, p(z1)), P(z1)) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1), GR(z0, 0)) COND2(false, z0, z1) -> c4(COND1(gr(z0, 0), p(z0), z1), P(z0)) GR(s(z0), s(z1)) -> c7(GR(z0, z1)) K tuples:none Defined Rule Symbols: cond1_3, cond2_3, gr_2, p_1 Defined Pair Symbols: COND1_3, COND2_3, GR_2 Compound Symbols: c_2, c1_2, c2_2, c3_2, c4_2, c7_1 ---------------------------------------- (5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 5 trailing tuple parts ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: cond1(true, z0, z1) -> cond2(gr(z1, 0), z0, z1) cond2(true, z0, z1) -> cond2(gr(z1, 0), z0, p(z1)) cond2(false, z0, z1) -> cond1(gr(z0, 0), p(z0), z1) gr(0, z0) -> false gr(s(z0), 0) -> true gr(s(z0), s(z1)) -> gr(z0, z1) p(0) -> 0 p(s(z0)) -> z0 Tuples: GR(s(z0), s(z1)) -> c7(GR(z0, z1)) COND1(true, z0, z1) -> c(COND2(gr(z1, 0), z0, z1)) COND2(true, z0, z1) -> c1(COND2(gr(z1, 0), z0, p(z1))) COND2(true, z0, z1) -> c2(COND2(gr(z1, 0), z0, p(z1))) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1)) COND2(false, z0, z1) -> c4(COND1(gr(z0, 0), p(z0), z1)) S tuples: GR(s(z0), s(z1)) -> c7(GR(z0, z1)) COND1(true, z0, z1) -> c(COND2(gr(z1, 0), z0, z1)) COND2(true, z0, z1) -> c1(COND2(gr(z1, 0), z0, p(z1))) COND2(true, z0, z1) -> c2(COND2(gr(z1, 0), z0, p(z1))) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1)) COND2(false, z0, z1) -> c4(COND1(gr(z0, 0), p(z0), z1)) K tuples:none Defined Rule Symbols: cond1_3, cond2_3, gr_2, p_1 Defined Pair Symbols: GR_2, COND1_3, COND2_3 Compound Symbols: c7_1, c_1, c1_1, c2_1, c3_1, c4_1 ---------------------------------------- (7) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: cond1(true, z0, z1) -> cond2(gr(z1, 0), z0, z1) cond2(true, z0, z1) -> cond2(gr(z1, 0), z0, p(z1)) cond2(false, z0, z1) -> cond1(gr(z0, 0), p(z0), z1) gr(s(z0), s(z1)) -> gr(z0, z1) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: gr(0, z0) -> false gr(s(z0), 0) -> true p(0) -> 0 p(s(z0)) -> z0 Tuples: GR(s(z0), s(z1)) -> c7(GR(z0, z1)) COND1(true, z0, z1) -> c(COND2(gr(z1, 0), z0, z1)) COND2(true, z0, z1) -> c1(COND2(gr(z1, 0), z0, p(z1))) COND2(true, z0, z1) -> c2(COND2(gr(z1, 0), z0, p(z1))) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1)) COND2(false, z0, z1) -> c4(COND1(gr(z0, 0), p(z0), z1)) S tuples: GR(s(z0), s(z1)) -> c7(GR(z0, z1)) COND1(true, z0, z1) -> c(COND2(gr(z1, 0), z0, z1)) COND2(true, z0, z1) -> c1(COND2(gr(z1, 0), z0, p(z1))) COND2(true, z0, z1) -> c2(COND2(gr(z1, 0), z0, p(z1))) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1)) COND2(false, z0, z1) -> c4(COND1(gr(z0, 0), p(z0), z1)) K tuples:none Defined Rule Symbols: gr_2, p_1 Defined Pair Symbols: GR_2, COND1_3, COND2_3 Compound Symbols: c7_1, c_1, c1_1, c2_1, c3_1, c4_1 ---------------------------------------- (9) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: GR(s(z0), s(z1)) -> c7(GR(z0, z1)) COND1(true, z0, z1) -> c(COND2(gr(z1, 0), z0, z1)) COND2(true, z0, z1) -> c1(COND2(gr(z1, 0), z0, p(z1))) COND2(true, z0, z1) -> c2(COND2(gr(z1, 0), z0, p(z1))) COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1)) COND2(false, z0, z1) -> c4(COND1(gr(z0, 0), p(z0), z1)) The (relative) TRS S consists of the following rules: gr(0, z0) -> false gr(s(z0), 0) -> true p(0) -> 0 p(s(z0)) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (11) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (12) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: GR(s(z0), s(z1)) -> c7(GR(z0, z1)) [1] COND1(true, z0, z1) -> c(COND2(gr(z1, 0), z0, z1)) [1] COND2(true, z0, z1) -> c1(COND2(gr(z1, 0), z0, p(z1))) [1] COND2(true, z0, z1) -> c2(COND2(gr(z1, 0), z0, p(z1))) [1] COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1)) [1] COND2(false, z0, z1) -> c4(COND1(gr(z0, 0), p(z0), z1)) [1] gr(0, z0) -> false [0] gr(s(z0), 0) -> true [0] p(0) -> 0 [0] p(s(z0)) -> z0 [0] Rewrite Strategy: INNERMOST ---------------------------------------- (13) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: GR(s(z0), s(z1)) -> c7(GR(z0, z1)) [1] COND1(true, z0, z1) -> c(COND2(gr(z1, 0), z0, z1)) [1] COND2(true, z0, z1) -> c1(COND2(gr(z1, 0), z0, p(z1))) [1] COND2(true, z0, z1) -> c2(COND2(gr(z1, 0), z0, p(z1))) [1] COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1)) [1] COND2(false, z0, z1) -> c4(COND1(gr(z0, 0), p(z0), z1)) [1] gr(0, z0) -> false [0] gr(s(z0), 0) -> true [0] p(0) -> 0 [0] p(s(z0)) -> z0 [0] The TRS has the following type information: GR :: s:0 -> s:0 -> c7 s :: s:0 -> s:0 c7 :: c7 -> c7 COND1 :: true:false -> s:0 -> s:0 -> c true :: true:false c :: c1:c2:c3:c4 -> c COND2 :: true:false -> s:0 -> s:0 -> c1:c2:c3:c4 gr :: s:0 -> s:0 -> true:false 0 :: s:0 c1 :: c1:c2:c3:c4 -> c1:c2:c3:c4 p :: s:0 -> s:0 c2 :: c1:c2:c3:c4 -> c1:c2:c3:c4 false :: true:false c3 :: c -> c1:c2:c3:c4 c4 :: c -> c1:c2:c3:c4 Rewrite Strategy: INNERMOST ---------------------------------------- (15) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: GR_2 COND1_3 COND2_3 (c) The following functions are completely defined: gr_2 p_1 Due to the following rules being added: gr(v0, v1) -> null_gr [0] p(v0) -> 0 [0] And the following fresh constants: null_gr, const, const1, const2 ---------------------------------------- (16) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: GR(s(z0), s(z1)) -> c7(GR(z0, z1)) [1] COND1(true, z0, z1) -> c(COND2(gr(z1, 0), z0, z1)) [1] COND2(true, z0, z1) -> c1(COND2(gr(z1, 0), z0, p(z1))) [1] COND2(true, z0, z1) -> c2(COND2(gr(z1, 0), z0, p(z1))) [1] COND2(false, z0, z1) -> c3(COND1(gr(z0, 0), p(z0), z1)) [1] COND2(false, z0, z1) -> c4(COND1(gr(z0, 0), p(z0), z1)) [1] gr(0, z0) -> false [0] gr(s(z0), 0) -> true [0] p(0) -> 0 [0] p(s(z0)) -> z0 [0] gr(v0, v1) -> null_gr [0] p(v0) -> 0 [0] The TRS has the following type information: GR :: s:0 -> s:0 -> c7 s :: s:0 -> s:0 c7 :: c7 -> c7 COND1 :: true:false:null_gr -> s:0 -> s:0 -> c true :: true:false:null_gr c :: c1:c2:c3:c4 -> c COND2 :: true:false:null_gr -> s:0 -> s:0 -> c1:c2:c3:c4 gr :: s:0 -> s:0 -> true:false:null_gr 0 :: s:0 c1 :: c1:c2:c3:c4 -> c1:c2:c3:c4 p :: s:0 -> s:0 c2 :: c1:c2:c3:c4 -> c1:c2:c3:c4 false :: true:false:null_gr c3 :: c -> c1:c2:c3:c4 c4 :: c -> c1:c2:c3:c4 null_gr :: true:false:null_gr const :: c7 const1 :: c const2 :: c1:c2:c3:c4 Rewrite Strategy: INNERMOST ---------------------------------------- (17) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (18) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: GR(s(z0), s(z1)) -> c7(GR(z0, z1)) [1] COND1(true, z0, 0) -> c(COND2(false, z0, 0)) [1] COND1(true, z0, s(z0')) -> c(COND2(true, z0, s(z0'))) [1] COND1(true, z0, z1) -> c(COND2(null_gr, z0, z1)) [1] COND2(true, z0, 0) -> c1(COND2(false, z0, 0)) [1] COND2(true, z0, 0) -> c1(COND2(false, z0, 0)) [1] COND2(true, z0, s(z0'')) -> c1(COND2(true, z0, z0'')) [1] COND2(true, z0, s(z0'')) -> c1(COND2(true, z0, 0)) [1] COND2(true, z0, 0) -> c1(COND2(null_gr, z0, 0)) [1] COND2(true, z0, s(z01)) -> c1(COND2(null_gr, z0, z01)) [1] COND2(true, z0, z1) -> c1(COND2(null_gr, z0, 0)) [1] COND2(true, z0, 0) -> c2(COND2(false, z0, 0)) [1] COND2(true, z0, 0) -> c2(COND2(false, z0, 0)) [1] COND2(true, z0, s(z02)) -> c2(COND2(true, z0, z02)) [1] COND2(true, z0, s(z02)) -> c2(COND2(true, z0, 0)) [1] COND2(true, z0, 0) -> c2(COND2(null_gr, z0, 0)) [1] COND2(true, z0, s(z03)) -> c2(COND2(null_gr, z0, z03)) [1] COND2(true, z0, z1) -> c2(COND2(null_gr, z0, 0)) [1] COND2(false, 0, z1) -> c3(COND1(false, 0, z1)) [1] COND2(false, 0, z1) -> c3(COND1(false, 0, z1)) [1] COND2(false, s(z04), z1) -> c3(COND1(true, z04, z1)) [1] COND2(false, s(z04), z1) -> c3(COND1(true, 0, z1)) [1] COND2(false, 0, z1) -> c3(COND1(null_gr, 0, z1)) [1] COND2(false, s(z05), z1) -> c3(COND1(null_gr, z05, z1)) [1] COND2(false, z0, z1) -> c3(COND1(null_gr, 0, z1)) [1] COND2(false, 0, z1) -> c4(COND1(false, 0, z1)) [1] COND2(false, 0, z1) -> c4(COND1(false, 0, z1)) [1] COND2(false, s(z06), z1) -> c4(COND1(true, z06, z1)) [1] COND2(false, s(z06), z1) -> c4(COND1(true, 0, z1)) [1] COND2(false, 0, z1) -> c4(COND1(null_gr, 0, z1)) [1] COND2(false, s(z07), z1) -> c4(COND1(null_gr, z07, z1)) [1] COND2(false, z0, z1) -> c4(COND1(null_gr, 0, z1)) [1] gr(0, z0) -> false [0] gr(s(z0), 0) -> true [0] p(0) -> 0 [0] p(s(z0)) -> z0 [0] gr(v0, v1) -> null_gr [0] p(v0) -> 0 [0] The TRS has the following type information: GR :: s:0 -> s:0 -> c7 s :: s:0 -> s:0 c7 :: c7 -> c7 COND1 :: true:false:null_gr -> s:0 -> s:0 -> c true :: true:false:null_gr c :: c1:c2:c3:c4 -> c COND2 :: true:false:null_gr -> s:0 -> s:0 -> c1:c2:c3:c4 gr :: s:0 -> s:0 -> true:false:null_gr 0 :: s:0 c1 :: c1:c2:c3:c4 -> c1:c2:c3:c4 p :: s:0 -> s:0 c2 :: c1:c2:c3:c4 -> c1:c2:c3:c4 false :: true:false:null_gr c3 :: c -> c1:c2:c3:c4 c4 :: c -> c1:c2:c3:c4 null_gr :: true:false:null_gr const :: c7 const1 :: c const2 :: c1:c2:c3:c4 Rewrite Strategy: INNERMOST ---------------------------------------- (19) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: true => 2 0 => 0 false => 1 null_gr => 0 const => 0 const1 => 0 const2 => 0 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z', z'') -{ 1 }-> 1 + COND2(2, z0, 1 + z0') :|: z = 2, z0' >= 0, z0 >= 0, z'' = 1 + z0', z' = z0 COND1(z, z', z'') -{ 1 }-> 1 + COND2(1, z0, 0) :|: z = 2, z'' = 0, z0 >= 0, z' = z0 COND1(z, z', z'') -{ 1 }-> 1 + COND2(0, z0, z1) :|: z = 2, z1 >= 0, z0 >= 0, z' = z0, z'' = z1 COND2(z, z', z'') -{ 1 }-> 1 + COND2(2, z0, z0'') :|: z = 2, z'' = 1 + z0'', z0 >= 0, z0'' >= 0, z' = z0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(2, z0, z02) :|: z = 2, z02 >= 0, z0 >= 0, z' = z0, z'' = 1 + z02 COND2(z, z', z'') -{ 1 }-> 1 + COND2(2, z0, 0) :|: z = 2, z'' = 1 + z0'', z0 >= 0, z0'' >= 0, z' = z0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(2, z0, 0) :|: z = 2, z02 >= 0, z0 >= 0, z' = z0, z'' = 1 + z02 COND2(z, z', z'') -{ 1 }-> 1 + COND2(1, z0, 0) :|: z = 2, z'' = 0, z0 >= 0, z' = z0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z0, z01) :|: z = 2, z01 >= 0, z0 >= 0, z' = z0, z'' = 1 + z01 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z0, z03) :|: z = 2, z'' = 1 + z03, z0 >= 0, z03 >= 0, z' = z0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z0, 0) :|: z = 2, z'' = 0, z0 >= 0, z' = z0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z0, 0) :|: z = 2, z1 >= 0, z0 >= 0, z' = z0, z'' = z1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(2, z04, z1) :|: z04 >= 0, z1 >= 0, z = 1, z' = 1 + z04, z'' = z1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(2, z06, z1) :|: z1 >= 0, z = 1, z06 >= 0, z' = 1 + z06, z'' = z1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(2, 0, z1) :|: z04 >= 0, z1 >= 0, z = 1, z' = 1 + z04, z'' = z1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(2, 0, z1) :|: z1 >= 0, z = 1, z06 >= 0, z' = 1 + z06, z'' = z1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(1, 0, z1) :|: z1 >= 0, z = 1, z' = 0, z'' = z1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, z05, z1) :|: z1 >= 0, z = 1, z05 >= 0, z' = 1 + z05, z'' = z1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, z07, z1) :|: z1 >= 0, z07 >= 0, z = 1, z' = 1 + z07, z'' = z1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, 0, z1) :|: z1 >= 0, z = 1, z' = 0, z'' = z1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, 0, z1) :|: z1 >= 0, z = 1, z0 >= 0, z' = z0, z'' = z1 GR(z, z') -{ 1 }-> 1 + GR(z0, z1) :|: z1 >= 0, z = 1 + z0, z0 >= 0, z' = 1 + z1 gr(z, z') -{ 0 }-> 2 :|: z = 1 + z0, z0 >= 0, z' = 0 gr(z, z') -{ 0 }-> 1 :|: z0 >= 0, z = 0, z' = z0 gr(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 p(z) -{ 0 }-> z0 :|: z = 1 + z0, z0 >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 ---------------------------------------- (21) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z', z'') -{ 1 }-> 1 + COND2(2, z', 1 + (z'' - 1)) :|: z = 2, z'' - 1 >= 0, z' >= 0 COND1(z, z', z'') -{ 1 }-> 1 + COND2(1, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND1(z, z', z'') -{ 1 }-> 1 + COND2(0, z', z'') :|: z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(2, z', 0) :|: z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(2, z', z'' - 1) :|: z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(1, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', 0) :|: z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', z'' - 1) :|: z = 2, z'' - 1 >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(2, 0, z'') :|: z' - 1 >= 0, z'' >= 0, z = 1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(2, z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(1, 0, z'') :|: z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, 0, z'') :|: z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, 0, z'') :|: z'' >= 0, z = 1, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 GR(z, z') -{ 1 }-> 1 + GR(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 gr(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 0 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 ---------------------------------------- (23) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { GR } { COND2, COND1 } { p } { gr } ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z', z'') -{ 1 }-> 1 + COND2(2, z', 1 + (z'' - 1)) :|: z = 2, z'' - 1 >= 0, z' >= 0 COND1(z, z', z'') -{ 1 }-> 1 + COND2(1, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND1(z, z', z'') -{ 1 }-> 1 + COND2(0, z', z'') :|: z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(2, z', 0) :|: z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(2, z', z'' - 1) :|: z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(1, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', 0) :|: z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', z'' - 1) :|: z = 2, z'' - 1 >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(2, 0, z'') :|: z' - 1 >= 0, z'' >= 0, z = 1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(2, z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(1, 0, z'') :|: z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, 0, z'') :|: z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, 0, z'') :|: z'' >= 0, z = 1, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 GR(z, z') -{ 1 }-> 1 + GR(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 gr(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 0 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {GR}, {COND2,COND1}, {p}, {gr} ---------------------------------------- (25) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z', z'') -{ 1 }-> 1 + COND2(2, z', 1 + (z'' - 1)) :|: z = 2, z'' - 1 >= 0, z' >= 0 COND1(z, z', z'') -{ 1 }-> 1 + COND2(1, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND1(z, z', z'') -{ 1 }-> 1 + COND2(0, z', z'') :|: z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(2, z', 0) :|: z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(2, z', z'' - 1) :|: z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(1, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', 0) :|: z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', z'' - 1) :|: z = 2, z'' - 1 >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(2, 0, z'') :|: z' - 1 >= 0, z'' >= 0, z = 1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(2, z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(1, 0, z'') :|: z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, 0, z'') :|: z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, 0, z'') :|: z'' >= 0, z = 1, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 GR(z, z') -{ 1 }-> 1 + GR(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 gr(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 0 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {GR}, {COND2,COND1}, {p}, {gr} ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: GR after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z', z'') -{ 1 }-> 1 + COND2(2, z', 1 + (z'' - 1)) :|: z = 2, z'' - 1 >= 0, z' >= 0 COND1(z, z', z'') -{ 1 }-> 1 + COND2(1, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND1(z, z', z'') -{ 1 }-> 1 + COND2(0, z', z'') :|: z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(2, z', 0) :|: z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(2, z', z'' - 1) :|: z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(1, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', 0) :|: z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', z'' - 1) :|: z = 2, z'' - 1 >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(2, 0, z'') :|: z' - 1 >= 0, z'' >= 0, z = 1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(2, z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(1, 0, z'') :|: z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, 0, z'') :|: z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, 0, z'') :|: z'' >= 0, z = 1, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 GR(z, z') -{ 1 }-> 1 + GR(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 gr(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 0 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {GR}, {COND2,COND1}, {p}, {gr} Previous analysis results are: GR: runtime: ?, size: O(1) [0] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: GR after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z', z'') -{ 1 }-> 1 + COND2(2, z', 1 + (z'' - 1)) :|: z = 2, z'' - 1 >= 0, z' >= 0 COND1(z, z', z'') -{ 1 }-> 1 + COND2(1, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND1(z, z', z'') -{ 1 }-> 1 + COND2(0, z', z'') :|: z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(2, z', 0) :|: z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(2, z', z'' - 1) :|: z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(1, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', 0) :|: z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', z'' - 1) :|: z = 2, z'' - 1 >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(2, 0, z'') :|: z' - 1 >= 0, z'' >= 0, z = 1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(2, z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(1, 0, z'') :|: z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, 0, z'') :|: z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, 0, z'') :|: z'' >= 0, z = 1, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 GR(z, z') -{ 1 }-> 1 + GR(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 gr(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 0 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {COND2,COND1}, {p}, {gr} Previous analysis results are: GR: runtime: O(n^1) [z'], size: O(1) [0] ---------------------------------------- (31) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z', z'') -{ 1 }-> 1 + COND2(2, z', 1 + (z'' - 1)) :|: z = 2, z'' - 1 >= 0, z' >= 0 COND1(z, z', z'') -{ 1 }-> 1 + COND2(1, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND1(z, z', z'') -{ 1 }-> 1 + COND2(0, z', z'') :|: z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(2, z', 0) :|: z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(2, z', z'' - 1) :|: z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(1, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', 0) :|: z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', z'' - 1) :|: z = 2, z'' - 1 >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(2, 0, z'') :|: z' - 1 >= 0, z'' >= 0, z = 1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(2, z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(1, 0, z'') :|: z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, 0, z'') :|: z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, 0, z'') :|: z'' >= 0, z = 1, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 GR(z, z') -{ z' }-> 1 + s :|: s >= 0, s <= 0, z' - 1 >= 0, z - 1 >= 0 gr(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 0 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {COND2,COND1}, {p}, {gr} Previous analysis results are: GR: runtime: O(n^1) [z'], size: O(1) [0] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: COND2 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed SIZE bound using CoFloCo for: COND1 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z', z'') -{ 1 }-> 1 + COND2(2, z', 1 + (z'' - 1)) :|: z = 2, z'' - 1 >= 0, z' >= 0 COND1(z, z', z'') -{ 1 }-> 1 + COND2(1, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND1(z, z', z'') -{ 1 }-> 1 + COND2(0, z', z'') :|: z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(2, z', 0) :|: z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(2, z', z'' - 1) :|: z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(1, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', 0) :|: z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', z'' - 1) :|: z = 2, z'' - 1 >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(2, 0, z'') :|: z' - 1 >= 0, z'' >= 0, z = 1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(2, z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(1, 0, z'') :|: z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, 0, z'') :|: z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, 0, z'') :|: z'' >= 0, z = 1, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 GR(z, z') -{ z' }-> 1 + s :|: s >= 0, s <= 0, z' - 1 >= 0, z - 1 >= 0 gr(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 0 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {COND2,COND1}, {p}, {gr} Previous analysis results are: GR: runtime: O(n^1) [z'], size: O(1) [0] COND2: runtime: ?, size: O(1) [0] COND1: runtime: ?, size: O(1) [1] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: COND2 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 12 + 2*z' + z'' Computed RUNTIME bound using CoFloCo for: COND1 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 13 + 2*z' + z'' ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z', z'') -{ 1 }-> 1 + COND2(2, z', 1 + (z'' - 1)) :|: z = 2, z'' - 1 >= 0, z' >= 0 COND1(z, z', z'') -{ 1 }-> 1 + COND2(1, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND1(z, z', z'') -{ 1 }-> 1 + COND2(0, z', z'') :|: z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(2, z', 0) :|: z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(2, z', z'' - 1) :|: z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(1, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', 0) :|: z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', 0) :|: z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND2(0, z', z'' - 1) :|: z = 2, z'' - 1 >= 0, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(2, 0, z'') :|: z' - 1 >= 0, z'' >= 0, z = 1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(2, z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 1 COND2(z, z', z'') -{ 1 }-> 1 + COND1(1, 0, z'') :|: z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, 0, z'') :|: z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, 0, z'') :|: z'' >= 0, z = 1, z' >= 0 COND2(z, z', z'') -{ 1 }-> 1 + COND1(0, z' - 1, z'') :|: z'' >= 0, z = 1, z' - 1 >= 0 GR(z, z') -{ z' }-> 1 + s :|: s >= 0, s <= 0, z' - 1 >= 0, z - 1 >= 0 gr(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 0 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr} Previous analysis results are: GR: runtime: O(n^1) [z'], size: O(1) [0] COND2: runtime: O(n^1) [12 + 2*z' + z''], size: O(1) [0] COND1: runtime: O(n^1) [13 + 2*z' + z''], size: O(1) [1] ---------------------------------------- (37) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z', z'') -{ 13 + 2*z' }-> 1 + s' :|: s' >= 0, s' <= 0, z = 2, z'' = 0, z' >= 0 COND1(z, z', z'') -{ 13 + 2*z' + z'' }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z = 2, z'' - 1 >= 0, z' >= 0 COND1(z, z', z'') -{ 13 + 2*z' + z'' }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s10 :|: s10 >= 0, s10 <= 1, z' - 1 >= 0, z'' >= 0, z = 1 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s11 :|: s11 >= 0, s11 <= 1, z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s12 :|: s12 >= 0, s12 <= 1, z'' >= 0, z = 1, z' - 1 >= 0 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s13 :|: s13 >= 0, s13 <= 1, z'' >= 0, z = 1, z' >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z = 2, z'' - 1 >= 0, z' >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= 0, z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s8 :|: s8 >= 0, s8 <= 1, z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s9 :|: s9 >= 0, s9 <= 1, z' - 1 >= 0, z'' >= 0, z = 1 GR(z, z') -{ z' }-> 1 + s :|: s >= 0, s <= 0, z' - 1 >= 0, z - 1 >= 0 gr(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 0 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr} Previous analysis results are: GR: runtime: O(n^1) [z'], size: O(1) [0] COND2: runtime: O(n^1) [12 + 2*z' + z''], size: O(1) [0] COND1: runtime: O(n^1) [13 + 2*z' + z''], size: O(1) [1] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: p after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z', z'') -{ 13 + 2*z' }-> 1 + s' :|: s' >= 0, s' <= 0, z = 2, z'' = 0, z' >= 0 COND1(z, z', z'') -{ 13 + 2*z' + z'' }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z = 2, z'' - 1 >= 0, z' >= 0 COND1(z, z', z'') -{ 13 + 2*z' + z'' }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s10 :|: s10 >= 0, s10 <= 1, z' - 1 >= 0, z'' >= 0, z = 1 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s11 :|: s11 >= 0, s11 <= 1, z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s12 :|: s12 >= 0, s12 <= 1, z'' >= 0, z = 1, z' - 1 >= 0 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s13 :|: s13 >= 0, s13 <= 1, z'' >= 0, z = 1, z' >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z = 2, z'' - 1 >= 0, z' >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= 0, z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s8 :|: s8 >= 0, s8 <= 1, z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s9 :|: s9 >= 0, s9 <= 1, z' - 1 >= 0, z'' >= 0, z = 1 GR(z, z') -{ z' }-> 1 + s :|: s >= 0, s <= 0, z' - 1 >= 0, z - 1 >= 0 gr(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 0 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {p}, {gr} Previous analysis results are: GR: runtime: O(n^1) [z'], size: O(1) [0] COND2: runtime: O(n^1) [12 + 2*z' + z''], size: O(1) [0] COND1: runtime: O(n^1) [13 + 2*z' + z''], size: O(1) [1] p: runtime: ?, size: O(n^1) [z] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: p after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z', z'') -{ 13 + 2*z' }-> 1 + s' :|: s' >= 0, s' <= 0, z = 2, z'' = 0, z' >= 0 COND1(z, z', z'') -{ 13 + 2*z' + z'' }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z = 2, z'' - 1 >= 0, z' >= 0 COND1(z, z', z'') -{ 13 + 2*z' + z'' }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s10 :|: s10 >= 0, s10 <= 1, z' - 1 >= 0, z'' >= 0, z = 1 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s11 :|: s11 >= 0, s11 <= 1, z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s12 :|: s12 >= 0, s12 <= 1, z'' >= 0, z = 1, z' - 1 >= 0 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s13 :|: s13 >= 0, s13 <= 1, z'' >= 0, z = 1, z' >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z = 2, z'' - 1 >= 0, z' >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= 0, z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s8 :|: s8 >= 0, s8 <= 1, z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s9 :|: s9 >= 0, s9 <= 1, z' - 1 >= 0, z'' >= 0, z = 1 GR(z, z') -{ z' }-> 1 + s :|: s >= 0, s <= 0, z' - 1 >= 0, z - 1 >= 0 gr(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 0 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr} Previous analysis results are: GR: runtime: O(n^1) [z'], size: O(1) [0] COND2: runtime: O(n^1) [12 + 2*z' + z''], size: O(1) [0] COND1: runtime: O(n^1) [13 + 2*z' + z''], size: O(1) [1] p: runtime: O(1) [0], size: O(n^1) [z] ---------------------------------------- (43) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z', z'') -{ 13 + 2*z' }-> 1 + s' :|: s' >= 0, s' <= 0, z = 2, z'' = 0, z' >= 0 COND1(z, z', z'') -{ 13 + 2*z' + z'' }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z = 2, z'' - 1 >= 0, z' >= 0 COND1(z, z', z'') -{ 13 + 2*z' + z'' }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s10 :|: s10 >= 0, s10 <= 1, z' - 1 >= 0, z'' >= 0, z = 1 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s11 :|: s11 >= 0, s11 <= 1, z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s12 :|: s12 >= 0, s12 <= 1, z'' >= 0, z = 1, z' - 1 >= 0 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s13 :|: s13 >= 0, s13 <= 1, z'' >= 0, z = 1, z' >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z = 2, z'' - 1 >= 0, z' >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= 0, z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s8 :|: s8 >= 0, s8 <= 1, z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s9 :|: s9 >= 0, s9 <= 1, z' - 1 >= 0, z'' >= 0, z = 1 GR(z, z') -{ z' }-> 1 + s :|: s >= 0, s <= 0, z' - 1 >= 0, z - 1 >= 0 gr(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 0 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr} Previous analysis results are: GR: runtime: O(n^1) [z'], size: O(1) [0] COND2: runtime: O(n^1) [12 + 2*z' + z''], size: O(1) [0] COND1: runtime: O(n^1) [13 + 2*z' + z''], size: O(1) [1] p: runtime: O(1) [0], size: O(n^1) [z] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: gr after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z', z'') -{ 13 + 2*z' }-> 1 + s' :|: s' >= 0, s' <= 0, z = 2, z'' = 0, z' >= 0 COND1(z, z', z'') -{ 13 + 2*z' + z'' }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z = 2, z'' - 1 >= 0, z' >= 0 COND1(z, z', z'') -{ 13 + 2*z' + z'' }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s10 :|: s10 >= 0, s10 <= 1, z' - 1 >= 0, z'' >= 0, z = 1 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s11 :|: s11 >= 0, s11 <= 1, z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s12 :|: s12 >= 0, s12 <= 1, z'' >= 0, z = 1, z' - 1 >= 0 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s13 :|: s13 >= 0, s13 <= 1, z'' >= 0, z = 1, z' >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z = 2, z'' - 1 >= 0, z' >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= 0, z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s8 :|: s8 >= 0, s8 <= 1, z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s9 :|: s9 >= 0, s9 <= 1, z' - 1 >= 0, z'' >= 0, z = 1 GR(z, z') -{ z' }-> 1 + s :|: s >= 0, s <= 0, z' - 1 >= 0, z - 1 >= 0 gr(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 0 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: {gr} Previous analysis results are: GR: runtime: O(n^1) [z'], size: O(1) [0] COND2: runtime: O(n^1) [12 + 2*z' + z''], size: O(1) [0] COND1: runtime: O(n^1) [13 + 2*z' + z''], size: O(1) [1] p: runtime: O(1) [0], size: O(n^1) [z] gr: runtime: ?, size: O(1) [2] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: gr after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: COND1(z, z', z'') -{ 13 + 2*z' }-> 1 + s' :|: s' >= 0, s' <= 0, z = 2, z'' = 0, z' >= 0 COND1(z, z', z'') -{ 13 + 2*z' + z'' }-> 1 + s'' :|: s'' >= 0, s'' <= 0, z = 2, z'' - 1 >= 0, z' >= 0 COND1(z, z', z'') -{ 13 + 2*z' + z'' }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s10 :|: s10 >= 0, s10 <= 1, z' - 1 >= 0, z'' >= 0, z = 1 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s11 :|: s11 >= 0, s11 <= 1, z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s12 :|: s12 >= 0, s12 <= 1, z'' >= 0, z = 1, z' - 1 >= 0 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s13 :|: s13 >= 0, s13 <= 1, z'' >= 0, z = 1, z' >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s2 :|: s2 >= 0, s2 <= 0, z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s4 :|: s4 >= 0, s4 <= 0, z = 2, z' >= 0, z'' - 1 >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s5 :|: s5 >= 0, s5 <= 0, z = 2, z'' = 0, z' >= 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s6 :|: s6 >= 0, s6 <= 0, z = 2, z'' - 1 >= 0, z' >= 0 COND2(z, z', z'') -{ 13 + 2*z' }-> 1 + s7 :|: s7 >= 0, s7 <= 0, z = 2, z'' >= 0, z' >= 0 COND2(z, z', z'') -{ 14 + z'' }-> 1 + s8 :|: s8 >= 0, s8 <= 1, z'' >= 0, z = 1, z' = 0 COND2(z, z', z'') -{ 12 + 2*z' + z'' }-> 1 + s9 :|: s9 >= 0, s9 <= 1, z' - 1 >= 0, z'' >= 0, z = 1 GR(z, z') -{ z' }-> 1 + s :|: s >= 0, s <= 0, z' - 1 >= 0, z - 1 >= 0 gr(z, z') -{ 0 }-> 2 :|: z - 1 >= 0, z' = 0 gr(z, z') -{ 0 }-> 1 :|: z' >= 0, z = 0 gr(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 p(z) -{ 0 }-> 0 :|: z = 0 p(z) -{ 0 }-> 0 :|: z >= 0 p(z) -{ 0 }-> z - 1 :|: z - 1 >= 0 Function symbols to be analyzed: Previous analysis results are: GR: runtime: O(n^1) [z'], size: O(1) [0] COND2: runtime: O(n^1) [12 + 2*z' + z''], size: O(1) [0] COND1: runtime: O(n^1) [13 + 2*z' + z''], size: O(1) [1] p: runtime: O(1) [0], size: O(n^1) [z] gr: runtime: O(1) [0], size: O(1) [2] ---------------------------------------- (49) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (50) BOUNDS(1, n^1)