WORST_CASE(Omega(n^1),O(n^2)) proof of input_I350Pn093p.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRNTS (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) IntTrsBoundProof [UPPER BOUND(ID), 245 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 50 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 1481 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 618 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 445 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 155 ms] (32) CpxRNTS (33) ResultPropagationProof [UPPER BOUND(ID), 1 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 127 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) FinalProof [FINISHED, 0 ms] (40) BOUNDS(1, n^2) (41) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (42) CdtProblem (43) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (44) CpxRelTRS (45) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (46) CpxRelTRS (47) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (48) typed CpxTrs (49) OrderProof [LOWER BOUND(ID), 7 ms] (50) typed CpxTrs (51) RewriteLemmaProof [LOWER BOUND(ID), 310 ms] (52) typed CpxTrs (53) RewriteLemmaProof [LOWER BOUND(ID), 88 ms] (54) BEST (55) proven lower bound (56) LowerBoundPropagationProof [FINISHED, 0 ms] (57) BOUNDS(n^1, INF) (58) typed CpxTrs (59) RewriteLemmaProof [LOWER BOUND(ID), 383 ms] (60) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: fold#3(insert_ord(x2), Nil) -> Nil fold#3(insert_ord(x6), Cons(x4, x2)) -> insert_ord#2(x6, x4, fold#3(insert_ord(x6), x2)) cond_insert_ord_x_ys_1(True, x3, x2, x1) -> Cons(x3, Cons(x2, x1)) cond_insert_ord_x_ys_1(False, x0, x5, x2) -> Cons(x5, insert_ord#2(leq, x0, x2)) insert_ord#2(leq, x2, Nil) -> Cons(x2, Nil) insert_ord#2(leq, x6, Cons(x4, x2)) -> cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2) leq#2(0, x8) -> True leq#2(S(x12), 0) -> False leq#2(S(x4), S(x2)) -> leq#2(x4, x2) main(x3) -> fold#3(insert_ord(leq), x3) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: fold#3(insert_ord(x2), Nil) -> Nil [1] fold#3(insert_ord(x6), Cons(x4, x2)) -> insert_ord#2(x6, x4, fold#3(insert_ord(x6), x2)) [1] cond_insert_ord_x_ys_1(True, x3, x2, x1) -> Cons(x3, Cons(x2, x1)) [1] cond_insert_ord_x_ys_1(False, x0, x5, x2) -> Cons(x5, insert_ord#2(leq, x0, x2)) [1] insert_ord#2(leq, x2, Nil) -> Cons(x2, Nil) [1] insert_ord#2(leq, x6, Cons(x4, x2)) -> cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2) [1] leq#2(0, x8) -> True [1] leq#2(S(x12), 0) -> False [1] leq#2(S(x4), S(x2)) -> leq#2(x4, x2) [1] main(x3) -> fold#3(insert_ord(leq), x3) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: fold#3(insert_ord(x2), Nil) -> Nil [1] fold#3(insert_ord(x6), Cons(x4, x2)) -> insert_ord#2(x6, x4, fold#3(insert_ord(x6), x2)) [1] cond_insert_ord_x_ys_1(True, x3, x2, x1) -> Cons(x3, Cons(x2, x1)) [1] cond_insert_ord_x_ys_1(False, x0, x5, x2) -> Cons(x5, insert_ord#2(leq, x0, x2)) [1] insert_ord#2(leq, x2, Nil) -> Cons(x2, Nil) [1] insert_ord#2(leq, x6, Cons(x4, x2)) -> cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2) [1] leq#2(0, x8) -> True [1] leq#2(S(x12), 0) -> False [1] leq#2(S(x4), S(x2)) -> leq#2(x4, x2) [1] main(x3) -> fold#3(insert_ord(leq), x3) [1] The TRS has the following type information: fold#3 :: insert_ord -> Nil:Cons -> Nil:Cons insert_ord :: leq -> insert_ord Nil :: Nil:Cons Cons :: 0:S -> Nil:Cons -> Nil:Cons insert_ord#2 :: leq -> 0:S -> Nil:Cons -> Nil:Cons cond_insert_ord_x_ys_1 :: True:False -> 0:S -> 0:S -> Nil:Cons -> Nil:Cons True :: True:False False :: True:False leq :: leq leq#2 :: 0:S -> 0:S -> True:False 0 :: 0:S S :: 0:S -> 0:S main :: Nil:Cons -> Nil:Cons Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: main_1 (c) The following functions are completely defined: leq#2_2 fold#3_2 insert_ord#2_3 cond_insert_ord_x_ys_1_4 Due to the following rules being added: fold#3(v0, v1) -> Nil [0] And the following fresh constants: const ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: fold#3(insert_ord(x2), Nil) -> Nil [1] fold#3(insert_ord(x6), Cons(x4, x2)) -> insert_ord#2(x6, x4, fold#3(insert_ord(x6), x2)) [1] cond_insert_ord_x_ys_1(True, x3, x2, x1) -> Cons(x3, Cons(x2, x1)) [1] cond_insert_ord_x_ys_1(False, x0, x5, x2) -> Cons(x5, insert_ord#2(leq, x0, x2)) [1] insert_ord#2(leq, x2, Nil) -> Cons(x2, Nil) [1] insert_ord#2(leq, x6, Cons(x4, x2)) -> cond_insert_ord_x_ys_1(leq#2(x6, x4), x6, x4, x2) [1] leq#2(0, x8) -> True [1] leq#2(S(x12), 0) -> False [1] leq#2(S(x4), S(x2)) -> leq#2(x4, x2) [1] main(x3) -> fold#3(insert_ord(leq), x3) [1] fold#3(v0, v1) -> Nil [0] The TRS has the following type information: fold#3 :: insert_ord -> Nil:Cons -> Nil:Cons insert_ord :: leq -> insert_ord Nil :: Nil:Cons Cons :: 0:S -> Nil:Cons -> Nil:Cons insert_ord#2 :: leq -> 0:S -> Nil:Cons -> Nil:Cons cond_insert_ord_x_ys_1 :: True:False -> 0:S -> 0:S -> Nil:Cons -> Nil:Cons True :: True:False False :: True:False leq :: leq leq#2 :: 0:S -> 0:S -> True:False 0 :: 0:S S :: 0:S -> 0:S main :: Nil:Cons -> Nil:Cons const :: insert_ord Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: fold#3(insert_ord(x2), Nil) -> Nil [1] fold#3(insert_ord(x6), Cons(x4, Nil)) -> insert_ord#2(x6, x4, Nil) [2] fold#3(insert_ord(x6), Cons(x4, Cons(x4', x2'))) -> insert_ord#2(x6, x4, insert_ord#2(x6, x4', fold#3(insert_ord(x6), x2'))) [2] fold#3(insert_ord(x6), Cons(x4, x2)) -> insert_ord#2(x6, x4, Nil) [1] cond_insert_ord_x_ys_1(True, x3, x2, x1) -> Cons(x3, Cons(x2, x1)) [1] cond_insert_ord_x_ys_1(False, x0, x5, x2) -> Cons(x5, insert_ord#2(leq, x0, x2)) [1] insert_ord#2(leq, x2, Nil) -> Cons(x2, Nil) [1] insert_ord#2(leq, 0, Cons(x4, x2)) -> cond_insert_ord_x_ys_1(True, 0, x4, x2) [2] insert_ord#2(leq, S(x12'), Cons(0, x2)) -> cond_insert_ord_x_ys_1(False, S(x12'), 0, x2) [2] insert_ord#2(leq, S(x4''), Cons(S(x2''), x2)) -> cond_insert_ord_x_ys_1(leq#2(x4'', x2''), S(x4''), S(x2''), x2) [2] leq#2(0, x8) -> True [1] leq#2(S(x12), 0) -> False [1] leq#2(S(x4), S(x2)) -> leq#2(x4, x2) [1] main(x3) -> fold#3(insert_ord(leq), x3) [1] fold#3(v0, v1) -> Nil [0] The TRS has the following type information: fold#3 :: insert_ord -> Nil:Cons -> Nil:Cons insert_ord :: leq -> insert_ord Nil :: Nil:Cons Cons :: 0:S -> Nil:Cons -> Nil:Cons insert_ord#2 :: leq -> 0:S -> Nil:Cons -> Nil:Cons cond_insert_ord_x_ys_1 :: True:False -> 0:S -> 0:S -> Nil:Cons -> Nil:Cons True :: True:False False :: True:False leq :: leq leq#2 :: 0:S -> 0:S -> True:False 0 :: 0:S S :: 0:S -> 0:S main :: Nil:Cons -> Nil:Cons const :: insert_ord Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: Nil => 0 True => 1 False => 0 leq => 0 0 => 0 const => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + x3 + (1 + x2 + x1) :|: x1 >= 0, z = 1, z' = x3, z1 = x1, z'' = x2, x3 >= 0, x2 >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + x5 + insert_ord#2(0, x0, x2) :|: x0 >= 0, x5 >= 0, z1 = x2, z'' = x5, z = 0, x2 >= 0, z' = x0 fold#3(z, z') -{ 2 }-> insert_ord#2(x6, x4, insert_ord#2(x6, x4', fold#3(1 + x6, x2'))) :|: x2' >= 0, x4 >= 0, z = 1 + x6, x6 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 fold#3(z, z') -{ 2 }-> insert_ord#2(x6, x4, 0) :|: x4 >= 0, z = 1 + x6, x6 >= 0, z' = 1 + x4 + 0 fold#3(z, z') -{ 1 }-> insert_ord#2(x6, x4, 0) :|: x4 >= 0, z = 1 + x6, z' = 1 + x4 + x2, x6 >= 0, x2 >= 0 fold#3(z, z') -{ 1 }-> 0 :|: z = 1 + x2, x2 >= 0, z' = 0 fold#3(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(leq#2(x4'', x2''), 1 + x4'', 1 + x2'', x2) :|: x4'' >= 0, z'' = 1 + (1 + x2'') + x2, z' = 1 + x4'', z = 0, x2'' >= 0, x2 >= 0 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + x12', 0, x2) :|: z'' = 1 + 0 + x2, z' = 1 + x12', x12' >= 0, z = 0, x2 >= 0 insert_ord#2(z, z', z'') -{ 1 }-> 1 + x2 + 0 :|: z'' = 0, z' = x2, z = 0, x2 >= 0 leq#2(z, z') -{ 1 }-> leq#2(x4, x2) :|: x4 >= 0, z' = 1 + x2, z = 1 + x4, x2 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: x8 >= 0, z = 0, z' = x8 leq#2(z, z') -{ 1 }-> 0 :|: z = 1 + x12, x12 >= 0, z' = 0 main(z) -{ 1 }-> fold#3(1 + 0, x3) :|: z = x3, x3 >= 0 ---------------------------------------- (11) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert_ord#2(0, z', z1) :|: z' >= 0, z'' >= 0, z = 0, z1 >= 0 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 fold#3(z, z') -{ 1 }-> insert_ord#2(z - 1, x4, 0) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, z' - 1, 0) :|: z' - 1 >= 0, z - 1 >= 0 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(leq#2(z' - 1, x2''), 1 + (z' - 1), 1 + x2'', x2) :|: z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z' - 1), 0, z'' - 1) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 leq#2(z, z') -{ 1 }-> leq#2(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 1 }-> fold#3(1 + 0, z) :|: z >= 0 ---------------------------------------- (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { leq#2 } { cond_insert_ord_x_ys_1, insert_ord#2 } { fold#3 } { main } ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert_ord#2(0, z', z1) :|: z' >= 0, z'' >= 0, z = 0, z1 >= 0 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 fold#3(z, z') -{ 1 }-> insert_ord#2(z - 1, x4, 0) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, z' - 1, 0) :|: z' - 1 >= 0, z - 1 >= 0 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(leq#2(z' - 1, x2''), 1 + (z' - 1), 1 + x2'', x2) :|: z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z' - 1), 0, z'' - 1) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 leq#2(z, z') -{ 1 }-> leq#2(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 1 }-> fold#3(1 + 0, z) :|: z >= 0 Function symbols to be analyzed: {leq#2}, {cond_insert_ord_x_ys_1,insert_ord#2}, {fold#3}, {main} ---------------------------------------- (15) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert_ord#2(0, z', z1) :|: z' >= 0, z'' >= 0, z = 0, z1 >= 0 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 fold#3(z, z') -{ 1 }-> insert_ord#2(z - 1, x4, 0) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, z' - 1, 0) :|: z' - 1 >= 0, z - 1 >= 0 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(leq#2(z' - 1, x2''), 1 + (z' - 1), 1 + x2'', x2) :|: z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z' - 1), 0, z'' - 1) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 leq#2(z, z') -{ 1 }-> leq#2(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 1 }-> fold#3(1 + 0, z) :|: z >= 0 Function symbols to be analyzed: {leq#2}, {cond_insert_ord_x_ys_1,insert_ord#2}, {fold#3}, {main} ---------------------------------------- (17) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: leq#2 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert_ord#2(0, z', z1) :|: z' >= 0, z'' >= 0, z = 0, z1 >= 0 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 fold#3(z, z') -{ 1 }-> insert_ord#2(z - 1, x4, 0) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, z' - 1, 0) :|: z' - 1 >= 0, z - 1 >= 0 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(leq#2(z' - 1, x2''), 1 + (z' - 1), 1 + x2'', x2) :|: z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z' - 1), 0, z'' - 1) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 leq#2(z, z') -{ 1 }-> leq#2(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 1 }-> fold#3(1 + 0, z) :|: z >= 0 Function symbols to be analyzed: {leq#2}, {cond_insert_ord_x_ys_1,insert_ord#2}, {fold#3}, {main} Previous analysis results are: leq#2: runtime: ?, size: O(1) [1] ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: leq#2 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert_ord#2(0, z', z1) :|: z' >= 0, z'' >= 0, z = 0, z1 >= 0 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 fold#3(z, z') -{ 1 }-> insert_ord#2(z - 1, x4, 0) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, z' - 1, 0) :|: z' - 1 >= 0, z - 1 >= 0 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(leq#2(z' - 1, x2''), 1 + (z' - 1), 1 + x2'', x2) :|: z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z' - 1), 0, z'' - 1) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 leq#2(z, z') -{ 1 }-> leq#2(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 1 }-> fold#3(1 + 0, z) :|: z >= 0 Function symbols to be analyzed: {cond_insert_ord_x_ys_1,insert_ord#2}, {fold#3}, {main} Previous analysis results are: leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert_ord#2(0, z', z1) :|: z' >= 0, z'' >= 0, z = 0, z1 >= 0 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 fold#3(z, z') -{ 1 }-> insert_ord#2(z - 1, x4, 0) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, z' - 1, 0) :|: z' - 1 >= 0, z - 1 >= 0 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 insert_ord#2(z, z', z'') -{ 4 + x2'' }-> cond_insert_ord_x_ys_1(s, 1 + (z' - 1), 1 + x2'', x2) :|: s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z' - 1), 0, z'' - 1) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 1 }-> fold#3(1 + 0, z) :|: z >= 0 Function symbols to be analyzed: {cond_insert_ord_x_ys_1,insert_ord#2}, {fold#3}, {main} Previous analysis results are: leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: cond_insert_ord_x_ys_1 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' + z'' + z1 Computed SIZE bound using CoFloCo for: insert_ord#2 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z' + z'' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert_ord#2(0, z', z1) :|: z' >= 0, z'' >= 0, z = 0, z1 >= 0 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 fold#3(z, z') -{ 1 }-> insert_ord#2(z - 1, x4, 0) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, z' - 1, 0) :|: z' - 1 >= 0, z - 1 >= 0 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 insert_ord#2(z, z', z'') -{ 4 + x2'' }-> cond_insert_ord_x_ys_1(s, 1 + (z' - 1), 1 + x2'', x2) :|: s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z' - 1), 0, z'' - 1) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 1 }-> fold#3(1 + 0, z) :|: z >= 0 Function symbols to be analyzed: {cond_insert_ord_x_ys_1,insert_ord#2}, {fold#3}, {main} Previous analysis results are: leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] cond_insert_ord_x_ys_1: runtime: ?, size: O(n^1) [2 + z' + z'' + z1] insert_ord#2: runtime: ?, size: O(n^1) [1 + z' + z''] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: cond_insert_ord_x_ys_1 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 4 + 7*z1 Computed RUNTIME bound using CoFloCo for: insert_ord#2 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 6 + 7*z'' ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z'' + insert_ord#2(0, z', z1) :|: z' >= 0, z'' >= 0, z = 0, z1 >= 0 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 fold#3(z, z') -{ 1 }-> insert_ord#2(z - 1, x4, 0) :|: x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, z' - 1, 0) :|: z' - 1 >= 0, z - 1 >= 0 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 insert_ord#2(z, z', z'') -{ 4 + x2'' }-> cond_insert_ord_x_ys_1(s, 1 + (z' - 1), 1 + x2'', x2) :|: s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(1, 0, x4, x2) :|: x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 insert_ord#2(z, z', z'') -{ 2 }-> cond_insert_ord_x_ys_1(0, 1 + (z' - 1), 0, z'' - 1) :|: z' - 1 >= 0, z = 0, z'' - 1 >= 0 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 1 }-> fold#3(1 + 0, z) :|: z >= 0 Function symbols to be analyzed: {fold#3}, {main} Previous analysis results are: leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] cond_insert_ord_x_ys_1: runtime: O(n^1) [4 + 7*z1], size: O(n^1) [2 + z' + z'' + z1] insert_ord#2: runtime: O(n^1) [6 + 7*z''], size: O(n^1) [1 + z' + z''] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 7 + 7*z1 }-> 1 + z'' + s2 :|: s2 >= 0, s2 <= z' + z1 + 1, z' >= 0, z'' >= 0, z = 0, z1 >= 0 fold#3(z, z') -{ 8 }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z' - 1 >= 0, z - 1 >= 0 fold#3(z, z') -{ 7 }-> s1 :|: s1 >= 0, s1 <= x4 + 0 + 1, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 insert_ord#2(z, z', z'') -{ 6 + 7*x2 }-> s3 :|: s3 >= 0, s3 <= 0 + x4 + x2 + 2, x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 insert_ord#2(z, z', z'') -{ -1 + 7*z'' }-> s4 :|: s4 >= 0, s4 <= 1 + (z' - 1) + 0 + (z'' - 1) + 2, z' - 1 >= 0, z = 0, z'' - 1 >= 0 insert_ord#2(z, z', z'') -{ 8 + 7*x2 + x2'' }-> s5 :|: s5 >= 0, s5 <= 1 + (z' - 1) + (1 + x2'') + x2 + 2, s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 1 }-> fold#3(1 + 0, z) :|: z >= 0 Function symbols to be analyzed: {fold#3}, {main} Previous analysis results are: leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] cond_insert_ord_x_ys_1: runtime: O(n^1) [4 + 7*z1], size: O(n^1) [2 + z' + z'' + z1] insert_ord#2: runtime: O(n^1) [6 + 7*z''], size: O(n^1) [1 + z' + z''] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: fold#3 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 7 + 7*z1 }-> 1 + z'' + s2 :|: s2 >= 0, s2 <= z' + z1 + 1, z' >= 0, z'' >= 0, z = 0, z1 >= 0 fold#3(z, z') -{ 8 }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z' - 1 >= 0, z - 1 >= 0 fold#3(z, z') -{ 7 }-> s1 :|: s1 >= 0, s1 <= x4 + 0 + 1, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 insert_ord#2(z, z', z'') -{ 6 + 7*x2 }-> s3 :|: s3 >= 0, s3 <= 0 + x4 + x2 + 2, x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 insert_ord#2(z, z', z'') -{ -1 + 7*z'' }-> s4 :|: s4 >= 0, s4 <= 1 + (z' - 1) + 0 + (z'' - 1) + 2, z' - 1 >= 0, z = 0, z'' - 1 >= 0 insert_ord#2(z, z', z'') -{ 8 + 7*x2 + x2'' }-> s5 :|: s5 >= 0, s5 <= 1 + (z' - 1) + (1 + x2'') + x2 + 2, s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 1 }-> fold#3(1 + 0, z) :|: z >= 0 Function symbols to be analyzed: {fold#3}, {main} Previous analysis results are: leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] cond_insert_ord_x_ys_1: runtime: O(n^1) [4 + 7*z1], size: O(n^1) [2 + z' + z'' + z1] insert_ord#2: runtime: O(n^1) [6 + 7*z''], size: O(n^1) [1 + z' + z''] fold#3: runtime: ?, size: O(n^1) [z'] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: fold#3 after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 15 + 21*z' + 14*z'^2 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 7 + 7*z1 }-> 1 + z'' + s2 :|: s2 >= 0, s2 <= z' + z1 + 1, z' >= 0, z'' >= 0, z = 0, z1 >= 0 fold#3(z, z') -{ 8 }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z' - 1 >= 0, z - 1 >= 0 fold#3(z, z') -{ 7 }-> s1 :|: s1 >= 0, s1 <= x4 + 0 + 1, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 fold#3(z, z') -{ 2 }-> insert_ord#2(z - 1, x4, insert_ord#2(z - 1, x4', fold#3(1 + (z - 1), x2'))) :|: x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 insert_ord#2(z, z', z'') -{ 6 + 7*x2 }-> s3 :|: s3 >= 0, s3 <= 0 + x4 + x2 + 2, x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 insert_ord#2(z, z', z'') -{ -1 + 7*z'' }-> s4 :|: s4 >= 0, s4 <= 1 + (z' - 1) + 0 + (z'' - 1) + 2, z' - 1 >= 0, z = 0, z'' - 1 >= 0 insert_ord#2(z, z', z'') -{ 8 + 7*x2 + x2'' }-> s5 :|: s5 >= 0, s5 <= 1 + (z' - 1) + (1 + x2'') + x2 + 2, s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 1 }-> fold#3(1 + 0, z) :|: z >= 0 Function symbols to be analyzed: {main} Previous analysis results are: leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] cond_insert_ord_x_ys_1: runtime: O(n^1) [4 + 7*z1], size: O(n^1) [2 + z' + z'' + z1] insert_ord#2: runtime: O(n^1) [6 + 7*z''], size: O(n^1) [1 + z' + z''] fold#3: runtime: O(n^2) [15 + 21*z' + 14*z'^2], size: O(n^1) [z'] ---------------------------------------- (33) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 7 + 7*z1 }-> 1 + z'' + s2 :|: s2 >= 0, s2 <= z' + z1 + 1, z' >= 0, z'' >= 0, z = 0, z1 >= 0 fold#3(z, z') -{ 8 }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z' - 1 >= 0, z - 1 >= 0 fold#3(z, z') -{ 7 }-> s1 :|: s1 >= 0, s1 <= x4 + 0 + 1, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 fold#3(z, z') -{ 29 + 7*s6 + 7*s7 + 21*x2' + 14*x2'^2 }-> s8 :|: s6 >= 0, s6 <= x2', s7 >= 0, s7 <= x4' + s6 + 1, s8 >= 0, s8 <= x4 + s7 + 1, x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 insert_ord#2(z, z', z'') -{ 6 + 7*x2 }-> s3 :|: s3 >= 0, s3 <= 0 + x4 + x2 + 2, x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 insert_ord#2(z, z', z'') -{ -1 + 7*z'' }-> s4 :|: s4 >= 0, s4 <= 1 + (z' - 1) + 0 + (z'' - 1) + 2, z' - 1 >= 0, z = 0, z'' - 1 >= 0 insert_ord#2(z, z', z'') -{ 8 + 7*x2 + x2'' }-> s5 :|: s5 >= 0, s5 <= 1 + (z' - 1) + (1 + x2'') + x2 + 2, s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 16 + 21*z + 14*z^2 }-> s9 :|: s9 >= 0, s9 <= z, z >= 0 Function symbols to be analyzed: {main} Previous analysis results are: leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] cond_insert_ord_x_ys_1: runtime: O(n^1) [4 + 7*z1], size: O(n^1) [2 + z' + z'' + z1] insert_ord#2: runtime: O(n^1) [6 + 7*z''], size: O(n^1) [1 + z' + z''] fold#3: runtime: O(n^2) [15 + 21*z' + 14*z'^2], size: O(n^1) [z'] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: main after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 7 + 7*z1 }-> 1 + z'' + s2 :|: s2 >= 0, s2 <= z' + z1 + 1, z' >= 0, z'' >= 0, z = 0, z1 >= 0 fold#3(z, z') -{ 8 }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z' - 1 >= 0, z - 1 >= 0 fold#3(z, z') -{ 7 }-> s1 :|: s1 >= 0, s1 <= x4 + 0 + 1, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 fold#3(z, z') -{ 29 + 7*s6 + 7*s7 + 21*x2' + 14*x2'^2 }-> s8 :|: s6 >= 0, s6 <= x2', s7 >= 0, s7 <= x4' + s6 + 1, s8 >= 0, s8 <= x4 + s7 + 1, x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 insert_ord#2(z, z', z'') -{ 6 + 7*x2 }-> s3 :|: s3 >= 0, s3 <= 0 + x4 + x2 + 2, x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 insert_ord#2(z, z', z'') -{ -1 + 7*z'' }-> s4 :|: s4 >= 0, s4 <= 1 + (z' - 1) + 0 + (z'' - 1) + 2, z' - 1 >= 0, z = 0, z'' - 1 >= 0 insert_ord#2(z, z', z'') -{ 8 + 7*x2 + x2'' }-> s5 :|: s5 >= 0, s5 <= 1 + (z' - 1) + (1 + x2'') + x2 + 2, s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 16 + 21*z + 14*z^2 }-> s9 :|: s9 >= 0, s9 <= z, z >= 0 Function symbols to be analyzed: {main} Previous analysis results are: leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] cond_insert_ord_x_ys_1: runtime: O(n^1) [4 + 7*z1], size: O(n^1) [2 + z' + z'' + z1] insert_ord#2: runtime: O(n^1) [6 + 7*z''], size: O(n^1) [1 + z' + z''] fold#3: runtime: O(n^2) [15 + 21*z' + 14*z'^2], size: O(n^1) [z'] main: runtime: ?, size: O(n^1) [z] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: main after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 16 + 21*z + 14*z^2 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 1 }-> 1 + z' + (1 + z'' + z1) :|: z1 >= 0, z = 1, z' >= 0, z'' >= 0 cond_insert_ord_x_ys_1(z, z', z'', z1) -{ 7 + 7*z1 }-> 1 + z'' + s2 :|: s2 >= 0, s2 <= z' + z1 + 1, z' >= 0, z'' >= 0, z = 0, z1 >= 0 fold#3(z, z') -{ 8 }-> s'' :|: s'' >= 0, s'' <= z' - 1 + 0 + 1, z' - 1 >= 0, z - 1 >= 0 fold#3(z, z') -{ 7 }-> s1 :|: s1 >= 0, s1 <= x4 + 0 + 1, x4 >= 0, z' = 1 + x4 + x2, z - 1 >= 0, x2 >= 0 fold#3(z, z') -{ 29 + 7*s6 + 7*s7 + 21*x2' + 14*x2'^2 }-> s8 :|: s6 >= 0, s6 <= x2', s7 >= 0, s7 <= x4' + s6 + 1, s8 >= 0, s8 <= x4 + s7 + 1, x2' >= 0, x4 >= 0, z - 1 >= 0, z' = 1 + x4 + (1 + x4' + x2'), x4' >= 0 fold#3(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 fold#3(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 insert_ord#2(z, z', z'') -{ 6 + 7*x2 }-> s3 :|: s3 >= 0, s3 <= 0 + x4 + x2 + 2, x4 >= 0, z'' = 1 + x4 + x2, z = 0, x2 >= 0, z' = 0 insert_ord#2(z, z', z'') -{ -1 + 7*z'' }-> s4 :|: s4 >= 0, s4 <= 1 + (z' - 1) + 0 + (z'' - 1) + 2, z' - 1 >= 0, z = 0, z'' - 1 >= 0 insert_ord#2(z, z', z'') -{ 8 + 7*x2 + x2'' }-> s5 :|: s5 >= 0, s5 <= 1 + (z' - 1) + (1 + x2'') + x2 + 2, s >= 0, s <= 1, z' - 1 >= 0, z'' = 1 + (1 + x2'') + x2, z = 0, x2'' >= 0, x2 >= 0 insert_ord#2(z, z', z'') -{ 1 }-> 1 + z' + 0 :|: z'' = 0, z = 0, z' >= 0 leq#2(z, z') -{ 2 + z' }-> s' :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 leq#2(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 leq#2(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 main(z) -{ 16 + 21*z + 14*z^2 }-> s9 :|: s9 >= 0, s9 <= z, z >= 0 Function symbols to be analyzed: Previous analysis results are: leq#2: runtime: O(n^1) [2 + z'], size: O(1) [1] cond_insert_ord_x_ys_1: runtime: O(n^1) [4 + 7*z1], size: O(n^1) [2 + z' + z'' + z1] insert_ord#2: runtime: O(n^1) [6 + 7*z''], size: O(n^1) [1 + z' + z''] fold#3: runtime: O(n^2) [15 + 21*z' + 14*z'^2], size: O(n^1) [z'] main: runtime: O(n^2) [16 + 21*z + 14*z^2], size: O(n^1) [z] ---------------------------------------- (39) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (40) BOUNDS(1, n^2) ---------------------------------------- (41) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (42) Obligation: Complexity Dependency Tuples Problem Rules: fold#3(insert_ord(z0), Nil) -> Nil fold#3(insert_ord(z0), Cons(z1, z2)) -> insert_ord#2(z0, z1, fold#3(insert_ord(z0), z2)) cond_insert_ord_x_ys_1(True, z0, z1, z2) -> Cons(z0, Cons(z1, z2)) cond_insert_ord_x_ys_1(False, z0, z1, z2) -> Cons(z1, insert_ord#2(leq, z0, z2)) insert_ord#2(leq, z0, Nil) -> Cons(z0, Nil) insert_ord#2(leq, z0, Cons(z1, z2)) -> cond_insert_ord_x_ys_1(leq#2(z0, z1), z0, z1, z2) leq#2(0, z0) -> True leq#2(S(z0), 0) -> False leq#2(S(z0), S(z1)) -> leq#2(z0, z1) main(z0) -> fold#3(insert_ord(leq), z0) Tuples: FOLD#3(insert_ord(z0), Nil) -> c FOLD#3(insert_ord(z0), Cons(z1, z2)) -> c1(INSERT_ORD#2(z0, z1, fold#3(insert_ord(z0), z2)), FOLD#3(insert_ord(z0), z2)) COND_INSERT_ORD_X_YS_1(True, z0, z1, z2) -> c2 COND_INSERT_ORD_X_YS_1(False, z0, z1, z2) -> c3(INSERT_ORD#2(leq, z0, z2)) INSERT_ORD#2(leq, z0, Nil) -> c4 INSERT_ORD#2(leq, z0, Cons(z1, z2)) -> c5(COND_INSERT_ORD_X_YS_1(leq#2(z0, z1), z0, z1, z2), LEQ#2(z0, z1)) LEQ#2(0, z0) -> c6 LEQ#2(S(z0), 0) -> c7 LEQ#2(S(z0), S(z1)) -> c8(LEQ#2(z0, z1)) MAIN(z0) -> c9(FOLD#3(insert_ord(leq), z0)) S tuples: FOLD#3(insert_ord(z0), Nil) -> c FOLD#3(insert_ord(z0), Cons(z1, z2)) -> c1(INSERT_ORD#2(z0, z1, fold#3(insert_ord(z0), z2)), FOLD#3(insert_ord(z0), z2)) COND_INSERT_ORD_X_YS_1(True, z0, z1, z2) -> c2 COND_INSERT_ORD_X_YS_1(False, z0, z1, z2) -> c3(INSERT_ORD#2(leq, z0, z2)) INSERT_ORD#2(leq, z0, Nil) -> c4 INSERT_ORD#2(leq, z0, Cons(z1, z2)) -> c5(COND_INSERT_ORD_X_YS_1(leq#2(z0, z1), z0, z1, z2), LEQ#2(z0, z1)) LEQ#2(0, z0) -> c6 LEQ#2(S(z0), 0) -> c7 LEQ#2(S(z0), S(z1)) -> c8(LEQ#2(z0, z1)) MAIN(z0) -> c9(FOLD#3(insert_ord(leq), z0)) K tuples:none Defined Rule Symbols: fold#3_2, cond_insert_ord_x_ys_1_4, insert_ord#2_3, leq#2_2, main_1 Defined Pair Symbols: FOLD#3_2, COND_INSERT_ORD_X_YS_1_4, INSERT_ORD#2_3, LEQ#2_2, MAIN_1 Compound Symbols: c, c1_2, c2, c3_1, c4, c5_2, c6, c7, c8_1, c9_1 ---------------------------------------- (43) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (44) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: FOLD#3(insert_ord(z0), Nil) -> c FOLD#3(insert_ord(z0), Cons(z1, z2)) -> c1(INSERT_ORD#2(z0, z1, fold#3(insert_ord(z0), z2)), FOLD#3(insert_ord(z0), z2)) COND_INSERT_ORD_X_YS_1(True, z0, z1, z2) -> c2 COND_INSERT_ORD_X_YS_1(False, z0, z1, z2) -> c3(INSERT_ORD#2(leq, z0, z2)) INSERT_ORD#2(leq, z0, Nil) -> c4 INSERT_ORD#2(leq, z0, Cons(z1, z2)) -> c5(COND_INSERT_ORD_X_YS_1(leq#2(z0, z1), z0, z1, z2), LEQ#2(z0, z1)) LEQ#2(0, z0) -> c6 LEQ#2(S(z0), 0) -> c7 LEQ#2(S(z0), S(z1)) -> c8(LEQ#2(z0, z1)) MAIN(z0) -> c9(FOLD#3(insert_ord(leq), z0)) The (relative) TRS S consists of the following rules: fold#3(insert_ord(z0), Nil) -> Nil fold#3(insert_ord(z0), Cons(z1, z2)) -> insert_ord#2(z0, z1, fold#3(insert_ord(z0), z2)) cond_insert_ord_x_ys_1(True, z0, z1, z2) -> Cons(z0, Cons(z1, z2)) cond_insert_ord_x_ys_1(False, z0, z1, z2) -> Cons(z1, insert_ord#2(leq, z0, z2)) insert_ord#2(leq, z0, Nil) -> Cons(z0, Nil) insert_ord#2(leq, z0, Cons(z1, z2)) -> cond_insert_ord_x_ys_1(leq#2(z0, z1), z0, z1, z2) leq#2(0, z0) -> True leq#2(S(z0), 0) -> False leq#2(S(z0), S(z1)) -> leq#2(z0, z1) main(z0) -> fold#3(insert_ord(leq), z0) Rewrite Strategy: INNERMOST ---------------------------------------- (45) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (46) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: FOLD#3(insert_ord(z0), Nil) -> c FOLD#3(insert_ord(z0), Cons(z1, z2)) -> c1(INSERT_ORD#2(z0, z1, fold#3(insert_ord(z0), z2)), FOLD#3(insert_ord(z0), z2)) COND_INSERT_ORD_X_YS_1(True, z0, z1, z2) -> c2 COND_INSERT_ORD_X_YS_1(False, z0, z1, z2) -> c3(INSERT_ORD#2(leq, z0, z2)) INSERT_ORD#2(leq, z0, Nil) -> c4 INSERT_ORD#2(leq, z0, Cons(z1, z2)) -> c5(COND_INSERT_ORD_X_YS_1(leq#2(z0, z1), z0, z1, z2), LEQ#2(z0, z1)) LEQ#2(0', z0) -> c6 LEQ#2(S(z0), 0') -> c7 LEQ#2(S(z0), S(z1)) -> c8(LEQ#2(z0, z1)) MAIN(z0) -> c9(FOLD#3(insert_ord(leq), z0)) The (relative) TRS S consists of the following rules: fold#3(insert_ord(z0), Nil) -> Nil fold#3(insert_ord(z0), Cons(z1, z2)) -> insert_ord#2(z0, z1, fold#3(insert_ord(z0), z2)) cond_insert_ord_x_ys_1(True, z0, z1, z2) -> Cons(z0, Cons(z1, z2)) cond_insert_ord_x_ys_1(False, z0, z1, z2) -> Cons(z1, insert_ord#2(leq, z0, z2)) insert_ord#2(leq, z0, Nil) -> Cons(z0, Nil) insert_ord#2(leq, z0, Cons(z1, z2)) -> cond_insert_ord_x_ys_1(leq#2(z0, z1), z0, z1, z2) leq#2(0', z0) -> True leq#2(S(z0), 0') -> False leq#2(S(z0), S(z1)) -> leq#2(z0, z1) main(z0) -> fold#3(insert_ord(leq), z0) Rewrite Strategy: INNERMOST ---------------------------------------- (47) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (48) Obligation: Innermost TRS: Rules: FOLD#3(insert_ord(z0), Nil) -> c FOLD#3(insert_ord(z0), Cons(z1, z2)) -> c1(INSERT_ORD#2(z0, z1, fold#3(insert_ord(z0), z2)), FOLD#3(insert_ord(z0), z2)) COND_INSERT_ORD_X_YS_1(True, z0, z1, z2) -> c2 COND_INSERT_ORD_X_YS_1(False, z0, z1, z2) -> c3(INSERT_ORD#2(leq, z0, z2)) INSERT_ORD#2(leq, z0, Nil) -> c4 INSERT_ORD#2(leq, z0, Cons(z1, z2)) -> c5(COND_INSERT_ORD_X_YS_1(leq#2(z0, z1), z0, z1, z2), LEQ#2(z0, z1)) LEQ#2(0', z0) -> c6 LEQ#2(S(z0), 0') -> c7 LEQ#2(S(z0), S(z1)) -> c8(LEQ#2(z0, z1)) MAIN(z0) -> c9(FOLD#3(insert_ord(leq), z0)) fold#3(insert_ord(z0), Nil) -> Nil fold#3(insert_ord(z0), Cons(z1, z2)) -> insert_ord#2(z0, z1, fold#3(insert_ord(z0), z2)) cond_insert_ord_x_ys_1(True, z0, z1, z2) -> Cons(z0, Cons(z1, z2)) cond_insert_ord_x_ys_1(False, z0, z1, z2) -> Cons(z1, insert_ord#2(leq, z0, z2)) insert_ord#2(leq, z0, Nil) -> Cons(z0, Nil) insert_ord#2(leq, z0, Cons(z1, z2)) -> cond_insert_ord_x_ys_1(leq#2(z0, z1), z0, z1, z2) leq#2(0', z0) -> True leq#2(S(z0), 0') -> False leq#2(S(z0), S(z1)) -> leq#2(z0, z1) main(z0) -> fold#3(insert_ord(leq), z0) Types: FOLD#3 :: insert_ord -> Nil:Cons -> c:c1 insert_ord :: leq -> insert_ord Nil :: Nil:Cons c :: c:c1 Cons :: 0':S -> Nil:Cons -> Nil:Cons c1 :: c4:c5 -> c:c1 -> c:c1 INSERT_ORD#2 :: leq -> 0':S -> Nil:Cons -> c4:c5 fold#3 :: insert_ord -> Nil:Cons -> Nil:Cons COND_INSERT_ORD_X_YS_1 :: True:False -> 0':S -> 0':S -> Nil:Cons -> c2:c3 True :: True:False c2 :: c2:c3 False :: True:False c3 :: c4:c5 -> c2:c3 leq :: leq c4 :: c4:c5 c5 :: c2:c3 -> c6:c7:c8 -> c4:c5 leq#2 :: 0':S -> 0':S -> True:False LEQ#2 :: 0':S -> 0':S -> c6:c7:c8 0' :: 0':S c6 :: c6:c7:c8 S :: 0':S -> 0':S c7 :: c6:c7:c8 c8 :: c6:c7:c8 -> c6:c7:c8 MAIN :: Nil:Cons -> c9 c9 :: c:c1 -> c9 insert_ord#2 :: leq -> 0':S -> Nil:Cons -> Nil:Cons cond_insert_ord_x_ys_1 :: True:False -> 0':S -> 0':S -> Nil:Cons -> Nil:Cons main :: Nil:Cons -> Nil:Cons hole_c:c11_10 :: c:c1 hole_insert_ord2_10 :: insert_ord hole_Nil:Cons3_10 :: Nil:Cons hole_leq4_10 :: leq hole_0':S5_10 :: 0':S hole_c4:c56_10 :: c4:c5 hole_c2:c37_10 :: c2:c3 hole_True:False8_10 :: True:False hole_c6:c7:c89_10 :: c6:c7:c8 hole_c910_10 :: c9 gen_c:c111_10 :: Nat -> c:c1 gen_Nil:Cons12_10 :: Nat -> Nil:Cons gen_0':S13_10 :: Nat -> 0':S gen_c6:c7:c814_10 :: Nat -> c6:c7:c8 ---------------------------------------- (49) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: FOLD#3, INSERT_ORD#2, fold#3, leq#2, LEQ#2, insert_ord#2 They will be analysed ascendingly in the following order: INSERT_ORD#2 < FOLD#3 fold#3 < FOLD#3 leq#2 < INSERT_ORD#2 LEQ#2 < INSERT_ORD#2 insert_ord#2 < fold#3 leq#2 < insert_ord#2 ---------------------------------------- (50) Obligation: Innermost TRS: Rules: FOLD#3(insert_ord(z0), Nil) -> c FOLD#3(insert_ord(z0), Cons(z1, z2)) -> c1(INSERT_ORD#2(z0, z1, fold#3(insert_ord(z0), z2)), FOLD#3(insert_ord(z0), z2)) COND_INSERT_ORD_X_YS_1(True, z0, z1, z2) -> c2 COND_INSERT_ORD_X_YS_1(False, z0, z1, z2) -> c3(INSERT_ORD#2(leq, z0, z2)) INSERT_ORD#2(leq, z0, Nil) -> c4 INSERT_ORD#2(leq, z0, Cons(z1, z2)) -> c5(COND_INSERT_ORD_X_YS_1(leq#2(z0, z1), z0, z1, z2), LEQ#2(z0, z1)) LEQ#2(0', z0) -> c6 LEQ#2(S(z0), 0') -> c7 LEQ#2(S(z0), S(z1)) -> c8(LEQ#2(z0, z1)) MAIN(z0) -> c9(FOLD#3(insert_ord(leq), z0)) fold#3(insert_ord(z0), Nil) -> Nil fold#3(insert_ord(z0), Cons(z1, z2)) -> insert_ord#2(z0, z1, fold#3(insert_ord(z0), z2)) cond_insert_ord_x_ys_1(True, z0, z1, z2) -> Cons(z0, Cons(z1, z2)) cond_insert_ord_x_ys_1(False, z0, z1, z2) -> Cons(z1, insert_ord#2(leq, z0, z2)) insert_ord#2(leq, z0, Nil) -> Cons(z0, Nil) insert_ord#2(leq, z0, Cons(z1, z2)) -> cond_insert_ord_x_ys_1(leq#2(z0, z1), z0, z1, z2) leq#2(0', z0) -> True leq#2(S(z0), 0') -> False leq#2(S(z0), S(z1)) -> leq#2(z0, z1) main(z0) -> fold#3(insert_ord(leq), z0) Types: FOLD#3 :: insert_ord -> Nil:Cons -> c:c1 insert_ord :: leq -> insert_ord Nil :: Nil:Cons c :: c:c1 Cons :: 0':S -> Nil:Cons -> Nil:Cons c1 :: c4:c5 -> c:c1 -> c:c1 INSERT_ORD#2 :: leq -> 0':S -> Nil:Cons -> c4:c5 fold#3 :: insert_ord -> Nil:Cons -> Nil:Cons COND_INSERT_ORD_X_YS_1 :: True:False -> 0':S -> 0':S -> Nil:Cons -> c2:c3 True :: True:False c2 :: c2:c3 False :: True:False c3 :: c4:c5 -> c2:c3 leq :: leq c4 :: c4:c5 c5 :: c2:c3 -> c6:c7:c8 -> c4:c5 leq#2 :: 0':S -> 0':S -> True:False LEQ#2 :: 0':S -> 0':S -> c6:c7:c8 0' :: 0':S c6 :: c6:c7:c8 S :: 0':S -> 0':S c7 :: c6:c7:c8 c8 :: c6:c7:c8 -> c6:c7:c8 MAIN :: Nil:Cons -> c9 c9 :: c:c1 -> c9 insert_ord#2 :: leq -> 0':S -> Nil:Cons -> Nil:Cons cond_insert_ord_x_ys_1 :: True:False -> 0':S -> 0':S -> Nil:Cons -> Nil:Cons main :: Nil:Cons -> Nil:Cons hole_c:c11_10 :: c:c1 hole_insert_ord2_10 :: insert_ord hole_Nil:Cons3_10 :: Nil:Cons hole_leq4_10 :: leq hole_0':S5_10 :: 0':S hole_c4:c56_10 :: c4:c5 hole_c2:c37_10 :: c2:c3 hole_True:False8_10 :: True:False hole_c6:c7:c89_10 :: c6:c7:c8 hole_c910_10 :: c9 gen_c:c111_10 :: Nat -> c:c1 gen_Nil:Cons12_10 :: Nat -> Nil:Cons gen_0':S13_10 :: Nat -> 0':S gen_c6:c7:c814_10 :: Nat -> c6:c7:c8 Generator Equations: gen_c:c111_10(0) <=> c gen_c:c111_10(+(x, 1)) <=> c1(c4, gen_c:c111_10(x)) gen_Nil:Cons12_10(0) <=> Nil gen_Nil:Cons12_10(+(x, 1)) <=> Cons(0', gen_Nil:Cons12_10(x)) gen_0':S13_10(0) <=> 0' gen_0':S13_10(+(x, 1)) <=> S(gen_0':S13_10(x)) gen_c6:c7:c814_10(0) <=> c6 gen_c6:c7:c814_10(+(x, 1)) <=> c8(gen_c6:c7:c814_10(x)) The following defined symbols remain to be analysed: leq#2, FOLD#3, INSERT_ORD#2, fold#3, LEQ#2, insert_ord#2 They will be analysed ascendingly in the following order: INSERT_ORD#2 < FOLD#3 fold#3 < FOLD#3 leq#2 < INSERT_ORD#2 LEQ#2 < INSERT_ORD#2 insert_ord#2 < fold#3 leq#2 < insert_ord#2 ---------------------------------------- (51) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: leq#2(gen_0':S13_10(n16_10), gen_0':S13_10(n16_10)) -> True, rt in Omega(0) Induction Base: leq#2(gen_0':S13_10(0), gen_0':S13_10(0)) ->_R^Omega(0) True Induction Step: leq#2(gen_0':S13_10(+(n16_10, 1)), gen_0':S13_10(+(n16_10, 1))) ->_R^Omega(0) leq#2(gen_0':S13_10(n16_10), gen_0':S13_10(n16_10)) ->_IH True We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (52) Obligation: Innermost TRS: Rules: FOLD#3(insert_ord(z0), Nil) -> c FOLD#3(insert_ord(z0), Cons(z1, z2)) -> c1(INSERT_ORD#2(z0, z1, fold#3(insert_ord(z0), z2)), FOLD#3(insert_ord(z0), z2)) COND_INSERT_ORD_X_YS_1(True, z0, z1, z2) -> c2 COND_INSERT_ORD_X_YS_1(False, z0, z1, z2) -> c3(INSERT_ORD#2(leq, z0, z2)) INSERT_ORD#2(leq, z0, Nil) -> c4 INSERT_ORD#2(leq, z0, Cons(z1, z2)) -> c5(COND_INSERT_ORD_X_YS_1(leq#2(z0, z1), z0, z1, z2), LEQ#2(z0, z1)) LEQ#2(0', z0) -> c6 LEQ#2(S(z0), 0') -> c7 LEQ#2(S(z0), S(z1)) -> c8(LEQ#2(z0, z1)) MAIN(z0) -> c9(FOLD#3(insert_ord(leq), z0)) fold#3(insert_ord(z0), Nil) -> Nil fold#3(insert_ord(z0), Cons(z1, z2)) -> insert_ord#2(z0, z1, fold#3(insert_ord(z0), z2)) cond_insert_ord_x_ys_1(True, z0, z1, z2) -> Cons(z0, Cons(z1, z2)) cond_insert_ord_x_ys_1(False, z0, z1, z2) -> Cons(z1, insert_ord#2(leq, z0, z2)) insert_ord#2(leq, z0, Nil) -> Cons(z0, Nil) insert_ord#2(leq, z0, Cons(z1, z2)) -> cond_insert_ord_x_ys_1(leq#2(z0, z1), z0, z1, z2) leq#2(0', z0) -> True leq#2(S(z0), 0') -> False leq#2(S(z0), S(z1)) -> leq#2(z0, z1) main(z0) -> fold#3(insert_ord(leq), z0) Types: FOLD#3 :: insert_ord -> Nil:Cons -> c:c1 insert_ord :: leq -> insert_ord Nil :: Nil:Cons c :: c:c1 Cons :: 0':S -> Nil:Cons -> Nil:Cons c1 :: c4:c5 -> c:c1 -> c:c1 INSERT_ORD#2 :: leq -> 0':S -> Nil:Cons -> c4:c5 fold#3 :: insert_ord -> Nil:Cons -> Nil:Cons COND_INSERT_ORD_X_YS_1 :: True:False -> 0':S -> 0':S -> Nil:Cons -> c2:c3 True :: True:False c2 :: c2:c3 False :: True:False c3 :: c4:c5 -> c2:c3 leq :: leq c4 :: c4:c5 c5 :: c2:c3 -> c6:c7:c8 -> c4:c5 leq#2 :: 0':S -> 0':S -> True:False LEQ#2 :: 0':S -> 0':S -> c6:c7:c8 0' :: 0':S c6 :: c6:c7:c8 S :: 0':S -> 0':S c7 :: c6:c7:c8 c8 :: c6:c7:c8 -> c6:c7:c8 MAIN :: Nil:Cons -> c9 c9 :: c:c1 -> c9 insert_ord#2 :: leq -> 0':S -> Nil:Cons -> Nil:Cons cond_insert_ord_x_ys_1 :: True:False -> 0':S -> 0':S -> Nil:Cons -> Nil:Cons main :: Nil:Cons -> Nil:Cons hole_c:c11_10 :: c:c1 hole_insert_ord2_10 :: insert_ord hole_Nil:Cons3_10 :: Nil:Cons hole_leq4_10 :: leq hole_0':S5_10 :: 0':S hole_c4:c56_10 :: c4:c5 hole_c2:c37_10 :: c2:c3 hole_True:False8_10 :: True:False hole_c6:c7:c89_10 :: c6:c7:c8 hole_c910_10 :: c9 gen_c:c111_10 :: Nat -> c:c1 gen_Nil:Cons12_10 :: Nat -> Nil:Cons gen_0':S13_10 :: Nat -> 0':S gen_c6:c7:c814_10 :: Nat -> c6:c7:c8 Lemmas: leq#2(gen_0':S13_10(n16_10), gen_0':S13_10(n16_10)) -> True, rt in Omega(0) Generator Equations: gen_c:c111_10(0) <=> c gen_c:c111_10(+(x, 1)) <=> c1(c4, gen_c:c111_10(x)) gen_Nil:Cons12_10(0) <=> Nil gen_Nil:Cons12_10(+(x, 1)) <=> Cons(0', gen_Nil:Cons12_10(x)) gen_0':S13_10(0) <=> 0' gen_0':S13_10(+(x, 1)) <=> S(gen_0':S13_10(x)) gen_c6:c7:c814_10(0) <=> c6 gen_c6:c7:c814_10(+(x, 1)) <=> c8(gen_c6:c7:c814_10(x)) The following defined symbols remain to be analysed: LEQ#2, FOLD#3, INSERT_ORD#2, fold#3, insert_ord#2 They will be analysed ascendingly in the following order: INSERT_ORD#2 < FOLD#3 fold#3 < FOLD#3 LEQ#2 < INSERT_ORD#2 insert_ord#2 < fold#3 ---------------------------------------- (53) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: LEQ#2(gen_0':S13_10(n335_10), gen_0':S13_10(n335_10)) -> gen_c6:c7:c814_10(n335_10), rt in Omega(1 + n335_10) Induction Base: LEQ#2(gen_0':S13_10(0), gen_0':S13_10(0)) ->_R^Omega(1) c6 Induction Step: LEQ#2(gen_0':S13_10(+(n335_10, 1)), gen_0':S13_10(+(n335_10, 1))) ->_R^Omega(1) c8(LEQ#2(gen_0':S13_10(n335_10), gen_0':S13_10(n335_10))) ->_IH c8(gen_c6:c7:c814_10(c336_10)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (54) Complex Obligation (BEST) ---------------------------------------- (55) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: FOLD#3(insert_ord(z0), Nil) -> c FOLD#3(insert_ord(z0), Cons(z1, z2)) -> c1(INSERT_ORD#2(z0, z1, fold#3(insert_ord(z0), z2)), FOLD#3(insert_ord(z0), z2)) COND_INSERT_ORD_X_YS_1(True, z0, z1, z2) -> c2 COND_INSERT_ORD_X_YS_1(False, z0, z1, z2) -> c3(INSERT_ORD#2(leq, z0, z2)) INSERT_ORD#2(leq, z0, Nil) -> c4 INSERT_ORD#2(leq, z0, Cons(z1, z2)) -> c5(COND_INSERT_ORD_X_YS_1(leq#2(z0, z1), z0, z1, z2), LEQ#2(z0, z1)) LEQ#2(0', z0) -> c6 LEQ#2(S(z0), 0') -> c7 LEQ#2(S(z0), S(z1)) -> c8(LEQ#2(z0, z1)) MAIN(z0) -> c9(FOLD#3(insert_ord(leq), z0)) fold#3(insert_ord(z0), Nil) -> Nil fold#3(insert_ord(z0), Cons(z1, z2)) -> insert_ord#2(z0, z1, fold#3(insert_ord(z0), z2)) cond_insert_ord_x_ys_1(True, z0, z1, z2) -> Cons(z0, Cons(z1, z2)) cond_insert_ord_x_ys_1(False, z0, z1, z2) -> Cons(z1, insert_ord#2(leq, z0, z2)) insert_ord#2(leq, z0, Nil) -> Cons(z0, Nil) insert_ord#2(leq, z0, Cons(z1, z2)) -> cond_insert_ord_x_ys_1(leq#2(z0, z1), z0, z1, z2) leq#2(0', z0) -> True leq#2(S(z0), 0') -> False leq#2(S(z0), S(z1)) -> leq#2(z0, z1) main(z0) -> fold#3(insert_ord(leq), z0) Types: FOLD#3 :: insert_ord -> Nil:Cons -> c:c1 insert_ord :: leq -> insert_ord Nil :: Nil:Cons c :: c:c1 Cons :: 0':S -> Nil:Cons -> Nil:Cons c1 :: c4:c5 -> c:c1 -> c:c1 INSERT_ORD#2 :: leq -> 0':S -> Nil:Cons -> c4:c5 fold#3 :: insert_ord -> Nil:Cons -> Nil:Cons COND_INSERT_ORD_X_YS_1 :: True:False -> 0':S -> 0':S -> Nil:Cons -> c2:c3 True :: True:False c2 :: c2:c3 False :: True:False c3 :: c4:c5 -> c2:c3 leq :: leq c4 :: c4:c5 c5 :: c2:c3 -> c6:c7:c8 -> c4:c5 leq#2 :: 0':S -> 0':S -> True:False LEQ#2 :: 0':S -> 0':S -> c6:c7:c8 0' :: 0':S c6 :: c6:c7:c8 S :: 0':S -> 0':S c7 :: c6:c7:c8 c8 :: c6:c7:c8 -> c6:c7:c8 MAIN :: Nil:Cons -> c9 c9 :: c:c1 -> c9 insert_ord#2 :: leq -> 0':S -> Nil:Cons -> Nil:Cons cond_insert_ord_x_ys_1 :: True:False -> 0':S -> 0':S -> Nil:Cons -> Nil:Cons main :: Nil:Cons -> Nil:Cons hole_c:c11_10 :: c:c1 hole_insert_ord2_10 :: insert_ord hole_Nil:Cons3_10 :: Nil:Cons hole_leq4_10 :: leq hole_0':S5_10 :: 0':S hole_c4:c56_10 :: c4:c5 hole_c2:c37_10 :: c2:c3 hole_True:False8_10 :: True:False hole_c6:c7:c89_10 :: c6:c7:c8 hole_c910_10 :: c9 gen_c:c111_10 :: Nat -> c:c1 gen_Nil:Cons12_10 :: Nat -> Nil:Cons gen_0':S13_10 :: Nat -> 0':S gen_c6:c7:c814_10 :: Nat -> c6:c7:c8 Lemmas: leq#2(gen_0':S13_10(n16_10), gen_0':S13_10(n16_10)) -> True, rt in Omega(0) Generator Equations: gen_c:c111_10(0) <=> c gen_c:c111_10(+(x, 1)) <=> c1(c4, gen_c:c111_10(x)) gen_Nil:Cons12_10(0) <=> Nil gen_Nil:Cons12_10(+(x, 1)) <=> Cons(0', gen_Nil:Cons12_10(x)) gen_0':S13_10(0) <=> 0' gen_0':S13_10(+(x, 1)) <=> S(gen_0':S13_10(x)) gen_c6:c7:c814_10(0) <=> c6 gen_c6:c7:c814_10(+(x, 1)) <=> c8(gen_c6:c7:c814_10(x)) The following defined symbols remain to be analysed: LEQ#2, FOLD#3, INSERT_ORD#2, fold#3, insert_ord#2 They will be analysed ascendingly in the following order: INSERT_ORD#2 < FOLD#3 fold#3 < FOLD#3 LEQ#2 < INSERT_ORD#2 insert_ord#2 < fold#3 ---------------------------------------- (56) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (57) BOUNDS(n^1, INF) ---------------------------------------- (58) Obligation: Innermost TRS: Rules: FOLD#3(insert_ord(z0), Nil) -> c FOLD#3(insert_ord(z0), Cons(z1, z2)) -> c1(INSERT_ORD#2(z0, z1, fold#3(insert_ord(z0), z2)), FOLD#3(insert_ord(z0), z2)) COND_INSERT_ORD_X_YS_1(True, z0, z1, z2) -> c2 COND_INSERT_ORD_X_YS_1(False, z0, z1, z2) -> c3(INSERT_ORD#2(leq, z0, z2)) INSERT_ORD#2(leq, z0, Nil) -> c4 INSERT_ORD#2(leq, z0, Cons(z1, z2)) -> c5(COND_INSERT_ORD_X_YS_1(leq#2(z0, z1), z0, z1, z2), LEQ#2(z0, z1)) LEQ#2(0', z0) -> c6 LEQ#2(S(z0), 0') -> c7 LEQ#2(S(z0), S(z1)) -> c8(LEQ#2(z0, z1)) MAIN(z0) -> c9(FOLD#3(insert_ord(leq), z0)) fold#3(insert_ord(z0), Nil) -> Nil fold#3(insert_ord(z0), Cons(z1, z2)) -> insert_ord#2(z0, z1, fold#3(insert_ord(z0), z2)) cond_insert_ord_x_ys_1(True, z0, z1, z2) -> Cons(z0, Cons(z1, z2)) cond_insert_ord_x_ys_1(False, z0, z1, z2) -> Cons(z1, insert_ord#2(leq, z0, z2)) insert_ord#2(leq, z0, Nil) -> Cons(z0, Nil) insert_ord#2(leq, z0, Cons(z1, z2)) -> cond_insert_ord_x_ys_1(leq#2(z0, z1), z0, z1, z2) leq#2(0', z0) -> True leq#2(S(z0), 0') -> False leq#2(S(z0), S(z1)) -> leq#2(z0, z1) main(z0) -> fold#3(insert_ord(leq), z0) Types: FOLD#3 :: insert_ord -> Nil:Cons -> c:c1 insert_ord :: leq -> insert_ord Nil :: Nil:Cons c :: c:c1 Cons :: 0':S -> Nil:Cons -> Nil:Cons c1 :: c4:c5 -> c:c1 -> c:c1 INSERT_ORD#2 :: leq -> 0':S -> Nil:Cons -> c4:c5 fold#3 :: insert_ord -> Nil:Cons -> Nil:Cons COND_INSERT_ORD_X_YS_1 :: True:False -> 0':S -> 0':S -> Nil:Cons -> c2:c3 True :: True:False c2 :: c2:c3 False :: True:False c3 :: c4:c5 -> c2:c3 leq :: leq c4 :: c4:c5 c5 :: c2:c3 -> c6:c7:c8 -> c4:c5 leq#2 :: 0':S -> 0':S -> True:False LEQ#2 :: 0':S -> 0':S -> c6:c7:c8 0' :: 0':S c6 :: c6:c7:c8 S :: 0':S -> 0':S c7 :: c6:c7:c8 c8 :: c6:c7:c8 -> c6:c7:c8 MAIN :: Nil:Cons -> c9 c9 :: c:c1 -> c9 insert_ord#2 :: leq -> 0':S -> Nil:Cons -> Nil:Cons cond_insert_ord_x_ys_1 :: True:False -> 0':S -> 0':S -> Nil:Cons -> Nil:Cons main :: Nil:Cons -> Nil:Cons hole_c:c11_10 :: c:c1 hole_insert_ord2_10 :: insert_ord hole_Nil:Cons3_10 :: Nil:Cons hole_leq4_10 :: leq hole_0':S5_10 :: 0':S hole_c4:c56_10 :: c4:c5 hole_c2:c37_10 :: c2:c3 hole_True:False8_10 :: True:False hole_c6:c7:c89_10 :: c6:c7:c8 hole_c910_10 :: c9 gen_c:c111_10 :: Nat -> c:c1 gen_Nil:Cons12_10 :: Nat -> Nil:Cons gen_0':S13_10 :: Nat -> 0':S gen_c6:c7:c814_10 :: Nat -> c6:c7:c8 Lemmas: leq#2(gen_0':S13_10(n16_10), gen_0':S13_10(n16_10)) -> True, rt in Omega(0) LEQ#2(gen_0':S13_10(n335_10), gen_0':S13_10(n335_10)) -> gen_c6:c7:c814_10(n335_10), rt in Omega(1 + n335_10) Generator Equations: gen_c:c111_10(0) <=> c gen_c:c111_10(+(x, 1)) <=> c1(c4, gen_c:c111_10(x)) gen_Nil:Cons12_10(0) <=> Nil gen_Nil:Cons12_10(+(x, 1)) <=> Cons(0', gen_Nil:Cons12_10(x)) gen_0':S13_10(0) <=> 0' gen_0':S13_10(+(x, 1)) <=> S(gen_0':S13_10(x)) gen_c6:c7:c814_10(0) <=> c6 gen_c6:c7:c814_10(+(x, 1)) <=> c8(gen_c6:c7:c814_10(x)) The following defined symbols remain to be analysed: INSERT_ORD#2, FOLD#3, fold#3, insert_ord#2 They will be analysed ascendingly in the following order: INSERT_ORD#2 < FOLD#3 fold#3 < FOLD#3 insert_ord#2 < fold#3 ---------------------------------------- (59) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: fold#3(insert_ord(leq), gen_Nil:Cons12_10(n1768_10)) -> *15_10, rt in Omega(0) Induction Base: fold#3(insert_ord(leq), gen_Nil:Cons12_10(0)) Induction Step: fold#3(insert_ord(leq), gen_Nil:Cons12_10(+(n1768_10, 1))) ->_R^Omega(0) insert_ord#2(leq, 0', fold#3(insert_ord(leq), gen_Nil:Cons12_10(n1768_10))) ->_IH insert_ord#2(leq, 0', *15_10) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (60) Obligation: Innermost TRS: Rules: FOLD#3(insert_ord(z0), Nil) -> c FOLD#3(insert_ord(z0), Cons(z1, z2)) -> c1(INSERT_ORD#2(z0, z1, fold#3(insert_ord(z0), z2)), FOLD#3(insert_ord(z0), z2)) COND_INSERT_ORD_X_YS_1(True, z0, z1, z2) -> c2 COND_INSERT_ORD_X_YS_1(False, z0, z1, z2) -> c3(INSERT_ORD#2(leq, z0, z2)) INSERT_ORD#2(leq, z0, Nil) -> c4 INSERT_ORD#2(leq, z0, Cons(z1, z2)) -> c5(COND_INSERT_ORD_X_YS_1(leq#2(z0, z1), z0, z1, z2), LEQ#2(z0, z1)) LEQ#2(0', z0) -> c6 LEQ#2(S(z0), 0') -> c7 LEQ#2(S(z0), S(z1)) -> c8(LEQ#2(z0, z1)) MAIN(z0) -> c9(FOLD#3(insert_ord(leq), z0)) fold#3(insert_ord(z0), Nil) -> Nil fold#3(insert_ord(z0), Cons(z1, z2)) -> insert_ord#2(z0, z1, fold#3(insert_ord(z0), z2)) cond_insert_ord_x_ys_1(True, z0, z1, z2) -> Cons(z0, Cons(z1, z2)) cond_insert_ord_x_ys_1(False, z0, z1, z2) -> Cons(z1, insert_ord#2(leq, z0, z2)) insert_ord#2(leq, z0, Nil) -> Cons(z0, Nil) insert_ord#2(leq, z0, Cons(z1, z2)) -> cond_insert_ord_x_ys_1(leq#2(z0, z1), z0, z1, z2) leq#2(0', z0) -> True leq#2(S(z0), 0') -> False leq#2(S(z0), S(z1)) -> leq#2(z0, z1) main(z0) -> fold#3(insert_ord(leq), z0) Types: FOLD#3 :: insert_ord -> Nil:Cons -> c:c1 insert_ord :: leq -> insert_ord Nil :: Nil:Cons c :: c:c1 Cons :: 0':S -> Nil:Cons -> Nil:Cons c1 :: c4:c5 -> c:c1 -> c:c1 INSERT_ORD#2 :: leq -> 0':S -> Nil:Cons -> c4:c5 fold#3 :: insert_ord -> Nil:Cons -> Nil:Cons COND_INSERT_ORD_X_YS_1 :: True:False -> 0':S -> 0':S -> Nil:Cons -> c2:c3 True :: True:False c2 :: c2:c3 False :: True:False c3 :: c4:c5 -> c2:c3 leq :: leq c4 :: c4:c5 c5 :: c2:c3 -> c6:c7:c8 -> c4:c5 leq#2 :: 0':S -> 0':S -> True:False LEQ#2 :: 0':S -> 0':S -> c6:c7:c8 0' :: 0':S c6 :: c6:c7:c8 S :: 0':S -> 0':S c7 :: c6:c7:c8 c8 :: c6:c7:c8 -> c6:c7:c8 MAIN :: Nil:Cons -> c9 c9 :: c:c1 -> c9 insert_ord#2 :: leq -> 0':S -> Nil:Cons -> Nil:Cons cond_insert_ord_x_ys_1 :: True:False -> 0':S -> 0':S -> Nil:Cons -> Nil:Cons main :: Nil:Cons -> Nil:Cons hole_c:c11_10 :: c:c1 hole_insert_ord2_10 :: insert_ord hole_Nil:Cons3_10 :: Nil:Cons hole_leq4_10 :: leq hole_0':S5_10 :: 0':S hole_c4:c56_10 :: c4:c5 hole_c2:c37_10 :: c2:c3 hole_True:False8_10 :: True:False hole_c6:c7:c89_10 :: c6:c7:c8 hole_c910_10 :: c9 gen_c:c111_10 :: Nat -> c:c1 gen_Nil:Cons12_10 :: Nat -> Nil:Cons gen_0':S13_10 :: Nat -> 0':S gen_c6:c7:c814_10 :: Nat -> c6:c7:c8 Lemmas: leq#2(gen_0':S13_10(n16_10), gen_0':S13_10(n16_10)) -> True, rt in Omega(0) LEQ#2(gen_0':S13_10(n335_10), gen_0':S13_10(n335_10)) -> gen_c6:c7:c814_10(n335_10), rt in Omega(1 + n335_10) fold#3(insert_ord(leq), gen_Nil:Cons12_10(n1768_10)) -> *15_10, rt in Omega(0) Generator Equations: gen_c:c111_10(0) <=> c gen_c:c111_10(+(x, 1)) <=> c1(c4, gen_c:c111_10(x)) gen_Nil:Cons12_10(0) <=> Nil gen_Nil:Cons12_10(+(x, 1)) <=> Cons(0', gen_Nil:Cons12_10(x)) gen_0':S13_10(0) <=> 0' gen_0':S13_10(+(x, 1)) <=> S(gen_0':S13_10(x)) gen_c6:c7:c814_10(0) <=> c6 gen_c6:c7:c814_10(+(x, 1)) <=> c8(gen_c6:c7:c814_10(x)) The following defined symbols remain to be analysed: FOLD#3