WORST_CASE(Omega(n^1),O(n^1)) proof of input_L3ZHqmhByL.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsTAProof [FINISHED, 97 ms] (4) BOUNDS(1, n^1) (5) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (12) typed CpxTrs (13) OrderProof [LOWER BOUND(ID), 0 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 518 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 3926 ms] (18) BEST (19) proven lower bound (20) LowerBoundPropagationProof [FINISHED, 0 ms] (21) BOUNDS(n^1, INF) (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 0 ms] (24) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: walk#1(Leaf(x2)) -> cons_x(x2) walk#1(Node(x5, x3)) -> comp_f_g(walk#1(x5), walk#1(x3)) comp_f_g#1(comp_f_g(x4, x5), comp_f_g(x2, x3), x1) -> comp_f_g#1(x4, x5, comp_f_g#1(x2, x3, x1)) comp_f_g#1(comp_f_g(x7, x9), cons_x(x2), x4) -> comp_f_g#1(x7, x9, Cons(x2, x4)) comp_f_g#1(cons_x(x2), comp_f_g(x5, x7), x3) -> Cons(x2, comp_f_g#1(x5, x7, x3)) comp_f_g#1(cons_x(x5), cons_x(x2), x4) -> Cons(x5, Cons(x2, x4)) main(Leaf(x4)) -> Cons(x4, Nil) main(Node(x9, x5)) -> comp_f_g#1(walk#1(x9), walk#1(x5), Nil) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: walk#1(Leaf(x2)) -> cons_x(x2) walk#1(Node(x5, x3)) -> comp_f_g(walk#1(x5), walk#1(x3)) comp_f_g#1(comp_f_g(x4, x5), comp_f_g(x2, x3), x1) -> comp_f_g#1(x4, x5, comp_f_g#1(x2, x3, x1)) comp_f_g#1(comp_f_g(x7, x9), cons_x(x2), x4) -> comp_f_g#1(x7, x9, Cons(x2, x4)) comp_f_g#1(cons_x(x2), comp_f_g(x5, x7), x3) -> Cons(x2, comp_f_g#1(x5, x7, x3)) comp_f_g#1(cons_x(x5), cons_x(x2), x4) -> Cons(x5, Cons(x2, x4)) main(Leaf(x4)) -> Cons(x4, Nil) main(Node(x9, x5)) -> comp_f_g#1(walk#1(x9), walk#1(x5), Nil) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (3) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3] transitions: Leaf0(0) -> 0 cons_x0(0) -> 0 Node0(0, 0) -> 0 comp_f_g0(0, 0) -> 0 Cons0(0, 0) -> 0 Nil0() -> 0 walk#10(0) -> 1 comp_f_g#10(0, 0, 0) -> 2 main0(0) -> 3 cons_x1(0) -> 1 walk#11(0) -> 4 walk#11(0) -> 5 comp_f_g1(4, 5) -> 1 comp_f_g#11(0, 0, 0) -> 6 comp_f_g#11(0, 0, 6) -> 2 Cons1(0, 0) -> 7 comp_f_g#11(0, 0, 7) -> 2 comp_f_g#11(0, 0, 0) -> 8 Cons1(0, 8) -> 2 Cons1(0, 0) -> 9 Cons1(0, 9) -> 2 Nil1() -> 10 Cons1(0, 10) -> 3 walk#11(0) -> 11 walk#11(0) -> 12 Nil1() -> 13 comp_f_g#11(11, 12, 13) -> 3 cons_x1(0) -> 4 cons_x1(0) -> 5 cons_x1(0) -> 11 cons_x1(0) -> 12 comp_f_g1(4, 5) -> 4 comp_f_g1(4, 5) -> 5 comp_f_g1(4, 5) -> 11 comp_f_g1(4, 5) -> 12 comp_f_g#11(0, 0, 6) -> 6 comp_f_g#11(0, 0, 7) -> 6 comp_f_g#11(0, 0, 6) -> 8 Cons1(0, 6) -> 7 Cons1(0, 7) -> 7 comp_f_g#11(0, 0, 7) -> 8 Cons1(0, 8) -> 6 Cons1(0, 8) -> 8 Cons1(0, 6) -> 9 Cons1(0, 7) -> 9 Cons1(0, 9) -> 6 Cons1(0, 9) -> 8 comp_f_g#12(4, 5, 13) -> 14 comp_f_g#12(4, 5, 14) -> 3 Cons2(0, 13) -> 15 comp_f_g#12(4, 5, 15) -> 3 comp_f_g#12(4, 5, 13) -> 16 Cons2(0, 16) -> 3 Cons2(0, 13) -> 17 Cons2(0, 17) -> 3 comp_f_g#12(4, 5, 14) -> 14 comp_f_g#12(4, 5, 15) -> 14 comp_f_g#12(4, 5, 14) -> 16 Cons2(0, 14) -> 15 Cons2(0, 15) -> 15 comp_f_g#12(4, 5, 15) -> 16 Cons2(0, 16) -> 14 Cons2(0, 16) -> 16 Cons2(0, 14) -> 17 Cons2(0, 15) -> 17 Cons2(0, 17) -> 14 Cons2(0, 17) -> 16 ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: walk#1(Leaf(z0)) -> cons_x(z0) walk#1(Node(z0, z1)) -> comp_f_g(walk#1(z0), walk#1(z1)) comp_f_g#1(comp_f_g(z0, z1), comp_f_g(z2, z3), z4) -> comp_f_g#1(z0, z1, comp_f_g#1(z2, z3, z4)) comp_f_g#1(comp_f_g(z0, z1), cons_x(z2), z3) -> comp_f_g#1(z0, z1, Cons(z2, z3)) comp_f_g#1(cons_x(z0), comp_f_g(z1, z2), z3) -> Cons(z0, comp_f_g#1(z1, z2, z3)) comp_f_g#1(cons_x(z0), cons_x(z1), z2) -> Cons(z0, Cons(z1, z2)) main(Leaf(z0)) -> Cons(z0, Nil) main(Node(z0, z1)) -> comp_f_g#1(walk#1(z0), walk#1(z1), Nil) Tuples: WALK#1(Leaf(z0)) -> c WALK#1(Node(z0, z1)) -> c1(WALK#1(z0)) WALK#1(Node(z0, z1)) -> c2(WALK#1(z1)) COMP_F_G#1(comp_f_g(z0, z1), comp_f_g(z2, z3), z4) -> c3(COMP_F_G#1(z0, z1, comp_f_g#1(z2, z3, z4)), COMP_F_G#1(z2, z3, z4)) COMP_F_G#1(comp_f_g(z0, z1), cons_x(z2), z3) -> c4(COMP_F_G#1(z0, z1, Cons(z2, z3))) COMP_F_G#1(cons_x(z0), comp_f_g(z1, z2), z3) -> c5(COMP_F_G#1(z1, z2, z3)) COMP_F_G#1(cons_x(z0), cons_x(z1), z2) -> c6 MAIN(Leaf(z0)) -> c7 MAIN(Node(z0, z1)) -> c8(COMP_F_G#1(walk#1(z0), walk#1(z1), Nil), WALK#1(z0)) MAIN(Node(z0, z1)) -> c9(COMP_F_G#1(walk#1(z0), walk#1(z1), Nil), WALK#1(z1)) S tuples: WALK#1(Leaf(z0)) -> c WALK#1(Node(z0, z1)) -> c1(WALK#1(z0)) WALK#1(Node(z0, z1)) -> c2(WALK#1(z1)) COMP_F_G#1(comp_f_g(z0, z1), comp_f_g(z2, z3), z4) -> c3(COMP_F_G#1(z0, z1, comp_f_g#1(z2, z3, z4)), COMP_F_G#1(z2, z3, z4)) COMP_F_G#1(comp_f_g(z0, z1), cons_x(z2), z3) -> c4(COMP_F_G#1(z0, z1, Cons(z2, z3))) COMP_F_G#1(cons_x(z0), comp_f_g(z1, z2), z3) -> c5(COMP_F_G#1(z1, z2, z3)) COMP_F_G#1(cons_x(z0), cons_x(z1), z2) -> c6 MAIN(Leaf(z0)) -> c7 MAIN(Node(z0, z1)) -> c8(COMP_F_G#1(walk#1(z0), walk#1(z1), Nil), WALK#1(z0)) MAIN(Node(z0, z1)) -> c9(COMP_F_G#1(walk#1(z0), walk#1(z1), Nil), WALK#1(z1)) K tuples:none Defined Rule Symbols: walk#1_1, comp_f_g#1_3, main_1 Defined Pair Symbols: WALK#1_1, COMP_F_G#1_3, MAIN_1 Compound Symbols: c, c1_1, c2_1, c3_2, c4_1, c5_1, c6, c7, c8_2, c9_2 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: WALK#1(Leaf(z0)) -> c WALK#1(Node(z0, z1)) -> c1(WALK#1(z0)) WALK#1(Node(z0, z1)) -> c2(WALK#1(z1)) COMP_F_G#1(comp_f_g(z0, z1), comp_f_g(z2, z3), z4) -> c3(COMP_F_G#1(z0, z1, comp_f_g#1(z2, z3, z4)), COMP_F_G#1(z2, z3, z4)) COMP_F_G#1(comp_f_g(z0, z1), cons_x(z2), z3) -> c4(COMP_F_G#1(z0, z1, Cons(z2, z3))) COMP_F_G#1(cons_x(z0), comp_f_g(z1, z2), z3) -> c5(COMP_F_G#1(z1, z2, z3)) COMP_F_G#1(cons_x(z0), cons_x(z1), z2) -> c6 MAIN(Leaf(z0)) -> c7 MAIN(Node(z0, z1)) -> c8(COMP_F_G#1(walk#1(z0), walk#1(z1), Nil), WALK#1(z0)) MAIN(Node(z0, z1)) -> c9(COMP_F_G#1(walk#1(z0), walk#1(z1), Nil), WALK#1(z1)) The (relative) TRS S consists of the following rules: walk#1(Leaf(z0)) -> cons_x(z0) walk#1(Node(z0, z1)) -> comp_f_g(walk#1(z0), walk#1(z1)) comp_f_g#1(comp_f_g(z0, z1), comp_f_g(z2, z3), z4) -> comp_f_g#1(z0, z1, comp_f_g#1(z2, z3, z4)) comp_f_g#1(comp_f_g(z0, z1), cons_x(z2), z3) -> comp_f_g#1(z0, z1, Cons(z2, z3)) comp_f_g#1(cons_x(z0), comp_f_g(z1, z2), z3) -> Cons(z0, comp_f_g#1(z1, z2, z3)) comp_f_g#1(cons_x(z0), cons_x(z1), z2) -> Cons(z0, Cons(z1, z2)) main(Leaf(z0)) -> Cons(z0, Nil) main(Node(z0, z1)) -> comp_f_g#1(walk#1(z0), walk#1(z1), Nil) Rewrite Strategy: INNERMOST ---------------------------------------- (9) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: WALK#1(Leaf(z0)) -> c WALK#1(Node(z0, z1)) -> c1(WALK#1(z0)) WALK#1(Node(z0, z1)) -> c2(WALK#1(z1)) COMP_F_G#1(comp_f_g(z0, z1), comp_f_g(z2, z3), z4) -> c3(COMP_F_G#1(z0, z1, comp_f_g#1(z2, z3, z4)), COMP_F_G#1(z2, z3, z4)) COMP_F_G#1(comp_f_g(z0, z1), cons_x(z2), z3) -> c4(COMP_F_G#1(z0, z1, Cons(z2, z3))) COMP_F_G#1(cons_x(z0), comp_f_g(z1, z2), z3) -> c5(COMP_F_G#1(z1, z2, z3)) COMP_F_G#1(cons_x(z0), cons_x(z1), z2) -> c6 MAIN(Leaf(z0)) -> c7 MAIN(Node(z0, z1)) -> c8(COMP_F_G#1(walk#1(z0), walk#1(z1), Nil), WALK#1(z0)) MAIN(Node(z0, z1)) -> c9(COMP_F_G#1(walk#1(z0), walk#1(z1), Nil), WALK#1(z1)) The (relative) TRS S consists of the following rules: walk#1(Leaf(z0)) -> cons_x(z0) walk#1(Node(z0, z1)) -> comp_f_g(walk#1(z0), walk#1(z1)) comp_f_g#1(comp_f_g(z0, z1), comp_f_g(z2, z3), z4) -> comp_f_g#1(z0, z1, comp_f_g#1(z2, z3, z4)) comp_f_g#1(comp_f_g(z0, z1), cons_x(z2), z3) -> comp_f_g#1(z0, z1, Cons(z2, z3)) comp_f_g#1(cons_x(z0), comp_f_g(z1, z2), z3) -> Cons(z0, comp_f_g#1(z1, z2, z3)) comp_f_g#1(cons_x(z0), cons_x(z1), z2) -> Cons(z0, Cons(z1, z2)) main(Leaf(z0)) -> Cons(z0, Nil) main(Node(z0, z1)) -> comp_f_g#1(walk#1(z0), walk#1(z1), Nil) Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (12) Obligation: Innermost TRS: Rules: WALK#1(Leaf(z0)) -> c WALK#1(Node(z0, z1)) -> c1(WALK#1(z0)) WALK#1(Node(z0, z1)) -> c2(WALK#1(z1)) COMP_F_G#1(comp_f_g(z0, z1), comp_f_g(z2, z3), z4) -> c3(COMP_F_G#1(z0, z1, comp_f_g#1(z2, z3, z4)), COMP_F_G#1(z2, z3, z4)) COMP_F_G#1(comp_f_g(z0, z1), cons_x(z2), z3) -> c4(COMP_F_G#1(z0, z1, Cons(z2, z3))) COMP_F_G#1(cons_x(z0), comp_f_g(z1, z2), z3) -> c5(COMP_F_G#1(z1, z2, z3)) COMP_F_G#1(cons_x(z0), cons_x(z1), z2) -> c6 MAIN(Leaf(z0)) -> c7 MAIN(Node(z0, z1)) -> c8(COMP_F_G#1(walk#1(z0), walk#1(z1), Nil), WALK#1(z0)) MAIN(Node(z0, z1)) -> c9(COMP_F_G#1(walk#1(z0), walk#1(z1), Nil), WALK#1(z1)) walk#1(Leaf(z0)) -> cons_x(z0) walk#1(Node(z0, z1)) -> comp_f_g(walk#1(z0), walk#1(z1)) comp_f_g#1(comp_f_g(z0, z1), comp_f_g(z2, z3), z4) -> comp_f_g#1(z0, z1, comp_f_g#1(z2, z3, z4)) comp_f_g#1(comp_f_g(z0, z1), cons_x(z2), z3) -> comp_f_g#1(z0, z1, Cons(z2, z3)) comp_f_g#1(cons_x(z0), comp_f_g(z1, z2), z3) -> Cons(z0, comp_f_g#1(z1, z2, z3)) comp_f_g#1(cons_x(z0), cons_x(z1), z2) -> Cons(z0, Cons(z1, z2)) main(Leaf(z0)) -> Cons(z0, Nil) main(Node(z0, z1)) -> comp_f_g#1(walk#1(z0), walk#1(z1), Nil) Types: WALK#1 :: Leaf:Node -> c:c1:c2 Leaf :: a -> Leaf:Node c :: c:c1:c2 Node :: Leaf:Node -> Leaf:Node -> Leaf:Node c1 :: c:c1:c2 -> c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 COMP_F_G#1 :: comp_f_g:cons_x -> comp_f_g:cons_x -> Cons:Nil -> c3:c4:c5:c6 comp_f_g :: comp_f_g:cons_x -> comp_f_g:cons_x -> comp_f_g:cons_x c3 :: c3:c4:c5:c6 -> c3:c4:c5:c6 -> c3:c4:c5:c6 comp_f_g#1 :: comp_f_g:cons_x -> comp_f_g:cons_x -> Cons:Nil -> Cons:Nil cons_x :: a -> comp_f_g:cons_x c4 :: c3:c4:c5:c6 -> c3:c4:c5:c6 Cons :: a -> Cons:Nil -> Cons:Nil c5 :: c3:c4:c5:c6 -> c3:c4:c5:c6 c6 :: c3:c4:c5:c6 MAIN :: Leaf:Node -> c7:c8:c9 c7 :: c7:c8:c9 c8 :: c3:c4:c5:c6 -> c:c1:c2 -> c7:c8:c9 walk#1 :: Leaf:Node -> comp_f_g:cons_x Nil :: Cons:Nil c9 :: c3:c4:c5:c6 -> c:c1:c2 -> c7:c8:c9 main :: Leaf:Node -> Cons:Nil hole_c:c1:c21_10 :: c:c1:c2 hole_Leaf:Node2_10 :: Leaf:Node hole_a3_10 :: a hole_c3:c4:c5:c64_10 :: c3:c4:c5:c6 hole_comp_f_g:cons_x5_10 :: comp_f_g:cons_x hole_Cons:Nil6_10 :: Cons:Nil hole_c7:c8:c97_10 :: c7:c8:c9 gen_c:c1:c28_10 :: Nat -> c:c1:c2 gen_Leaf:Node9_10 :: Nat -> Leaf:Node gen_c3:c4:c5:c610_10 :: Nat -> c3:c4:c5:c6 gen_comp_f_g:cons_x11_10 :: Nat -> comp_f_g:cons_x gen_Cons:Nil12_10 :: Nat -> Cons:Nil ---------------------------------------- (13) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: WALK#1, COMP_F_G#1, comp_f_g#1, walk#1 They will be analysed ascendingly in the following order: comp_f_g#1 < COMP_F_G#1 ---------------------------------------- (14) Obligation: Innermost TRS: Rules: WALK#1(Leaf(z0)) -> c WALK#1(Node(z0, z1)) -> c1(WALK#1(z0)) WALK#1(Node(z0, z1)) -> c2(WALK#1(z1)) COMP_F_G#1(comp_f_g(z0, z1), comp_f_g(z2, z3), z4) -> c3(COMP_F_G#1(z0, z1, comp_f_g#1(z2, z3, z4)), COMP_F_G#1(z2, z3, z4)) COMP_F_G#1(comp_f_g(z0, z1), cons_x(z2), z3) -> c4(COMP_F_G#1(z0, z1, Cons(z2, z3))) COMP_F_G#1(cons_x(z0), comp_f_g(z1, z2), z3) -> c5(COMP_F_G#1(z1, z2, z3)) COMP_F_G#1(cons_x(z0), cons_x(z1), z2) -> c6 MAIN(Leaf(z0)) -> c7 MAIN(Node(z0, z1)) -> c8(COMP_F_G#1(walk#1(z0), walk#1(z1), Nil), WALK#1(z0)) MAIN(Node(z0, z1)) -> c9(COMP_F_G#1(walk#1(z0), walk#1(z1), Nil), WALK#1(z1)) walk#1(Leaf(z0)) -> cons_x(z0) walk#1(Node(z0, z1)) -> comp_f_g(walk#1(z0), walk#1(z1)) comp_f_g#1(comp_f_g(z0, z1), comp_f_g(z2, z3), z4) -> comp_f_g#1(z0, z1, comp_f_g#1(z2, z3, z4)) comp_f_g#1(comp_f_g(z0, z1), cons_x(z2), z3) -> comp_f_g#1(z0, z1, Cons(z2, z3)) comp_f_g#1(cons_x(z0), comp_f_g(z1, z2), z3) -> Cons(z0, comp_f_g#1(z1, z2, z3)) comp_f_g#1(cons_x(z0), cons_x(z1), z2) -> Cons(z0, Cons(z1, z2)) main(Leaf(z0)) -> Cons(z0, Nil) main(Node(z0, z1)) -> comp_f_g#1(walk#1(z0), walk#1(z1), Nil) Types: WALK#1 :: Leaf:Node -> c:c1:c2 Leaf :: a -> Leaf:Node c :: c:c1:c2 Node :: Leaf:Node -> Leaf:Node -> Leaf:Node c1 :: c:c1:c2 -> c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 COMP_F_G#1 :: comp_f_g:cons_x -> comp_f_g:cons_x -> Cons:Nil -> c3:c4:c5:c6 comp_f_g :: comp_f_g:cons_x -> comp_f_g:cons_x -> comp_f_g:cons_x c3 :: c3:c4:c5:c6 -> c3:c4:c5:c6 -> c3:c4:c5:c6 comp_f_g#1 :: comp_f_g:cons_x -> comp_f_g:cons_x -> Cons:Nil -> Cons:Nil cons_x :: a -> comp_f_g:cons_x c4 :: c3:c4:c5:c6 -> c3:c4:c5:c6 Cons :: a -> Cons:Nil -> Cons:Nil c5 :: c3:c4:c5:c6 -> c3:c4:c5:c6 c6 :: c3:c4:c5:c6 MAIN :: Leaf:Node -> c7:c8:c9 c7 :: c7:c8:c9 c8 :: c3:c4:c5:c6 -> c:c1:c2 -> c7:c8:c9 walk#1 :: Leaf:Node -> comp_f_g:cons_x Nil :: Cons:Nil c9 :: c3:c4:c5:c6 -> c:c1:c2 -> c7:c8:c9 main :: Leaf:Node -> Cons:Nil hole_c:c1:c21_10 :: c:c1:c2 hole_Leaf:Node2_10 :: Leaf:Node hole_a3_10 :: a hole_c3:c4:c5:c64_10 :: c3:c4:c5:c6 hole_comp_f_g:cons_x5_10 :: comp_f_g:cons_x hole_Cons:Nil6_10 :: Cons:Nil hole_c7:c8:c97_10 :: c7:c8:c9 gen_c:c1:c28_10 :: Nat -> c:c1:c2 gen_Leaf:Node9_10 :: Nat -> Leaf:Node gen_c3:c4:c5:c610_10 :: Nat -> c3:c4:c5:c6 gen_comp_f_g:cons_x11_10 :: Nat -> comp_f_g:cons_x gen_Cons:Nil12_10 :: Nat -> Cons:Nil Generator Equations: gen_c:c1:c28_10(0) <=> c gen_c:c1:c28_10(+(x, 1)) <=> c1(gen_c:c1:c28_10(x)) gen_Leaf:Node9_10(0) <=> Leaf(hole_a3_10) gen_Leaf:Node9_10(+(x, 1)) <=> Node(Leaf(hole_a3_10), gen_Leaf:Node9_10(x)) gen_c3:c4:c5:c610_10(0) <=> c6 gen_c3:c4:c5:c610_10(+(x, 1)) <=> c3(c6, gen_c3:c4:c5:c610_10(x)) gen_comp_f_g:cons_x11_10(0) <=> cons_x(hole_a3_10) gen_comp_f_g:cons_x11_10(+(x, 1)) <=> comp_f_g(cons_x(hole_a3_10), gen_comp_f_g:cons_x11_10(x)) gen_Cons:Nil12_10(0) <=> Nil gen_Cons:Nil12_10(+(x, 1)) <=> Cons(hole_a3_10, gen_Cons:Nil12_10(x)) The following defined symbols remain to be analysed: WALK#1, COMP_F_G#1, comp_f_g#1, walk#1 They will be analysed ascendingly in the following order: comp_f_g#1 < COMP_F_G#1 ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: comp_f_g#1(gen_comp_f_g:cons_x11_10(0), gen_comp_f_g:cons_x11_10(n65_10), gen_Cons:Nil12_10(c)) -> gen_Cons:Nil12_10(+(+(2, n65_10), c)), rt in Omega(0) Induction Base: comp_f_g#1(gen_comp_f_g:cons_x11_10(0), gen_comp_f_g:cons_x11_10(0), gen_Cons:Nil12_10(c)) ->_R^Omega(0) Cons(hole_a3_10, Cons(hole_a3_10, gen_Cons:Nil12_10(c))) Induction Step: comp_f_g#1(gen_comp_f_g:cons_x11_10(0), gen_comp_f_g:cons_x11_10(+(n65_10, 1)), gen_Cons:Nil12_10(c)) ->_R^Omega(0) Cons(hole_a3_10, comp_f_g#1(cons_x(hole_a3_10), gen_comp_f_g:cons_x11_10(n65_10), gen_Cons:Nil12_10(c))) ->_IH Cons(hole_a3_10, gen_Cons:Nil12_10(+(+(2, c), c66_10))) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (16) Obligation: Innermost TRS: Rules: WALK#1(Leaf(z0)) -> c WALK#1(Node(z0, z1)) -> c1(WALK#1(z0)) WALK#1(Node(z0, z1)) -> c2(WALK#1(z1)) COMP_F_G#1(comp_f_g(z0, z1), comp_f_g(z2, z3), z4) -> c3(COMP_F_G#1(z0, z1, comp_f_g#1(z2, z3, z4)), COMP_F_G#1(z2, z3, z4)) COMP_F_G#1(comp_f_g(z0, z1), cons_x(z2), z3) -> c4(COMP_F_G#1(z0, z1, Cons(z2, z3))) COMP_F_G#1(cons_x(z0), comp_f_g(z1, z2), z3) -> c5(COMP_F_G#1(z1, z2, z3)) COMP_F_G#1(cons_x(z0), cons_x(z1), z2) -> c6 MAIN(Leaf(z0)) -> c7 MAIN(Node(z0, z1)) -> c8(COMP_F_G#1(walk#1(z0), walk#1(z1), Nil), WALK#1(z0)) MAIN(Node(z0, z1)) -> c9(COMP_F_G#1(walk#1(z0), walk#1(z1), Nil), WALK#1(z1)) walk#1(Leaf(z0)) -> cons_x(z0) walk#1(Node(z0, z1)) -> comp_f_g(walk#1(z0), walk#1(z1)) comp_f_g#1(comp_f_g(z0, z1), comp_f_g(z2, z3), z4) -> comp_f_g#1(z0, z1, comp_f_g#1(z2, z3, z4)) comp_f_g#1(comp_f_g(z0, z1), cons_x(z2), z3) -> comp_f_g#1(z0, z1, Cons(z2, z3)) comp_f_g#1(cons_x(z0), comp_f_g(z1, z2), z3) -> Cons(z0, comp_f_g#1(z1, z2, z3)) comp_f_g#1(cons_x(z0), cons_x(z1), z2) -> Cons(z0, Cons(z1, z2)) main(Leaf(z0)) -> Cons(z0, Nil) main(Node(z0, z1)) -> comp_f_g#1(walk#1(z0), walk#1(z1), Nil) Types: WALK#1 :: Leaf:Node -> c:c1:c2 Leaf :: a -> Leaf:Node c :: c:c1:c2 Node :: Leaf:Node -> Leaf:Node -> Leaf:Node c1 :: c:c1:c2 -> c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 COMP_F_G#1 :: comp_f_g:cons_x -> comp_f_g:cons_x -> Cons:Nil -> c3:c4:c5:c6 comp_f_g :: comp_f_g:cons_x -> comp_f_g:cons_x -> comp_f_g:cons_x c3 :: c3:c4:c5:c6 -> c3:c4:c5:c6 -> c3:c4:c5:c6 comp_f_g#1 :: comp_f_g:cons_x -> comp_f_g:cons_x -> Cons:Nil -> Cons:Nil cons_x :: a -> comp_f_g:cons_x c4 :: c3:c4:c5:c6 -> c3:c4:c5:c6 Cons :: a -> Cons:Nil -> Cons:Nil c5 :: c3:c4:c5:c6 -> c3:c4:c5:c6 c6 :: c3:c4:c5:c6 MAIN :: Leaf:Node -> c7:c8:c9 c7 :: c7:c8:c9 c8 :: c3:c4:c5:c6 -> c:c1:c2 -> c7:c8:c9 walk#1 :: Leaf:Node -> comp_f_g:cons_x Nil :: Cons:Nil c9 :: c3:c4:c5:c6 -> c:c1:c2 -> c7:c8:c9 main :: Leaf:Node -> Cons:Nil hole_c:c1:c21_10 :: c:c1:c2 hole_Leaf:Node2_10 :: Leaf:Node hole_a3_10 :: a hole_c3:c4:c5:c64_10 :: c3:c4:c5:c6 hole_comp_f_g:cons_x5_10 :: comp_f_g:cons_x hole_Cons:Nil6_10 :: Cons:Nil hole_c7:c8:c97_10 :: c7:c8:c9 gen_c:c1:c28_10 :: Nat -> c:c1:c2 gen_Leaf:Node9_10 :: Nat -> Leaf:Node gen_c3:c4:c5:c610_10 :: Nat -> c3:c4:c5:c6 gen_comp_f_g:cons_x11_10 :: Nat -> comp_f_g:cons_x gen_Cons:Nil12_10 :: Nat -> Cons:Nil Lemmas: comp_f_g#1(gen_comp_f_g:cons_x11_10(0), gen_comp_f_g:cons_x11_10(n65_10), gen_Cons:Nil12_10(c)) -> gen_Cons:Nil12_10(+(+(2, n65_10), c)), rt in Omega(0) Generator Equations: gen_c:c1:c28_10(0) <=> c gen_c:c1:c28_10(+(x, 1)) <=> c1(gen_c:c1:c28_10(x)) gen_Leaf:Node9_10(0) <=> Leaf(hole_a3_10) gen_Leaf:Node9_10(+(x, 1)) <=> Node(Leaf(hole_a3_10), gen_Leaf:Node9_10(x)) gen_c3:c4:c5:c610_10(0) <=> c6 gen_c3:c4:c5:c610_10(+(x, 1)) <=> c3(c6, gen_c3:c4:c5:c610_10(x)) gen_comp_f_g:cons_x11_10(0) <=> cons_x(hole_a3_10) gen_comp_f_g:cons_x11_10(+(x, 1)) <=> comp_f_g(cons_x(hole_a3_10), gen_comp_f_g:cons_x11_10(x)) gen_Cons:Nil12_10(0) <=> Nil gen_Cons:Nil12_10(+(x, 1)) <=> Cons(hole_a3_10, gen_Cons:Nil12_10(x)) The following defined symbols remain to be analysed: COMP_F_G#1, walk#1 ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: COMP_F_G#1(gen_comp_f_g:cons_x11_10(0), gen_comp_f_g:cons_x11_10(+(1, n7341_10)), gen_Cons:Nil12_10(c)) -> *13_10, rt in Omega(n7341_10) Induction Base: COMP_F_G#1(gen_comp_f_g:cons_x11_10(0), gen_comp_f_g:cons_x11_10(+(1, 0)), gen_Cons:Nil12_10(c)) Induction Step: COMP_F_G#1(gen_comp_f_g:cons_x11_10(0), gen_comp_f_g:cons_x11_10(+(1, +(n7341_10, 1))), gen_Cons:Nil12_10(c)) ->_R^Omega(1) c5(COMP_F_G#1(cons_x(hole_a3_10), gen_comp_f_g:cons_x11_10(+(1, n7341_10)), gen_Cons:Nil12_10(c))) ->_IH c5(*13_10) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Complex Obligation (BEST) ---------------------------------------- (19) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: WALK#1(Leaf(z0)) -> c WALK#1(Node(z0, z1)) -> c1(WALK#1(z0)) WALK#1(Node(z0, z1)) -> c2(WALK#1(z1)) COMP_F_G#1(comp_f_g(z0, z1), comp_f_g(z2, z3), z4) -> c3(COMP_F_G#1(z0, z1, comp_f_g#1(z2, z3, z4)), COMP_F_G#1(z2, z3, z4)) COMP_F_G#1(comp_f_g(z0, z1), cons_x(z2), z3) -> c4(COMP_F_G#1(z0, z1, Cons(z2, z3))) COMP_F_G#1(cons_x(z0), comp_f_g(z1, z2), z3) -> c5(COMP_F_G#1(z1, z2, z3)) COMP_F_G#1(cons_x(z0), cons_x(z1), z2) -> c6 MAIN(Leaf(z0)) -> c7 MAIN(Node(z0, z1)) -> c8(COMP_F_G#1(walk#1(z0), walk#1(z1), Nil), WALK#1(z0)) MAIN(Node(z0, z1)) -> c9(COMP_F_G#1(walk#1(z0), walk#1(z1), Nil), WALK#1(z1)) walk#1(Leaf(z0)) -> cons_x(z0) walk#1(Node(z0, z1)) -> comp_f_g(walk#1(z0), walk#1(z1)) comp_f_g#1(comp_f_g(z0, z1), comp_f_g(z2, z3), z4) -> comp_f_g#1(z0, z1, comp_f_g#1(z2, z3, z4)) comp_f_g#1(comp_f_g(z0, z1), cons_x(z2), z3) -> comp_f_g#1(z0, z1, Cons(z2, z3)) comp_f_g#1(cons_x(z0), comp_f_g(z1, z2), z3) -> Cons(z0, comp_f_g#1(z1, z2, z3)) comp_f_g#1(cons_x(z0), cons_x(z1), z2) -> Cons(z0, Cons(z1, z2)) main(Leaf(z0)) -> Cons(z0, Nil) main(Node(z0, z1)) -> comp_f_g#1(walk#1(z0), walk#1(z1), Nil) Types: WALK#1 :: Leaf:Node -> c:c1:c2 Leaf :: a -> Leaf:Node c :: c:c1:c2 Node :: Leaf:Node -> Leaf:Node -> Leaf:Node c1 :: c:c1:c2 -> c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 COMP_F_G#1 :: comp_f_g:cons_x -> comp_f_g:cons_x -> Cons:Nil -> c3:c4:c5:c6 comp_f_g :: comp_f_g:cons_x -> comp_f_g:cons_x -> comp_f_g:cons_x c3 :: c3:c4:c5:c6 -> c3:c4:c5:c6 -> c3:c4:c5:c6 comp_f_g#1 :: comp_f_g:cons_x -> comp_f_g:cons_x -> Cons:Nil -> Cons:Nil cons_x :: a -> comp_f_g:cons_x c4 :: c3:c4:c5:c6 -> c3:c4:c5:c6 Cons :: a -> Cons:Nil -> Cons:Nil c5 :: c3:c4:c5:c6 -> c3:c4:c5:c6 c6 :: c3:c4:c5:c6 MAIN :: Leaf:Node -> c7:c8:c9 c7 :: c7:c8:c9 c8 :: c3:c4:c5:c6 -> c:c1:c2 -> c7:c8:c9 walk#1 :: Leaf:Node -> comp_f_g:cons_x Nil :: Cons:Nil c9 :: c3:c4:c5:c6 -> c:c1:c2 -> c7:c8:c9 main :: Leaf:Node -> Cons:Nil hole_c:c1:c21_10 :: c:c1:c2 hole_Leaf:Node2_10 :: Leaf:Node hole_a3_10 :: a hole_c3:c4:c5:c64_10 :: c3:c4:c5:c6 hole_comp_f_g:cons_x5_10 :: comp_f_g:cons_x hole_Cons:Nil6_10 :: Cons:Nil hole_c7:c8:c97_10 :: c7:c8:c9 gen_c:c1:c28_10 :: Nat -> c:c1:c2 gen_Leaf:Node9_10 :: Nat -> Leaf:Node gen_c3:c4:c5:c610_10 :: Nat -> c3:c4:c5:c6 gen_comp_f_g:cons_x11_10 :: Nat -> comp_f_g:cons_x gen_Cons:Nil12_10 :: Nat -> Cons:Nil Lemmas: comp_f_g#1(gen_comp_f_g:cons_x11_10(0), gen_comp_f_g:cons_x11_10(n65_10), gen_Cons:Nil12_10(c)) -> gen_Cons:Nil12_10(+(+(2, n65_10), c)), rt in Omega(0) Generator Equations: gen_c:c1:c28_10(0) <=> c gen_c:c1:c28_10(+(x, 1)) <=> c1(gen_c:c1:c28_10(x)) gen_Leaf:Node9_10(0) <=> Leaf(hole_a3_10) gen_Leaf:Node9_10(+(x, 1)) <=> Node(Leaf(hole_a3_10), gen_Leaf:Node9_10(x)) gen_c3:c4:c5:c610_10(0) <=> c6 gen_c3:c4:c5:c610_10(+(x, 1)) <=> c3(c6, gen_c3:c4:c5:c610_10(x)) gen_comp_f_g:cons_x11_10(0) <=> cons_x(hole_a3_10) gen_comp_f_g:cons_x11_10(+(x, 1)) <=> comp_f_g(cons_x(hole_a3_10), gen_comp_f_g:cons_x11_10(x)) gen_Cons:Nil12_10(0) <=> Nil gen_Cons:Nil12_10(+(x, 1)) <=> Cons(hole_a3_10, gen_Cons:Nil12_10(x)) The following defined symbols remain to be analysed: COMP_F_G#1, walk#1 ---------------------------------------- (20) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (21) BOUNDS(n^1, INF) ---------------------------------------- (22) Obligation: Innermost TRS: Rules: WALK#1(Leaf(z0)) -> c WALK#1(Node(z0, z1)) -> c1(WALK#1(z0)) WALK#1(Node(z0, z1)) -> c2(WALK#1(z1)) COMP_F_G#1(comp_f_g(z0, z1), comp_f_g(z2, z3), z4) -> c3(COMP_F_G#1(z0, z1, comp_f_g#1(z2, z3, z4)), COMP_F_G#1(z2, z3, z4)) COMP_F_G#1(comp_f_g(z0, z1), cons_x(z2), z3) -> c4(COMP_F_G#1(z0, z1, Cons(z2, z3))) COMP_F_G#1(cons_x(z0), comp_f_g(z1, z2), z3) -> c5(COMP_F_G#1(z1, z2, z3)) COMP_F_G#1(cons_x(z0), cons_x(z1), z2) -> c6 MAIN(Leaf(z0)) -> c7 MAIN(Node(z0, z1)) -> c8(COMP_F_G#1(walk#1(z0), walk#1(z1), Nil), WALK#1(z0)) MAIN(Node(z0, z1)) -> c9(COMP_F_G#1(walk#1(z0), walk#1(z1), Nil), WALK#1(z1)) walk#1(Leaf(z0)) -> cons_x(z0) walk#1(Node(z0, z1)) -> comp_f_g(walk#1(z0), walk#1(z1)) comp_f_g#1(comp_f_g(z0, z1), comp_f_g(z2, z3), z4) -> comp_f_g#1(z0, z1, comp_f_g#1(z2, z3, z4)) comp_f_g#1(comp_f_g(z0, z1), cons_x(z2), z3) -> comp_f_g#1(z0, z1, Cons(z2, z3)) comp_f_g#1(cons_x(z0), comp_f_g(z1, z2), z3) -> Cons(z0, comp_f_g#1(z1, z2, z3)) comp_f_g#1(cons_x(z0), cons_x(z1), z2) -> Cons(z0, Cons(z1, z2)) main(Leaf(z0)) -> Cons(z0, Nil) main(Node(z0, z1)) -> comp_f_g#1(walk#1(z0), walk#1(z1), Nil) Types: WALK#1 :: Leaf:Node -> c:c1:c2 Leaf :: a -> Leaf:Node c :: c:c1:c2 Node :: Leaf:Node -> Leaf:Node -> Leaf:Node c1 :: c:c1:c2 -> c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 COMP_F_G#1 :: comp_f_g:cons_x -> comp_f_g:cons_x -> Cons:Nil -> c3:c4:c5:c6 comp_f_g :: comp_f_g:cons_x -> comp_f_g:cons_x -> comp_f_g:cons_x c3 :: c3:c4:c5:c6 -> c3:c4:c5:c6 -> c3:c4:c5:c6 comp_f_g#1 :: comp_f_g:cons_x -> comp_f_g:cons_x -> Cons:Nil -> Cons:Nil cons_x :: a -> comp_f_g:cons_x c4 :: c3:c4:c5:c6 -> c3:c4:c5:c6 Cons :: a -> Cons:Nil -> Cons:Nil c5 :: c3:c4:c5:c6 -> c3:c4:c5:c6 c6 :: c3:c4:c5:c6 MAIN :: Leaf:Node -> c7:c8:c9 c7 :: c7:c8:c9 c8 :: c3:c4:c5:c6 -> c:c1:c2 -> c7:c8:c9 walk#1 :: Leaf:Node -> comp_f_g:cons_x Nil :: Cons:Nil c9 :: c3:c4:c5:c6 -> c:c1:c2 -> c7:c8:c9 main :: Leaf:Node -> Cons:Nil hole_c:c1:c21_10 :: c:c1:c2 hole_Leaf:Node2_10 :: Leaf:Node hole_a3_10 :: a hole_c3:c4:c5:c64_10 :: c3:c4:c5:c6 hole_comp_f_g:cons_x5_10 :: comp_f_g:cons_x hole_Cons:Nil6_10 :: Cons:Nil hole_c7:c8:c97_10 :: c7:c8:c9 gen_c:c1:c28_10 :: Nat -> c:c1:c2 gen_Leaf:Node9_10 :: Nat -> Leaf:Node gen_c3:c4:c5:c610_10 :: Nat -> c3:c4:c5:c6 gen_comp_f_g:cons_x11_10 :: Nat -> comp_f_g:cons_x gen_Cons:Nil12_10 :: Nat -> Cons:Nil Lemmas: comp_f_g#1(gen_comp_f_g:cons_x11_10(0), gen_comp_f_g:cons_x11_10(n65_10), gen_Cons:Nil12_10(c)) -> gen_Cons:Nil12_10(+(+(2, n65_10), c)), rt in Omega(0) COMP_F_G#1(gen_comp_f_g:cons_x11_10(0), gen_comp_f_g:cons_x11_10(+(1, n7341_10)), gen_Cons:Nil12_10(c)) -> *13_10, rt in Omega(n7341_10) Generator Equations: gen_c:c1:c28_10(0) <=> c gen_c:c1:c28_10(+(x, 1)) <=> c1(gen_c:c1:c28_10(x)) gen_Leaf:Node9_10(0) <=> Leaf(hole_a3_10) gen_Leaf:Node9_10(+(x, 1)) <=> Node(Leaf(hole_a3_10), gen_Leaf:Node9_10(x)) gen_c3:c4:c5:c610_10(0) <=> c6 gen_c3:c4:c5:c610_10(+(x, 1)) <=> c3(c6, gen_c3:c4:c5:c610_10(x)) gen_comp_f_g:cons_x11_10(0) <=> cons_x(hole_a3_10) gen_comp_f_g:cons_x11_10(+(x, 1)) <=> comp_f_g(cons_x(hole_a3_10), gen_comp_f_g:cons_x11_10(x)) gen_Cons:Nil12_10(0) <=> Nil gen_Cons:Nil12_10(+(x, 1)) <=> Cons(hole_a3_10, gen_Cons:Nil12_10(x)) The following defined symbols remain to be analysed: walk#1 ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: walk#1(gen_Leaf:Node9_10(n44526_10)) -> gen_comp_f_g:cons_x11_10(n44526_10), rt in Omega(0) Induction Base: walk#1(gen_Leaf:Node9_10(0)) ->_R^Omega(0) cons_x(hole_a3_10) Induction Step: walk#1(gen_Leaf:Node9_10(+(n44526_10, 1))) ->_R^Omega(0) comp_f_g(walk#1(Leaf(hole_a3_10)), walk#1(gen_Leaf:Node9_10(n44526_10))) ->_R^Omega(0) comp_f_g(cons_x(hole_a3_10), walk#1(gen_Leaf:Node9_10(n44526_10))) ->_IH comp_f_g(cons_x(hole_a3_10), gen_comp_f_g:cons_x11_10(c44527_10)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (24) BOUNDS(1, INF)