WORST_CASE(Omega(n^1),O(n^1)) proof of input_WXHn60Q62n.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsTAProof [FINISHED, 46 ms] (4) BOUNDS(1, n^1) (5) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (12) typed CpxTrs (13) OrderProof [LOWER BOUND(ID), 0 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 265 ms] (16) BEST (17) proven lower bound (18) LowerBoundPropagationProof [FINISHED, 0 ms] (19) BOUNDS(n^1, INF) (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 58 ms] (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 45 ms] (24) typed CpxTrs (25) RewriteLemmaProof [LOWER BOUND(ID), 26 ms] (26) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: walk#1(Nil) -> walk_xs walk#1(Cons(x4, x3)) -> comp_f_g(walk#1(x3), walk_xs_3(x4)) comp_f_g#1(comp_f_g(x7, x9), walk_xs_3(x8), x12) -> comp_f_g#1(x7, x9, Cons(x8, x12)) comp_f_g#1(walk_xs, walk_xs_3(x8), x12) -> Cons(x8, x12) main(Nil) -> Nil main(Cons(x4, x5)) -> comp_f_g#1(walk#1(x5), walk_xs_3(x4), Nil) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: walk#1(Nil) -> walk_xs walk#1(Cons(x4, x3)) -> comp_f_g(walk#1(x3), walk_xs_3(x4)) comp_f_g#1(comp_f_g(x7, x9), walk_xs_3(x8), x12) -> comp_f_g#1(x7, x9, Cons(x8, x12)) comp_f_g#1(walk_xs, walk_xs_3(x8), x12) -> Cons(x8, x12) main(Nil) -> Nil main(Cons(x4, x5)) -> comp_f_g#1(walk#1(x5), walk_xs_3(x4), Nil) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (3) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3] transitions: Nil0() -> 0 walk_xs0() -> 0 Cons0(0, 0) -> 0 comp_f_g0(0, 0) -> 0 walk_xs_30(0) -> 0 walk#10(0) -> 1 comp_f_g#10(0, 0, 0) -> 2 main0(0) -> 3 walk_xs1() -> 1 walk#11(0) -> 4 walk_xs_31(0) -> 5 comp_f_g1(4, 5) -> 1 Cons1(0, 0) -> 6 comp_f_g#11(0, 0, 6) -> 2 Cons1(0, 0) -> 2 Nil1() -> 3 walk#11(0) -> 7 walk_xs_31(0) -> 8 Nil1() -> 9 comp_f_g#11(7, 8, 9) -> 3 walk_xs1() -> 4 walk_xs1() -> 7 comp_f_g1(4, 5) -> 4 comp_f_g1(4, 5) -> 7 Cons1(0, 6) -> 6 Cons1(0, 6) -> 2 Cons2(0, 9) -> 10 comp_f_g#12(4, 5, 10) -> 3 Cons2(0, 9) -> 3 Cons2(0, 10) -> 10 Cons2(0, 10) -> 3 ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: walk#1(Nil) -> walk_xs walk#1(Cons(z0, z1)) -> comp_f_g(walk#1(z1), walk_xs_3(z0)) comp_f_g#1(comp_f_g(z0, z1), walk_xs_3(z2), z3) -> comp_f_g#1(z0, z1, Cons(z2, z3)) comp_f_g#1(walk_xs, walk_xs_3(z0), z1) -> Cons(z0, z1) main(Nil) -> Nil main(Cons(z0, z1)) -> comp_f_g#1(walk#1(z1), walk_xs_3(z0), Nil) Tuples: WALK#1(Nil) -> c WALK#1(Cons(z0, z1)) -> c1(WALK#1(z1)) COMP_F_G#1(comp_f_g(z0, z1), walk_xs_3(z2), z3) -> c2(COMP_F_G#1(z0, z1, Cons(z2, z3))) COMP_F_G#1(walk_xs, walk_xs_3(z0), z1) -> c3 MAIN(Nil) -> c4 MAIN(Cons(z0, z1)) -> c5(COMP_F_G#1(walk#1(z1), walk_xs_3(z0), Nil), WALK#1(z1)) S tuples: WALK#1(Nil) -> c WALK#1(Cons(z0, z1)) -> c1(WALK#1(z1)) COMP_F_G#1(comp_f_g(z0, z1), walk_xs_3(z2), z3) -> c2(COMP_F_G#1(z0, z1, Cons(z2, z3))) COMP_F_G#1(walk_xs, walk_xs_3(z0), z1) -> c3 MAIN(Nil) -> c4 MAIN(Cons(z0, z1)) -> c5(COMP_F_G#1(walk#1(z1), walk_xs_3(z0), Nil), WALK#1(z1)) K tuples:none Defined Rule Symbols: walk#1_1, comp_f_g#1_3, main_1 Defined Pair Symbols: WALK#1_1, COMP_F_G#1_3, MAIN_1 Compound Symbols: c, c1_1, c2_1, c3, c4, c5_2 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: WALK#1(Nil) -> c WALK#1(Cons(z0, z1)) -> c1(WALK#1(z1)) COMP_F_G#1(comp_f_g(z0, z1), walk_xs_3(z2), z3) -> c2(COMP_F_G#1(z0, z1, Cons(z2, z3))) COMP_F_G#1(walk_xs, walk_xs_3(z0), z1) -> c3 MAIN(Nil) -> c4 MAIN(Cons(z0, z1)) -> c5(COMP_F_G#1(walk#1(z1), walk_xs_3(z0), Nil), WALK#1(z1)) The (relative) TRS S consists of the following rules: walk#1(Nil) -> walk_xs walk#1(Cons(z0, z1)) -> comp_f_g(walk#1(z1), walk_xs_3(z0)) comp_f_g#1(comp_f_g(z0, z1), walk_xs_3(z2), z3) -> comp_f_g#1(z0, z1, Cons(z2, z3)) comp_f_g#1(walk_xs, walk_xs_3(z0), z1) -> Cons(z0, z1) main(Nil) -> Nil main(Cons(z0, z1)) -> comp_f_g#1(walk#1(z1), walk_xs_3(z0), Nil) Rewrite Strategy: INNERMOST ---------------------------------------- (9) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: WALK#1(Nil) -> c WALK#1(Cons(z0, z1)) -> c1(WALK#1(z1)) COMP_F_G#1(comp_f_g(z0, z1), walk_xs_3(z2), z3) -> c2(COMP_F_G#1(z0, z1, Cons(z2, z3))) COMP_F_G#1(walk_xs, walk_xs_3(z0), z1) -> c3 MAIN(Nil) -> c4 MAIN(Cons(z0, z1)) -> c5(COMP_F_G#1(walk#1(z1), walk_xs_3(z0), Nil), WALK#1(z1)) The (relative) TRS S consists of the following rules: walk#1(Nil) -> walk_xs walk#1(Cons(z0, z1)) -> comp_f_g(walk#1(z1), walk_xs_3(z0)) comp_f_g#1(comp_f_g(z0, z1), walk_xs_3(z2), z3) -> comp_f_g#1(z0, z1, Cons(z2, z3)) comp_f_g#1(walk_xs, walk_xs_3(z0), z1) -> Cons(z0, z1) main(Nil) -> Nil main(Cons(z0, z1)) -> comp_f_g#1(walk#1(z1), walk_xs_3(z0), Nil) Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (12) Obligation: Innermost TRS: Rules: WALK#1(Nil) -> c WALK#1(Cons(z0, z1)) -> c1(WALK#1(z1)) COMP_F_G#1(comp_f_g(z0, z1), walk_xs_3(z2), z3) -> c2(COMP_F_G#1(z0, z1, Cons(z2, z3))) COMP_F_G#1(walk_xs, walk_xs_3(z0), z1) -> c3 MAIN(Nil) -> c4 MAIN(Cons(z0, z1)) -> c5(COMP_F_G#1(walk#1(z1), walk_xs_3(z0), Nil), WALK#1(z1)) walk#1(Nil) -> walk_xs walk#1(Cons(z0, z1)) -> comp_f_g(walk#1(z1), walk_xs_3(z0)) comp_f_g#1(comp_f_g(z0, z1), walk_xs_3(z2), z3) -> comp_f_g#1(z0, z1, Cons(z2, z3)) comp_f_g#1(walk_xs, walk_xs_3(z0), z1) -> Cons(z0, z1) main(Nil) -> Nil main(Cons(z0, z1)) -> comp_f_g#1(walk#1(z1), walk_xs_3(z0), Nil) Types: WALK#1 :: Nil:Cons -> c:c1 Nil :: Nil:Cons c :: c:c1 Cons :: a -> Nil:Cons -> Nil:Cons c1 :: c:c1 -> c:c1 COMP_F_G#1 :: comp_f_g:walk_xs -> walk_xs_3 -> Nil:Cons -> c2:c3 comp_f_g :: comp_f_g:walk_xs -> walk_xs_3 -> comp_f_g:walk_xs walk_xs_3 :: a -> walk_xs_3 c2 :: c2:c3 -> c2:c3 walk_xs :: comp_f_g:walk_xs c3 :: c2:c3 MAIN :: Nil:Cons -> c4:c5 c4 :: c4:c5 c5 :: c2:c3 -> c:c1 -> c4:c5 walk#1 :: Nil:Cons -> comp_f_g:walk_xs comp_f_g#1 :: comp_f_g:walk_xs -> walk_xs_3 -> Nil:Cons -> Nil:Cons main :: Nil:Cons -> Nil:Cons hole_c:c11_6 :: c:c1 hole_Nil:Cons2_6 :: Nil:Cons hole_a3_6 :: a hole_c2:c34_6 :: c2:c3 hole_comp_f_g:walk_xs5_6 :: comp_f_g:walk_xs hole_walk_xs_36_6 :: walk_xs_3 hole_c4:c57_6 :: c4:c5 gen_c:c18_6 :: Nat -> c:c1 gen_Nil:Cons9_6 :: Nat -> Nil:Cons gen_c2:c310_6 :: Nat -> c2:c3 gen_comp_f_g:walk_xs11_6 :: Nat -> comp_f_g:walk_xs ---------------------------------------- (13) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: WALK#1, COMP_F_G#1, walk#1, comp_f_g#1 ---------------------------------------- (14) Obligation: Innermost TRS: Rules: WALK#1(Nil) -> c WALK#1(Cons(z0, z1)) -> c1(WALK#1(z1)) COMP_F_G#1(comp_f_g(z0, z1), walk_xs_3(z2), z3) -> c2(COMP_F_G#1(z0, z1, Cons(z2, z3))) COMP_F_G#1(walk_xs, walk_xs_3(z0), z1) -> c3 MAIN(Nil) -> c4 MAIN(Cons(z0, z1)) -> c5(COMP_F_G#1(walk#1(z1), walk_xs_3(z0), Nil), WALK#1(z1)) walk#1(Nil) -> walk_xs walk#1(Cons(z0, z1)) -> comp_f_g(walk#1(z1), walk_xs_3(z0)) comp_f_g#1(comp_f_g(z0, z1), walk_xs_3(z2), z3) -> comp_f_g#1(z0, z1, Cons(z2, z3)) comp_f_g#1(walk_xs, walk_xs_3(z0), z1) -> Cons(z0, z1) main(Nil) -> Nil main(Cons(z0, z1)) -> comp_f_g#1(walk#1(z1), walk_xs_3(z0), Nil) Types: WALK#1 :: Nil:Cons -> c:c1 Nil :: Nil:Cons c :: c:c1 Cons :: a -> Nil:Cons -> Nil:Cons c1 :: c:c1 -> c:c1 COMP_F_G#1 :: comp_f_g:walk_xs -> walk_xs_3 -> Nil:Cons -> c2:c3 comp_f_g :: comp_f_g:walk_xs -> walk_xs_3 -> comp_f_g:walk_xs walk_xs_3 :: a -> walk_xs_3 c2 :: c2:c3 -> c2:c3 walk_xs :: comp_f_g:walk_xs c3 :: c2:c3 MAIN :: Nil:Cons -> c4:c5 c4 :: c4:c5 c5 :: c2:c3 -> c:c1 -> c4:c5 walk#1 :: Nil:Cons -> comp_f_g:walk_xs comp_f_g#1 :: comp_f_g:walk_xs -> walk_xs_3 -> Nil:Cons -> Nil:Cons main :: Nil:Cons -> Nil:Cons hole_c:c11_6 :: c:c1 hole_Nil:Cons2_6 :: Nil:Cons hole_a3_6 :: a hole_c2:c34_6 :: c2:c3 hole_comp_f_g:walk_xs5_6 :: comp_f_g:walk_xs hole_walk_xs_36_6 :: walk_xs_3 hole_c4:c57_6 :: c4:c5 gen_c:c18_6 :: Nat -> c:c1 gen_Nil:Cons9_6 :: Nat -> Nil:Cons gen_c2:c310_6 :: Nat -> c2:c3 gen_comp_f_g:walk_xs11_6 :: Nat -> comp_f_g:walk_xs Generator Equations: gen_c:c18_6(0) <=> c gen_c:c18_6(+(x, 1)) <=> c1(gen_c:c18_6(x)) gen_Nil:Cons9_6(0) <=> Nil gen_Nil:Cons9_6(+(x, 1)) <=> Cons(hole_a3_6, gen_Nil:Cons9_6(x)) gen_c2:c310_6(0) <=> c3 gen_c2:c310_6(+(x, 1)) <=> c2(gen_c2:c310_6(x)) gen_comp_f_g:walk_xs11_6(0) <=> walk_xs gen_comp_f_g:walk_xs11_6(+(x, 1)) <=> comp_f_g(gen_comp_f_g:walk_xs11_6(x), walk_xs_3(hole_a3_6)) The following defined symbols remain to be analysed: WALK#1, COMP_F_G#1, walk#1, comp_f_g#1 ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: WALK#1(gen_Nil:Cons9_6(n13_6)) -> gen_c:c18_6(n13_6), rt in Omega(1 + n13_6) Induction Base: WALK#1(gen_Nil:Cons9_6(0)) ->_R^Omega(1) c Induction Step: WALK#1(gen_Nil:Cons9_6(+(n13_6, 1))) ->_R^Omega(1) c1(WALK#1(gen_Nil:Cons9_6(n13_6))) ->_IH c1(gen_c:c18_6(c14_6)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Complex Obligation (BEST) ---------------------------------------- (17) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: WALK#1(Nil) -> c WALK#1(Cons(z0, z1)) -> c1(WALK#1(z1)) COMP_F_G#1(comp_f_g(z0, z1), walk_xs_3(z2), z3) -> c2(COMP_F_G#1(z0, z1, Cons(z2, z3))) COMP_F_G#1(walk_xs, walk_xs_3(z0), z1) -> c3 MAIN(Nil) -> c4 MAIN(Cons(z0, z1)) -> c5(COMP_F_G#1(walk#1(z1), walk_xs_3(z0), Nil), WALK#1(z1)) walk#1(Nil) -> walk_xs walk#1(Cons(z0, z1)) -> comp_f_g(walk#1(z1), walk_xs_3(z0)) comp_f_g#1(comp_f_g(z0, z1), walk_xs_3(z2), z3) -> comp_f_g#1(z0, z1, Cons(z2, z3)) comp_f_g#1(walk_xs, walk_xs_3(z0), z1) -> Cons(z0, z1) main(Nil) -> Nil main(Cons(z0, z1)) -> comp_f_g#1(walk#1(z1), walk_xs_3(z0), Nil) Types: WALK#1 :: Nil:Cons -> c:c1 Nil :: Nil:Cons c :: c:c1 Cons :: a -> Nil:Cons -> Nil:Cons c1 :: c:c1 -> c:c1 COMP_F_G#1 :: comp_f_g:walk_xs -> walk_xs_3 -> Nil:Cons -> c2:c3 comp_f_g :: comp_f_g:walk_xs -> walk_xs_3 -> comp_f_g:walk_xs walk_xs_3 :: a -> walk_xs_3 c2 :: c2:c3 -> c2:c3 walk_xs :: comp_f_g:walk_xs c3 :: c2:c3 MAIN :: Nil:Cons -> c4:c5 c4 :: c4:c5 c5 :: c2:c3 -> c:c1 -> c4:c5 walk#1 :: Nil:Cons -> comp_f_g:walk_xs comp_f_g#1 :: comp_f_g:walk_xs -> walk_xs_3 -> Nil:Cons -> Nil:Cons main :: Nil:Cons -> Nil:Cons hole_c:c11_6 :: c:c1 hole_Nil:Cons2_6 :: Nil:Cons hole_a3_6 :: a hole_c2:c34_6 :: c2:c3 hole_comp_f_g:walk_xs5_6 :: comp_f_g:walk_xs hole_walk_xs_36_6 :: walk_xs_3 hole_c4:c57_6 :: c4:c5 gen_c:c18_6 :: Nat -> c:c1 gen_Nil:Cons9_6 :: Nat -> Nil:Cons gen_c2:c310_6 :: Nat -> c2:c3 gen_comp_f_g:walk_xs11_6 :: Nat -> comp_f_g:walk_xs Generator Equations: gen_c:c18_6(0) <=> c gen_c:c18_6(+(x, 1)) <=> c1(gen_c:c18_6(x)) gen_Nil:Cons9_6(0) <=> Nil gen_Nil:Cons9_6(+(x, 1)) <=> Cons(hole_a3_6, gen_Nil:Cons9_6(x)) gen_c2:c310_6(0) <=> c3 gen_c2:c310_6(+(x, 1)) <=> c2(gen_c2:c310_6(x)) gen_comp_f_g:walk_xs11_6(0) <=> walk_xs gen_comp_f_g:walk_xs11_6(+(x, 1)) <=> comp_f_g(gen_comp_f_g:walk_xs11_6(x), walk_xs_3(hole_a3_6)) The following defined symbols remain to be analysed: WALK#1, COMP_F_G#1, walk#1, comp_f_g#1 ---------------------------------------- (18) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (19) BOUNDS(n^1, INF) ---------------------------------------- (20) Obligation: Innermost TRS: Rules: WALK#1(Nil) -> c WALK#1(Cons(z0, z1)) -> c1(WALK#1(z1)) COMP_F_G#1(comp_f_g(z0, z1), walk_xs_3(z2), z3) -> c2(COMP_F_G#1(z0, z1, Cons(z2, z3))) COMP_F_G#1(walk_xs, walk_xs_3(z0), z1) -> c3 MAIN(Nil) -> c4 MAIN(Cons(z0, z1)) -> c5(COMP_F_G#1(walk#1(z1), walk_xs_3(z0), Nil), WALK#1(z1)) walk#1(Nil) -> walk_xs walk#1(Cons(z0, z1)) -> comp_f_g(walk#1(z1), walk_xs_3(z0)) comp_f_g#1(comp_f_g(z0, z1), walk_xs_3(z2), z3) -> comp_f_g#1(z0, z1, Cons(z2, z3)) comp_f_g#1(walk_xs, walk_xs_3(z0), z1) -> Cons(z0, z1) main(Nil) -> Nil main(Cons(z0, z1)) -> comp_f_g#1(walk#1(z1), walk_xs_3(z0), Nil) Types: WALK#1 :: Nil:Cons -> c:c1 Nil :: Nil:Cons c :: c:c1 Cons :: a -> Nil:Cons -> Nil:Cons c1 :: c:c1 -> c:c1 COMP_F_G#1 :: comp_f_g:walk_xs -> walk_xs_3 -> Nil:Cons -> c2:c3 comp_f_g :: comp_f_g:walk_xs -> walk_xs_3 -> comp_f_g:walk_xs walk_xs_3 :: a -> walk_xs_3 c2 :: c2:c3 -> c2:c3 walk_xs :: comp_f_g:walk_xs c3 :: c2:c3 MAIN :: Nil:Cons -> c4:c5 c4 :: c4:c5 c5 :: c2:c3 -> c:c1 -> c4:c5 walk#1 :: Nil:Cons -> comp_f_g:walk_xs comp_f_g#1 :: comp_f_g:walk_xs -> walk_xs_3 -> Nil:Cons -> Nil:Cons main :: Nil:Cons -> Nil:Cons hole_c:c11_6 :: c:c1 hole_Nil:Cons2_6 :: Nil:Cons hole_a3_6 :: a hole_c2:c34_6 :: c2:c3 hole_comp_f_g:walk_xs5_6 :: comp_f_g:walk_xs hole_walk_xs_36_6 :: walk_xs_3 hole_c4:c57_6 :: c4:c5 gen_c:c18_6 :: Nat -> c:c1 gen_Nil:Cons9_6 :: Nat -> Nil:Cons gen_c2:c310_6 :: Nat -> c2:c3 gen_comp_f_g:walk_xs11_6 :: Nat -> comp_f_g:walk_xs Lemmas: WALK#1(gen_Nil:Cons9_6(n13_6)) -> gen_c:c18_6(n13_6), rt in Omega(1 + n13_6) Generator Equations: gen_c:c18_6(0) <=> c gen_c:c18_6(+(x, 1)) <=> c1(gen_c:c18_6(x)) gen_Nil:Cons9_6(0) <=> Nil gen_Nil:Cons9_6(+(x, 1)) <=> Cons(hole_a3_6, gen_Nil:Cons9_6(x)) gen_c2:c310_6(0) <=> c3 gen_c2:c310_6(+(x, 1)) <=> c2(gen_c2:c310_6(x)) gen_comp_f_g:walk_xs11_6(0) <=> walk_xs gen_comp_f_g:walk_xs11_6(+(x, 1)) <=> comp_f_g(gen_comp_f_g:walk_xs11_6(x), walk_xs_3(hole_a3_6)) The following defined symbols remain to be analysed: COMP_F_G#1, walk#1, comp_f_g#1 ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: COMP_F_G#1(gen_comp_f_g:walk_xs11_6(n263_6), walk_xs_3(hole_a3_6), gen_Nil:Cons9_6(b)) -> gen_c2:c310_6(n263_6), rt in Omega(1 + n263_6) Induction Base: COMP_F_G#1(gen_comp_f_g:walk_xs11_6(0), walk_xs_3(hole_a3_6), gen_Nil:Cons9_6(b)) ->_R^Omega(1) c3 Induction Step: COMP_F_G#1(gen_comp_f_g:walk_xs11_6(+(n263_6, 1)), walk_xs_3(hole_a3_6), gen_Nil:Cons9_6(b)) ->_R^Omega(1) c2(COMP_F_G#1(gen_comp_f_g:walk_xs11_6(n263_6), walk_xs_3(hole_a3_6), Cons(hole_a3_6, gen_Nil:Cons9_6(b)))) ->_IH c2(gen_c2:c310_6(c264_6)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (22) Obligation: Innermost TRS: Rules: WALK#1(Nil) -> c WALK#1(Cons(z0, z1)) -> c1(WALK#1(z1)) COMP_F_G#1(comp_f_g(z0, z1), walk_xs_3(z2), z3) -> c2(COMP_F_G#1(z0, z1, Cons(z2, z3))) COMP_F_G#1(walk_xs, walk_xs_3(z0), z1) -> c3 MAIN(Nil) -> c4 MAIN(Cons(z0, z1)) -> c5(COMP_F_G#1(walk#1(z1), walk_xs_3(z0), Nil), WALK#1(z1)) walk#1(Nil) -> walk_xs walk#1(Cons(z0, z1)) -> comp_f_g(walk#1(z1), walk_xs_3(z0)) comp_f_g#1(comp_f_g(z0, z1), walk_xs_3(z2), z3) -> comp_f_g#1(z0, z1, Cons(z2, z3)) comp_f_g#1(walk_xs, walk_xs_3(z0), z1) -> Cons(z0, z1) main(Nil) -> Nil main(Cons(z0, z1)) -> comp_f_g#1(walk#1(z1), walk_xs_3(z0), Nil) Types: WALK#1 :: Nil:Cons -> c:c1 Nil :: Nil:Cons c :: c:c1 Cons :: a -> Nil:Cons -> Nil:Cons c1 :: c:c1 -> c:c1 COMP_F_G#1 :: comp_f_g:walk_xs -> walk_xs_3 -> Nil:Cons -> c2:c3 comp_f_g :: comp_f_g:walk_xs -> walk_xs_3 -> comp_f_g:walk_xs walk_xs_3 :: a -> walk_xs_3 c2 :: c2:c3 -> c2:c3 walk_xs :: comp_f_g:walk_xs c3 :: c2:c3 MAIN :: Nil:Cons -> c4:c5 c4 :: c4:c5 c5 :: c2:c3 -> c:c1 -> c4:c5 walk#1 :: Nil:Cons -> comp_f_g:walk_xs comp_f_g#1 :: comp_f_g:walk_xs -> walk_xs_3 -> Nil:Cons -> Nil:Cons main :: Nil:Cons -> Nil:Cons hole_c:c11_6 :: c:c1 hole_Nil:Cons2_6 :: Nil:Cons hole_a3_6 :: a hole_c2:c34_6 :: c2:c3 hole_comp_f_g:walk_xs5_6 :: comp_f_g:walk_xs hole_walk_xs_36_6 :: walk_xs_3 hole_c4:c57_6 :: c4:c5 gen_c:c18_6 :: Nat -> c:c1 gen_Nil:Cons9_6 :: Nat -> Nil:Cons gen_c2:c310_6 :: Nat -> c2:c3 gen_comp_f_g:walk_xs11_6 :: Nat -> comp_f_g:walk_xs Lemmas: WALK#1(gen_Nil:Cons9_6(n13_6)) -> gen_c:c18_6(n13_6), rt in Omega(1 + n13_6) COMP_F_G#1(gen_comp_f_g:walk_xs11_6(n263_6), walk_xs_3(hole_a3_6), gen_Nil:Cons9_6(b)) -> gen_c2:c310_6(n263_6), rt in Omega(1 + n263_6) Generator Equations: gen_c:c18_6(0) <=> c gen_c:c18_6(+(x, 1)) <=> c1(gen_c:c18_6(x)) gen_Nil:Cons9_6(0) <=> Nil gen_Nil:Cons9_6(+(x, 1)) <=> Cons(hole_a3_6, gen_Nil:Cons9_6(x)) gen_c2:c310_6(0) <=> c3 gen_c2:c310_6(+(x, 1)) <=> c2(gen_c2:c310_6(x)) gen_comp_f_g:walk_xs11_6(0) <=> walk_xs gen_comp_f_g:walk_xs11_6(+(x, 1)) <=> comp_f_g(gen_comp_f_g:walk_xs11_6(x), walk_xs_3(hole_a3_6)) The following defined symbols remain to be analysed: walk#1, comp_f_g#1 ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: walk#1(gen_Nil:Cons9_6(n797_6)) -> gen_comp_f_g:walk_xs11_6(n797_6), rt in Omega(0) Induction Base: walk#1(gen_Nil:Cons9_6(0)) ->_R^Omega(0) walk_xs Induction Step: walk#1(gen_Nil:Cons9_6(+(n797_6, 1))) ->_R^Omega(0) comp_f_g(walk#1(gen_Nil:Cons9_6(n797_6)), walk_xs_3(hole_a3_6)) ->_IH comp_f_g(gen_comp_f_g:walk_xs11_6(c798_6), walk_xs_3(hole_a3_6)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (24) Obligation: Innermost TRS: Rules: WALK#1(Nil) -> c WALK#1(Cons(z0, z1)) -> c1(WALK#1(z1)) COMP_F_G#1(comp_f_g(z0, z1), walk_xs_3(z2), z3) -> c2(COMP_F_G#1(z0, z1, Cons(z2, z3))) COMP_F_G#1(walk_xs, walk_xs_3(z0), z1) -> c3 MAIN(Nil) -> c4 MAIN(Cons(z0, z1)) -> c5(COMP_F_G#1(walk#1(z1), walk_xs_3(z0), Nil), WALK#1(z1)) walk#1(Nil) -> walk_xs walk#1(Cons(z0, z1)) -> comp_f_g(walk#1(z1), walk_xs_3(z0)) comp_f_g#1(comp_f_g(z0, z1), walk_xs_3(z2), z3) -> comp_f_g#1(z0, z1, Cons(z2, z3)) comp_f_g#1(walk_xs, walk_xs_3(z0), z1) -> Cons(z0, z1) main(Nil) -> Nil main(Cons(z0, z1)) -> comp_f_g#1(walk#1(z1), walk_xs_3(z0), Nil) Types: WALK#1 :: Nil:Cons -> c:c1 Nil :: Nil:Cons c :: c:c1 Cons :: a -> Nil:Cons -> Nil:Cons c1 :: c:c1 -> c:c1 COMP_F_G#1 :: comp_f_g:walk_xs -> walk_xs_3 -> Nil:Cons -> c2:c3 comp_f_g :: comp_f_g:walk_xs -> walk_xs_3 -> comp_f_g:walk_xs walk_xs_3 :: a -> walk_xs_3 c2 :: c2:c3 -> c2:c3 walk_xs :: comp_f_g:walk_xs c3 :: c2:c3 MAIN :: Nil:Cons -> c4:c5 c4 :: c4:c5 c5 :: c2:c3 -> c:c1 -> c4:c5 walk#1 :: Nil:Cons -> comp_f_g:walk_xs comp_f_g#1 :: comp_f_g:walk_xs -> walk_xs_3 -> Nil:Cons -> Nil:Cons main :: Nil:Cons -> Nil:Cons hole_c:c11_6 :: c:c1 hole_Nil:Cons2_6 :: Nil:Cons hole_a3_6 :: a hole_c2:c34_6 :: c2:c3 hole_comp_f_g:walk_xs5_6 :: comp_f_g:walk_xs hole_walk_xs_36_6 :: walk_xs_3 hole_c4:c57_6 :: c4:c5 gen_c:c18_6 :: Nat -> c:c1 gen_Nil:Cons9_6 :: Nat -> Nil:Cons gen_c2:c310_6 :: Nat -> c2:c3 gen_comp_f_g:walk_xs11_6 :: Nat -> comp_f_g:walk_xs Lemmas: WALK#1(gen_Nil:Cons9_6(n13_6)) -> gen_c:c18_6(n13_6), rt in Omega(1 + n13_6) COMP_F_G#1(gen_comp_f_g:walk_xs11_6(n263_6), walk_xs_3(hole_a3_6), gen_Nil:Cons9_6(b)) -> gen_c2:c310_6(n263_6), rt in Omega(1 + n263_6) walk#1(gen_Nil:Cons9_6(n797_6)) -> gen_comp_f_g:walk_xs11_6(n797_6), rt in Omega(0) Generator Equations: gen_c:c18_6(0) <=> c gen_c:c18_6(+(x, 1)) <=> c1(gen_c:c18_6(x)) gen_Nil:Cons9_6(0) <=> Nil gen_Nil:Cons9_6(+(x, 1)) <=> Cons(hole_a3_6, gen_Nil:Cons9_6(x)) gen_c2:c310_6(0) <=> c3 gen_c2:c310_6(+(x, 1)) <=> c2(gen_c2:c310_6(x)) gen_comp_f_g:walk_xs11_6(0) <=> walk_xs gen_comp_f_g:walk_xs11_6(+(x, 1)) <=> comp_f_g(gen_comp_f_g:walk_xs11_6(x), walk_xs_3(hole_a3_6)) The following defined symbols remain to be analysed: comp_f_g#1 ---------------------------------------- (25) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: comp_f_g#1(gen_comp_f_g:walk_xs11_6(n1157_6), walk_xs_3(hole_a3_6), gen_Nil:Cons9_6(b)) -> gen_Nil:Cons9_6(+(+(1, n1157_6), b)), rt in Omega(0) Induction Base: comp_f_g#1(gen_comp_f_g:walk_xs11_6(0), walk_xs_3(hole_a3_6), gen_Nil:Cons9_6(b)) ->_R^Omega(0) Cons(hole_a3_6, gen_Nil:Cons9_6(b)) Induction Step: comp_f_g#1(gen_comp_f_g:walk_xs11_6(+(n1157_6, 1)), walk_xs_3(hole_a3_6), gen_Nil:Cons9_6(b)) ->_R^Omega(0) comp_f_g#1(gen_comp_f_g:walk_xs11_6(n1157_6), walk_xs_3(hole_a3_6), Cons(hole_a3_6, gen_Nil:Cons9_6(b))) ->_IH gen_Nil:Cons9_6(+(+(1, +(b, 1)), c1158_6)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (26) BOUNDS(1, INF)