WORST_CASE(Omega(n^1),O(n^2)) proof of input_3LJmaNnLO8.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (8) CdtProblem (9) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CdtProblem (11) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRelTRS (13) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxWeightedTrs (15) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxTypedWeightedTrs (17) CompletionProof [UPPER BOUND(ID), 0 ms] (18) CpxTypedWeightedCompleteTrs (19) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (20) CpxRNTS (21) CompleteCoflocoProof [FINISHED, 2930 ms] (22) BOUNDS(1, n^2) (23) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CdtProblem (25) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (26) CpxRelTRS (27) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (28) CpxRelTRS (29) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (30) typed CpxTrs (31) OrderProof [LOWER BOUND(ID), 16 ms] (32) typed CpxTrs (33) RewriteLemmaProof [LOWER BOUND(ID), 356 ms] (34) BEST (35) proven lower bound (36) LowerBoundPropagationProof [FINISHED, 0 ms] (37) BOUNDS(n^1, INF) (38) typed CpxTrs (39) RewriteLemmaProof [LOWER BOUND(ID), 16 ms] (40) typed CpxTrs (41) RewriteLemmaProof [LOWER BOUND(ID), 13 ms] (42) typed CpxTrs (43) RewriteLemmaProof [LOWER BOUND(ID), 77 ms] (44) typed CpxTrs (45) RewriteLemmaProof [LOWER BOUND(ID), 50 ms] (46) typed CpxTrs (47) RewriteLemmaProof [LOWER BOUND(ID), 39 ms] (48) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: ge(x, 0) -> true ge(0, s(y)) -> false ge(s(x), s(y)) -> ge(x, y) rev(x) -> if(x, eq(0, length(x)), nil, 0, length(x)) if(x, true, z, c, l) -> z if(x, false, z, c, l) -> help(s(c), l, x, z) help(c, l, cons(x, y), z) -> if(append(y, cons(x, nil)), ge(c, l), cons(x, z), c, l) append(nil, y) -> y append(cons(x, y), z) -> cons(x, append(y, z)) length(nil) -> 0 length(cons(x, y)) -> s(length(y)) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: ge(z0, 0) -> true ge(0, s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) rev(z0) -> if(z0, eq(0, length(z0)), nil, 0, length(z0)) if(z0, true, z1, z2, z3) -> z1 if(z0, false, z1, z2, z3) -> help(s(z2), z3, z0, z1) help(z0, z1, cons(z2, z3), z4) -> if(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1) append(nil, z0) -> z0 append(cons(z0, z1), z2) -> cons(z0, append(z1, z2)) length(nil) -> 0 length(cons(z0, z1)) -> s(length(z1)) Tuples: GE(z0, 0) -> c GE(0, s(z0)) -> c1 GE(s(z0), s(z1)) -> c2(GE(z0, z1)) REV(z0) -> c3(IF(z0, eq(0, length(z0)), nil, 0, length(z0)), LENGTH(z0)) REV(z0) -> c4(IF(z0, eq(0, length(z0)), nil, 0, length(z0)), LENGTH(z0)) IF(z0, true, z1, z2, z3) -> c5 IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(nil, z0) -> c9 APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(nil) -> c11 LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) S tuples: GE(z0, 0) -> c GE(0, s(z0)) -> c1 GE(s(z0), s(z1)) -> c2(GE(z0, z1)) REV(z0) -> c3(IF(z0, eq(0, length(z0)), nil, 0, length(z0)), LENGTH(z0)) REV(z0) -> c4(IF(z0, eq(0, length(z0)), nil, 0, length(z0)), LENGTH(z0)) IF(z0, true, z1, z2, z3) -> c5 IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(nil, z0) -> c9 APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(nil) -> c11 LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) K tuples:none Defined Rule Symbols: ge_2, rev_1, if_5, help_4, append_2, length_1 Defined Pair Symbols: GE_2, REV_1, IF_5, HELP_4, APPEND_2, LENGTH_1 Compound Symbols: c, c1, c2_1, c3_2, c4_2, c5, c6_1, c7_2, c8_2, c9, c10_1, c11, c12_1 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 5 trailing nodes: LENGTH(nil) -> c11 APPEND(nil, z0) -> c9 GE(z0, 0) -> c GE(0, s(z0)) -> c1 IF(z0, true, z1, z2, z3) -> c5 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: ge(z0, 0) -> true ge(0, s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) rev(z0) -> if(z0, eq(0, length(z0)), nil, 0, length(z0)) if(z0, true, z1, z2, z3) -> z1 if(z0, false, z1, z2, z3) -> help(s(z2), z3, z0, z1) help(z0, z1, cons(z2, z3), z4) -> if(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1) append(nil, z0) -> z0 append(cons(z0, z1), z2) -> cons(z0, append(z1, z2)) length(nil) -> 0 length(cons(z0, z1)) -> s(length(z1)) Tuples: GE(s(z0), s(z1)) -> c2(GE(z0, z1)) REV(z0) -> c3(IF(z0, eq(0, length(z0)), nil, 0, length(z0)), LENGTH(z0)) REV(z0) -> c4(IF(z0, eq(0, length(z0)), nil, 0, length(z0)), LENGTH(z0)) IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) S tuples: GE(s(z0), s(z1)) -> c2(GE(z0, z1)) REV(z0) -> c3(IF(z0, eq(0, length(z0)), nil, 0, length(z0)), LENGTH(z0)) REV(z0) -> c4(IF(z0, eq(0, length(z0)), nil, 0, length(z0)), LENGTH(z0)) IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) K tuples:none Defined Rule Symbols: ge_2, rev_1, if_5, help_4, append_2, length_1 Defined Pair Symbols: GE_2, REV_1, IF_5, HELP_4, APPEND_2, LENGTH_1 Compound Symbols: c2_1, c3_2, c4_2, c6_1, c7_2, c8_2, c10_1, c12_1 ---------------------------------------- (5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing tuple parts ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: ge(z0, 0) -> true ge(0, s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) rev(z0) -> if(z0, eq(0, length(z0)), nil, 0, length(z0)) if(z0, true, z1, z2, z3) -> z1 if(z0, false, z1, z2, z3) -> help(s(z2), z3, z0, z1) help(z0, z1, cons(z2, z3), z4) -> if(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1) append(nil, z0) -> z0 append(cons(z0, z1), z2) -> cons(z0, append(z1, z2)) length(nil) -> 0 length(cons(z0, z1)) -> s(length(z1)) Tuples: GE(s(z0), s(z1)) -> c2(GE(z0, z1)) IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) REV(z0) -> c3(LENGTH(z0)) REV(z0) -> c4(LENGTH(z0)) S tuples: GE(s(z0), s(z1)) -> c2(GE(z0, z1)) IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) REV(z0) -> c3(LENGTH(z0)) REV(z0) -> c4(LENGTH(z0)) K tuples:none Defined Rule Symbols: ge_2, rev_1, if_5, help_4, append_2, length_1 Defined Pair Symbols: GE_2, IF_5, HELP_4, APPEND_2, LENGTH_1, REV_1 Compound Symbols: c2_1, c6_1, c7_2, c8_2, c10_1, c12_1, c3_1, c4_1 ---------------------------------------- (7) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: REV(z0) -> c3(LENGTH(z0)) REV(z0) -> c4(LENGTH(z0)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: ge(z0, 0) -> true ge(0, s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) rev(z0) -> if(z0, eq(0, length(z0)), nil, 0, length(z0)) if(z0, true, z1, z2, z3) -> z1 if(z0, false, z1, z2, z3) -> help(s(z2), z3, z0, z1) help(z0, z1, cons(z2, z3), z4) -> if(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1) append(nil, z0) -> z0 append(cons(z0, z1), z2) -> cons(z0, append(z1, z2)) length(nil) -> 0 length(cons(z0, z1)) -> s(length(z1)) Tuples: GE(s(z0), s(z1)) -> c2(GE(z0, z1)) IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) S tuples: GE(s(z0), s(z1)) -> c2(GE(z0, z1)) IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) K tuples:none Defined Rule Symbols: ge_2, rev_1, if_5, help_4, append_2, length_1 Defined Pair Symbols: GE_2, IF_5, HELP_4, APPEND_2, LENGTH_1 Compound Symbols: c2_1, c6_1, c7_2, c8_2, c10_1, c12_1 ---------------------------------------- (9) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: rev(z0) -> if(z0, eq(0, length(z0)), nil, 0, length(z0)) if(z0, true, z1, z2, z3) -> z1 if(z0, false, z1, z2, z3) -> help(s(z2), z3, z0, z1) help(z0, z1, cons(z2, z3), z4) -> if(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1) length(nil) -> 0 length(cons(z0, z1)) -> s(length(z1)) ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: append(nil, z0) -> z0 append(cons(z0, z1), z2) -> cons(z0, append(z1, z2)) ge(z0, 0) -> true ge(0, s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) Tuples: GE(s(z0), s(z1)) -> c2(GE(z0, z1)) IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) S tuples: GE(s(z0), s(z1)) -> c2(GE(z0, z1)) IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) K tuples:none Defined Rule Symbols: append_2, ge_2 Defined Pair Symbols: GE_2, IF_5, HELP_4, APPEND_2, LENGTH_1 Compound Symbols: c2_1, c6_1, c7_2, c8_2, c10_1, c12_1 ---------------------------------------- (11) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (12) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: GE(s(z0), s(z1)) -> c2(GE(z0, z1)) IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) The (relative) TRS S consists of the following rules: append(nil, z0) -> z0 append(cons(z0, z1), z2) -> cons(z0, append(z1, z2)) ge(z0, 0) -> true ge(0, s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) Rewrite Strategy: INNERMOST ---------------------------------------- (13) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (14) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: GE(s(z0), s(z1)) -> c2(GE(z0, z1)) [1] IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) [1] HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) [1] HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) [1] APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) [1] LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) [1] append(nil, z0) -> z0 [0] append(cons(z0, z1), z2) -> cons(z0, append(z1, z2)) [0] ge(z0, 0) -> true [0] ge(0, s(z0)) -> false [0] ge(s(z0), s(z1)) -> ge(z0, z1) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (15) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (16) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: GE(s(z0), s(z1)) -> c2(GE(z0, z1)) [1] IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) [1] HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) [1] HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) [1] APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) [1] LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) [1] append(nil, z0) -> z0 [0] append(cons(z0, z1), z2) -> cons(z0, append(z1, z2)) [0] ge(z0, 0) -> true [0] ge(0, s(z0)) -> false [0] ge(s(z0), s(z1)) -> ge(z0, z1) [0] The TRS has the following type information: GE :: s:0 -> s:0 -> c2 s :: s:0 -> s:0 c2 :: c2 -> c2 IF :: cons:nil -> false:true -> cons:nil -> s:0 -> s:0 -> c6 false :: false:true c6 :: c7:c8 -> c6 HELP :: s:0 -> s:0 -> cons:nil -> cons:nil -> c7:c8 cons :: a -> cons:nil -> cons:nil c7 :: c6 -> c10 -> c7:c8 append :: cons:nil -> cons:nil -> cons:nil nil :: cons:nil ge :: s:0 -> s:0 -> false:true APPEND :: cons:nil -> cons:nil -> c10 c8 :: c6 -> c2 -> c7:c8 c10 :: c10 -> c10 LENGTH :: cons:nil -> c12 c12 :: c12 -> c12 0 :: s:0 true :: false:true Rewrite Strategy: INNERMOST ---------------------------------------- (17) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: append(v0, v1) -> null_append [0] ge(v0, v1) -> null_ge [0] GE(v0, v1) -> null_GE [0] IF(v0, v1, v2, v3, v4) -> null_IF [0] HELP(v0, v1, v2, v3) -> null_HELP [0] APPEND(v0, v1) -> null_APPEND [0] LENGTH(v0) -> null_LENGTH [0] And the following fresh constants: null_append, null_ge, null_GE, null_IF, null_HELP, null_APPEND, null_LENGTH, const ---------------------------------------- (18) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: GE(s(z0), s(z1)) -> c2(GE(z0, z1)) [1] IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) [1] HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) [1] HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) [1] APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) [1] LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) [1] append(nil, z0) -> z0 [0] append(cons(z0, z1), z2) -> cons(z0, append(z1, z2)) [0] ge(z0, 0) -> true [0] ge(0, s(z0)) -> false [0] ge(s(z0), s(z1)) -> ge(z0, z1) [0] append(v0, v1) -> null_append [0] ge(v0, v1) -> null_ge [0] GE(v0, v1) -> null_GE [0] IF(v0, v1, v2, v3, v4) -> null_IF [0] HELP(v0, v1, v2, v3) -> null_HELP [0] APPEND(v0, v1) -> null_APPEND [0] LENGTH(v0) -> null_LENGTH [0] The TRS has the following type information: GE :: s:0 -> s:0 -> c2:null_GE s :: s:0 -> s:0 c2 :: c2:null_GE -> c2:null_GE IF :: cons:nil:null_append -> false:true:null_ge -> cons:nil:null_append -> s:0 -> s:0 -> c6:null_IF false :: false:true:null_ge c6 :: c7:c8:null_HELP -> c6:null_IF HELP :: s:0 -> s:0 -> cons:nil:null_append -> cons:nil:null_append -> c7:c8:null_HELP cons :: a -> cons:nil:null_append -> cons:nil:null_append c7 :: c6:null_IF -> c10:null_APPEND -> c7:c8:null_HELP append :: cons:nil:null_append -> cons:nil:null_append -> cons:nil:null_append nil :: cons:nil:null_append ge :: s:0 -> s:0 -> false:true:null_ge APPEND :: cons:nil:null_append -> cons:nil:null_append -> c10:null_APPEND c8 :: c6:null_IF -> c2:null_GE -> c7:c8:null_HELP c10 :: c10:null_APPEND -> c10:null_APPEND LENGTH :: cons:nil:null_append -> c12:null_LENGTH c12 :: c12:null_LENGTH -> c12:null_LENGTH 0 :: s:0 true :: false:true:null_ge null_append :: cons:nil:null_append null_ge :: false:true:null_ge null_GE :: c2:null_GE null_IF :: c6:null_IF null_HELP :: c7:c8:null_HELP null_APPEND :: c10:null_APPEND null_LENGTH :: c12:null_LENGTH const :: a Rewrite Strategy: INNERMOST ---------------------------------------- (19) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: false => 1 nil => 0 0 => 0 true => 2 null_append => 0 null_ge => 0 null_GE => 0 null_IF => 0 null_HELP => 0 null_APPEND => 0 null_LENGTH => 0 const => 0 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: APPEND(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 APPEND(z, z') -{ 1 }-> 1 + APPEND(z1, z2) :|: z1 >= 0, z' = z2, z0 >= 0, z = 1 + z0 + z1, z2 >= 0 GE(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 GE(z, z') -{ 1 }-> 1 + GE(z0, z1) :|: z1 >= 0, z = 1 + z0, z0 >= 0, z' = 1 + z1 HELP(z, z', z'', z5) -{ 0 }-> 0 :|: z5 = v3, v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0, v3 >= 0 HELP(z, z', z'', z5) -{ 1 }-> 1 + IF(append(z3, 1 + z2 + 0), ge(z0, z1), 1 + z2 + z4, z0, z1) + GE(z0, z1) :|: z = z0, z1 >= 0, z5 = z4, z' = z1, z0 >= 0, z4 >= 0, z'' = 1 + z2 + z3, z2 >= 0, z3 >= 0 HELP(z, z', z'', z5) -{ 1 }-> 1 + IF(append(z3, 1 + z2 + 0), ge(z0, z1), 1 + z2 + z4, z0, z1) + APPEND(z3, 1 + z2 + 0) :|: z = z0, z1 >= 0, z5 = z4, z' = z1, z0 >= 0, z4 >= 0, z'' = 1 + z2 + z3, z2 >= 0, z3 >= 0 IF(z, z', z'', z5, z6) -{ 0 }-> 0 :|: z5 = v3, v0 >= 0, v4 >= 0, z6 = v4, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0, v3 >= 0 IF(z, z', z'', z5, z6) -{ 1 }-> 1 + HELP(1 + z2, z3, z0, z1) :|: z = z0, z1 >= 0, z6 = z3, z0 >= 0, z' = 1, z5 = z2, z2 >= 0, z3 >= 0, z'' = z1 LENGTH(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 LENGTH(z) -{ 1 }-> 1 + LENGTH(z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 append(z, z') -{ 0 }-> z0 :|: z0 >= 0, z = 0, z' = z0 append(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 append(z, z') -{ 0 }-> 1 + z0 + append(z1, z2) :|: z1 >= 0, z' = z2, z0 >= 0, z = 1 + z0 + z1, z2 >= 0 ge(z, z') -{ 0 }-> ge(z0, z1) :|: z1 >= 0, z = 1 + z0, z0 >= 0, z' = 1 + z1 ge(z, z') -{ 0 }-> 2 :|: z = z0, z0 >= 0, z' = 0 ge(z, z') -{ 0 }-> 1 :|: z0 >= 0, z' = 1 + z0, z = 0 ge(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (21) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V, V6, V5, V4),0,[fun(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V6, V5, V4),0,[fun1(V1, V, V6, V5, V4, Out)],[V1 >= 0,V >= 0,V6 >= 0,V5 >= 0,V4 >= 0]). eq(start(V1, V, V6, V5, V4),0,[fun2(V1, V, V6, V5, Out)],[V1 >= 0,V >= 0,V6 >= 0,V5 >= 0]). eq(start(V1, V, V6, V5, V4),0,[fun3(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V6, V5, V4),0,[fun4(V1, Out)],[V1 >= 0]). eq(start(V1, V, V6, V5, V4),0,[append(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V6, V5, V4),0,[ge(V1, V, Out)],[V1 >= 0,V >= 0]). eq(fun(V1, V, Out),1,[fun(V3, V2, Ret1)],[Out = 1 + Ret1,V2 >= 0,V1 = 1 + V3,V3 >= 0,V = 1 + V2]). eq(fun1(V1, V, V6, V5, V4, Out),1,[fun2(1 + V10, V9, V8, V7, Ret11)],[Out = 1 + Ret11,V1 = V8,V7 >= 0,V4 = V9,V8 >= 0,V = 1,V5 = V10,V10 >= 0,V9 >= 0,V6 = V7]). eq(fun2(V1, V, V6, V5, Out),1,[append(V15, 1 + V11 + 0, Ret010),ge(V13, V12, Ret011),fun1(Ret010, Ret011, 1 + V11 + V14, V13, V12, Ret01),fun3(V15, 1 + V11 + 0, Ret12)],[Out = 1 + Ret01 + Ret12,V1 = V13,V12 >= 0,V5 = V14,V = V12,V13 >= 0,V14 >= 0,V6 = 1 + V11 + V15,V11 >= 0,V15 >= 0]). eq(fun2(V1, V, V6, V5, Out),1,[append(V17, 1 + V18 + 0, Ret0101),ge(V16, V19, Ret0111),fun1(Ret0101, Ret0111, 1 + V18 + V20, V16, V19, Ret012),fun(V16, V19, Ret13)],[Out = 1 + Ret012 + Ret13,V1 = V16,V19 >= 0,V5 = V20,V = V19,V16 >= 0,V20 >= 0,V6 = 1 + V17 + V18,V18 >= 0,V17 >= 0]). eq(fun3(V1, V, Out),1,[fun3(V21, V23, Ret14)],[Out = 1 + Ret14,V21 >= 0,V = V23,V22 >= 0,V1 = 1 + V21 + V22,V23 >= 0]). eq(fun4(V1, Out),1,[fun4(V24, Ret15)],[Out = 1 + Ret15,V24 >= 0,V25 >= 0,V1 = 1 + V24 + V25]). eq(append(V1, V, Out),0,[],[Out = V26,V26 >= 0,V1 = 0,V = V26]). eq(append(V1, V, Out),0,[append(V27, V28, Ret16)],[Out = 1 + Ret16 + V29,V27 >= 0,V = V28,V29 >= 0,V1 = 1 + V27 + V29,V28 >= 0]). eq(ge(V1, V, Out),0,[],[Out = 2,V1 = V30,V30 >= 0,V = 0]). eq(ge(V1, V, Out),0,[],[Out = 1,V31 >= 0,V = 1 + V31,V1 = 0]). eq(ge(V1, V, Out),0,[ge(V33, V32, Ret)],[Out = Ret,V32 >= 0,V1 = 1 + V33,V33 >= 0,V = 1 + V32]). eq(append(V1, V, Out),0,[],[Out = 0,V35 >= 0,V34 >= 0,V1 = V35,V = V34]). eq(ge(V1, V, Out),0,[],[Out = 0,V37 >= 0,V36 >= 0,V1 = V37,V = V36]). eq(fun(V1, V, Out),0,[],[Out = 0,V39 >= 0,V38 >= 0,V1 = V39,V = V38]). eq(fun1(V1, V, V6, V5, V4, Out),0,[],[Out = 0,V5 = V43,V40 >= 0,V42 >= 0,V4 = V42,V6 = V44,V41 >= 0,V1 = V40,V = V41,V44 >= 0,V43 >= 0]). eq(fun2(V1, V, V6, V5, Out),0,[],[Out = 0,V5 = V48,V46 >= 0,V6 = V47,V45 >= 0,V1 = V46,V = V45,V47 >= 0,V48 >= 0]). eq(fun3(V1, V, Out),0,[],[Out = 0,V50 >= 0,V49 >= 0,V1 = V50,V = V49]). eq(fun4(V1, Out),0,[],[Out = 0,V51 >= 0,V1 = V51]). input_output_vars(fun(V1,V,Out),[V1,V],[Out]). input_output_vars(fun1(V1,V,V6,V5,V4,Out),[V1,V,V6,V5,V4],[Out]). input_output_vars(fun2(V1,V,V6,V5,Out),[V1,V,V6,V5],[Out]). input_output_vars(fun3(V1,V,Out),[V1,V],[Out]). input_output_vars(fun4(V1,Out),[V1],[Out]). input_output_vars(append(V1,V,Out),[V1,V],[Out]). input_output_vars(ge(V1,V,Out),[V1,V],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive : [append/3] 1. recursive : [fun/3] 2. recursive : [fun3/3] 3. recursive : [ge/3] 4. recursive [non_tail] : [fun1/6,fun2/5] 5. recursive : [fun4/2] 6. non_recursive : [start/5] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into append/3 1. SCC is partially evaluated into fun/3 2. SCC is partially evaluated into fun3/3 3. SCC is partially evaluated into ge/3 4. SCC is partially evaluated into fun2/5 5. SCC is partially evaluated into fun4/2 6. SCC is partially evaluated into start/5 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations append/3 * CE 22 is refined into CE [27] * CE 20 is refined into CE [28] * CE 21 is refined into CE [29] ### Cost equations --> "Loop" of append/3 * CEs [29] --> Loop 18 * CEs [27] --> Loop 19 * CEs [28] --> Loop 20 ### Ranking functions of CR append(V1,V,Out) * RF of phase [18]: [V1] #### Partial ranking functions of CR append(V1,V,Out) * Partial RF of phase [18]: - RF of loop [18:1]: V1 ### Specialization of cost equations fun/3 * CE 15 is refined into CE [30] * CE 14 is refined into CE [31] ### Cost equations --> "Loop" of fun/3 * CEs [31] --> Loop 21 * CEs [30] --> Loop 22 ### Ranking functions of CR fun(V1,V,Out) * RF of phase [21]: [V,V1] #### Partial ranking functions of CR fun(V1,V,Out) * Partial RF of phase [21]: - RF of loop [21:1]: V V1 ### Specialization of cost equations fun3/3 * CE 17 is refined into CE [32] * CE 16 is refined into CE [33] ### Cost equations --> "Loop" of fun3/3 * CEs [33] --> Loop 23 * CEs [32] --> Loop 24 ### Ranking functions of CR fun3(V1,V,Out) * RF of phase [23]: [V1] #### Partial ranking functions of CR fun3(V1,V,Out) * Partial RF of phase [23]: - RF of loop [23:1]: V1 ### Specialization of cost equations ge/3 * CE 26 is refined into CE [34] * CE 23 is refined into CE [35] * CE 24 is refined into CE [36] * CE 25 is refined into CE [37] ### Cost equations --> "Loop" of ge/3 * CEs [37] --> Loop 25 * CEs [34] --> Loop 26 * CEs [35] --> Loop 27 * CEs [36] --> Loop 28 ### Ranking functions of CR ge(V1,V,Out) * RF of phase [25]: [V,V1] #### Partial ranking functions of CR ge(V1,V,Out) * Partial RF of phase [25]: - RF of loop [25:1]: V V1 ### Specialization of cost equations fun2/5 * CE 9 is refined into CE [38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69] * CE 10 is refined into CE [70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104] * CE 13 is refined into CE [105] * CE 11 is refined into CE [106,107,108,109,110,111,112,113,114,115,116,117] * CE 12 is refined into CE [118,119,120,121,122,123,124,125,126,127,128,129,130,131] ### Cost equations --> "Loop" of fun2/5 * CEs [117] --> Loop 29 * CEs [131] --> Loop 30 * CEs [116,130] --> Loop 31 * CEs [114] --> Loop 32 * CEs [127] --> Loop 33 * CEs [108] --> Loop 34 * CEs [113,126] --> Loop 35 * CEs [107,119] --> Loop 36 * CEs [111] --> Loop 37 * CEs [123] --> Loop 38 * CEs [110,122] --> Loop 39 * CEs [129] --> Loop 40 * CEs [115,128] --> Loop 41 * CEs [125] --> Loop 42 * CEs [112,124] --> Loop 43 * CEs [106,118] --> Loop 44 * CEs [121] --> Loop 45 * CEs [109,120] --> Loop 46 * CEs [45,53] --> Loop 47 * CEs [41,43,49,51,57,59,61,65,67,69] --> Loop 48 * CEs [105] --> Loop 49 * CEs [78,88,98] --> Loop 50 * CEs [39,47,55,63,71,77,87,97] --> Loop 51 * CEs [76,80,82,84,86,90,92,94,96,100,102,104] --> Loop 52 * CEs [38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,73,74,75,79,81,83,85,89,91,93,95,99,101,103] --> Loop 53 ### Ranking functions of CR fun2(V1,V,V6,V5,Out) * RF of phase [29,30,31,32,33,34,35,36]: [-V1+V] #### Partial ranking functions of CR fun2(V1,V,V6,V5,Out) * Partial RF of phase [29,30,31,32,33,34,35,36]: - RF of loop [29:1,30:1,31:1]: V6-1 - RF of loop [29:1,30:1,31:1,32:1,33:1,34:1,35:1,36:1]: -V1+V ### Specialization of cost equations fun4/2 * CE 19 is refined into CE [132] * CE 18 is refined into CE [133] ### Cost equations --> "Loop" of fun4/2 * CEs [133] --> Loop 54 * CEs [132] --> Loop 55 ### Ranking functions of CR fun4(V1,Out) * RF of phase [54]: [V1] #### Partial ranking functions of CR fun4(V1,Out) * Partial RF of phase [54]: - RF of loop [54:1]: V1 ### Specialization of cost equations start/5 * CE 1 is refined into CE [134] * CE 2 is refined into CE [135,136,137,138,139] * CE 3 is refined into CE [140,141] * CE 4 is refined into CE [142,143,144,145,146,147,148,149,150,151,152,153,154] * CE 5 is refined into CE [155,156] * CE 6 is refined into CE [157,158] * CE 7 is refined into CE [159,160,161,162] * CE 8 is refined into CE [163,164,165,166,167] ### Cost equations --> "Loop" of start/5 * CEs [135,136,137,138,139] --> Loop 56 * CEs [164] --> Loop 57 * CEs [134,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,165,166,167] --> Loop 58 ### Ranking functions of CR start(V1,V,V6,V5,V4) #### Partial ranking functions of CR start(V1,V,V6,V5,V4) Computing Bounds ===================================== #### Cost of chains of append(V1,V,Out): * Chain [[18],20]: 0 with precondition: [V+V1=Out,V1>=1,V>=0] * Chain [[18],19]: 0 with precondition: [V>=0,Out>=1,V1>=Out] * Chain [20]: 0 with precondition: [V1=0,V=Out,V>=0] * Chain [19]: 0 with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of fun(V1,V,Out): * Chain [[21],22]: 1*it(21)+0 Such that:it(21) =< Out with precondition: [Out>=1,V1>=Out,V>=Out] * Chain [22]: 0 with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of fun3(V1,V,Out): * Chain [[23],24]: 1*it(23)+0 Such that:it(23) =< V1 with precondition: [V>=0,Out>=1,V1>=Out] * Chain [24]: 0 with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of ge(V1,V,Out): * Chain [[25],28]: 0 with precondition: [Out=1,V1>=1,V>=V1+1] * Chain [[25],27]: 0 with precondition: [Out=2,V>=1,V1>=V] * Chain [[25],26]: 0 with precondition: [Out=0,V1>=1,V>=1] * Chain [28]: 0 with precondition: [V1=0,Out=1,V>=1] * Chain [27]: 0 with precondition: [V=0,Out=2,V1>=0] * Chain [26]: 0 with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of fun2(V1,V,V6,V5,Out): * Chain [[29,30,31,32,33,34,35,36],53]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+1 Such that:aux(1) =< V aux(10) =< -V1+V aux(11) =< V6 it(29) =< aux(10) it(32) =< aux(10) it(29) =< aux(11) aux(3) =< aux(1) aux(4) =< aux(11) s(12) =< it(29)*aux(11) s(11) =< it(29)*aux(1) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1>=1,V6>=1,V5>=0,Out>=3,V>=V1+1] * Chain [[29,30,31,32,33,34,35,36],52]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+12*s(16)+1 Such that:aux(1) =< V aux(13) =< -V1+V aux(14) =< V6 s(16) =< aux(14) it(29) =< aux(13) it(32) =< aux(13) it(29) =< aux(14) aux(3) =< aux(1) aux(4) =< aux(14) s(12) =< it(29)*aux(14) s(11) =< it(29)*aux(1) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1>=1,V6>=2,V5>=0,Out>=4,V>=V1+1] * Chain [[29,30,31,32,33,34,35,36],49]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+0 Such that:aux(1) =< V aux(15) =< -V1+V aux(16) =< V6 it(29) =< aux(15) it(32) =< aux(15) it(29) =< aux(16) aux(3) =< aux(1) aux(4) =< aux(16) s(12) =< it(29)*aux(16) s(11) =< it(29)*aux(1) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1>=1,V6>=1,V5>=0,Out>=2,V>=V1+1] * Chain [[29,30,31,32,33,34,35,36],48]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+10*s(28)+1 Such that:aux(19) =< -V1+V aux(20) =< V aux(21) =< V6 s(28) =< aux(20) it(29) =< aux(19) it(32) =< aux(19) it(29) =< aux(21) aux(3) =< aux(20) aux(4) =< aux(21) s(12) =< it(29)*aux(21) s(11) =< it(29)*aux(20) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1>=1,V6>=1,V5>=0,Out>=4,V>=V1+1] * Chain [[29,30,31,32,33,34,35,36],47]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+2*s(38)+1 Such that:aux(23) =< -V1+V aux(24) =< V aux(25) =< V6 s(38) =< aux(24) it(29) =< aux(23) it(32) =< aux(23) it(29) =< aux(25) aux(3) =< aux(24) aux(4) =< aux(25) s(12) =< it(29)*aux(25) s(11) =< it(29)*aux(24) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1>=1,V6>=1,V5>=0,V>=V1+1,Out+2*V1>=2*V+2] * Chain [[29,30,31,32,33,34,35,36],39,49]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+2 Such that:aux(1) =< V aux(26) =< -V1+V aux(27) =< V6 it(29) =< aux(26) it(32) =< aux(26) it(29) =< aux(27) aux(3) =< aux(1) aux(4) =< aux(27) s(12) =< it(29)*aux(27) s(11) =< it(29)*aux(1) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1>=1,V6>=1,V5>=0,Out>=4,V>=V1+2] * Chain [[29,30,31,32,33,34,35,36],38,49]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+1*s(40)+2 Such that:aux(1) =< V aux(28) =< -V1+V aux(29) =< V6 s(40) =< aux(29) it(29) =< aux(28) it(32) =< aux(28) it(29) =< aux(29) aux(3) =< aux(1) aux(4) =< aux(29) s(12) =< it(29)*aux(29) s(11) =< it(29)*aux(1) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1>=1,V6>=2,V5>=0,Out>=5,V>=V1+2] * Chain [[29,30,31,32,33,34,35,36],37,49]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+1*s(41)+2 Such that:aux(30) =< -V1+V aux(31) =< V aux(32) =< V6 s(41) =< aux(31) it(29) =< aux(30) it(32) =< aux(30) it(29) =< aux(32) aux(3) =< aux(31) aux(4) =< aux(32) s(12) =< it(29)*aux(32) s(11) =< it(29)*aux(31) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1>=1,V6>=1,V5>=0,Out>=5,V>=V1+2] * Chain [53]: 1 with precondition: [Out=1,V1>=0,V>=0,V6>=1,V5>=0] * Chain [52]: 12*s(16)+1 Such that:aux(12) =< V6 s(16) =< aux(12) with precondition: [V1>=0,V>=0,V5>=0,Out>=2,V6>=Out] * Chain [51]: 1 with precondition: [V=0,Out=1,V1>=0,V6>=1,V5>=0] * Chain [50]: 3*s(42)+1 Such that:aux(33) =< V6 s(42) =< aux(33) with precondition: [V=0,V1>=0,V5>=0,Out>=2,V6>=Out] * Chain [49]: 0 with precondition: [Out=0,V1>=0,V>=0,V6>=0,V5>=0] * Chain [48]: 6*s(28)+4*s(29)+1 Such that:aux(17) =< V1 aux(18) =< V s(29) =< aux(17) s(28) =< aux(18) with precondition: [V6>=1,V5>=0,Out>=2,V1+1>=Out,V+1>=Out] * Chain [47]: 2*s(38)+1 Such that:aux(22) =< V s(38) =< aux(22) with precondition: [V6>=1,V5>=0,Out>=2,V1>=V,V+1>=Out] * Chain [46,49]: 2 with precondition: [V1=0,Out=2,V>=1,V6>=1,V5>=0] * Chain [45,49]: 1*s(45)+2 Such that:s(45) =< V6 with precondition: [V1=0,V>=1,V5>=0,Out>=3,V6+1>=Out] * Chain [44,[29,30,31,32,33,34,35,36],53]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+3 Such that:aux(11) =< V6 aux(34) =< V it(29) =< aux(34) it(32) =< aux(34) it(29) =< aux(11) aux(3) =< aux(34) aux(4) =< aux(11) s(12) =< it(29)*aux(11) s(11) =< it(29)*aux(34) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=1,V5>=0,Out>=5] * Chain [44,[29,30,31,32,33,34,35,36],52]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+12*s(16)+3 Such that:aux(14) =< V6 aux(35) =< V s(16) =< aux(14) it(29) =< aux(35) it(32) =< aux(35) it(29) =< aux(14) aux(3) =< aux(35) aux(4) =< aux(14) s(12) =< it(29)*aux(14) s(11) =< it(29)*aux(35) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=2,V5>=0,Out>=6] * Chain [44,[29,30,31,32,33,34,35,36],49]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+2 Such that:aux(16) =< V6 aux(36) =< V it(29) =< aux(36) it(32) =< aux(36) it(29) =< aux(16) aux(3) =< aux(36) aux(4) =< aux(16) s(12) =< it(29)*aux(16) s(11) =< it(29)*aux(36) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=1,V5>=0,Out>=4] * Chain [44,[29,30,31,32,33,34,35,36],48]: 6*it(29)+20*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+3 Such that:aux(21) =< V6 aux(37) =< V it(32) =< aux(37) it(29) =< aux(37) it(29) =< aux(21) aux(3) =< aux(37) aux(4) =< aux(21) s(12) =< it(29)*aux(21) s(11) =< it(29)*aux(37) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=1,V5>=0,Out>=6] * Chain [44,[29,30,31,32,33,34,35,36],47]: 6*it(29)+12*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+3 Such that:aux(25) =< V6 aux(38) =< V it(32) =< aux(38) it(29) =< aux(38) it(29) =< aux(25) aux(3) =< aux(38) aux(4) =< aux(25) s(12) =< it(29)*aux(25) s(11) =< it(29)*aux(38) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=1,V5>=0,Out>=2*V+2] * Chain [44,[29,30,31,32,33,34,35,36],39,49]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+4 Such that:aux(27) =< V6 aux(39) =< V it(29) =< aux(39) it(32) =< aux(39) it(29) =< aux(27) aux(3) =< aux(39) aux(4) =< aux(27) s(12) =< it(29)*aux(27) s(11) =< it(29)*aux(39) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=3,V6>=1,V5>=0,Out>=6] * Chain [44,[29,30,31,32,33,34,35,36],38,49]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+1*s(40)+4 Such that:aux(29) =< V6 aux(40) =< V s(40) =< aux(29) it(29) =< aux(40) it(32) =< aux(40) it(29) =< aux(29) aux(3) =< aux(40) aux(4) =< aux(29) s(12) =< it(29)*aux(29) s(11) =< it(29)*aux(40) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=3,V6>=2,V5>=0,Out>=7] * Chain [44,[29,30,31,32,33,34,35,36],37,49]: 6*it(29)+11*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+4 Such that:aux(32) =< V6 aux(41) =< V it(32) =< aux(41) it(29) =< aux(41) it(29) =< aux(32) aux(3) =< aux(41) aux(4) =< aux(32) s(12) =< it(29)*aux(32) s(11) =< it(29)*aux(41) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=3,V6>=1,V5>=0,Out>=7] * Chain [44,53]: 3 with precondition: [V1=0,Out=3,V>=1,V6>=1,V5>=0] * Chain [44,52]: 12*s(16)+3 Such that:aux(12) =< V6 s(16) =< aux(12) with precondition: [V1=0,V>=1,V5>=0,Out>=4,V6+2>=Out] * Chain [44,49]: 2 with precondition: [V1=0,Out=2,V>=1,V6>=1,V5>=0] * Chain [44,48]: 6*s(28)+4*s(29)+3 Such that:aux(17) =< 1 aux(18) =< V s(29) =< aux(17) s(28) =< aux(18) with precondition: [V1=0,Out=4,V>=1,V6>=1,V5>=0] * Chain [44,47]: 2*s(38)+3 Such that:aux(22) =< 1 s(38) =< aux(22) with precondition: [V1=0,V=1,Out=4,V6>=1,V5>=0] * Chain [44,39,49]: 4 with precondition: [V1=0,Out=4,V>=2,V6>=1,V5>=0] * Chain [44,38,49]: 1*s(40)+4 Such that:s(40) =< V6 with precondition: [V1=0,V>=2,V5>=0,Out>=5,V6+3>=Out] * Chain [44,37,49]: 1*s(41)+4 Such that:s(41) =< 1 with precondition: [V1=0,Out=5,V>=2,V6>=1,V5>=0] * Chain [43,[29,30,31,32,33,34,35,36],53]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+3 Such that:aux(11) =< V6 aux(42) =< V it(29) =< aux(42) it(32) =< aux(42) it(29) =< aux(11) aux(3) =< aux(42) aux(4) =< aux(11) s(12) =< it(29)*aux(11) s(11) =< it(29)*aux(42) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=2,V5>=0,Out>=5] * Chain [43,[29,30,31,32,33,34,35,36],52]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+12*s(16)+3 Such that:aux(14) =< V6 aux(43) =< V s(16) =< aux(14) it(29) =< aux(43) it(32) =< aux(43) it(29) =< aux(14) aux(3) =< aux(43) aux(4) =< aux(14) s(12) =< it(29)*aux(14) s(11) =< it(29)*aux(43) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=2,V5>=0,Out>=6] * Chain [43,[29,30,31,32,33,34,35,36],49]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+2 Such that:aux(16) =< V6 aux(44) =< V it(29) =< aux(44) it(32) =< aux(44) it(29) =< aux(16) aux(3) =< aux(44) aux(4) =< aux(16) s(12) =< it(29)*aux(16) s(11) =< it(29)*aux(44) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=2,V5>=0,Out>=4] * Chain [43,[29,30,31,32,33,34,35,36],48]: 6*it(29)+20*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+3 Such that:aux(21) =< V6 aux(45) =< V it(32) =< aux(45) it(29) =< aux(45) it(29) =< aux(21) aux(3) =< aux(45) aux(4) =< aux(21) s(12) =< it(29)*aux(21) s(11) =< it(29)*aux(45) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=2,V5>=0,Out>=6] * Chain [43,[29,30,31,32,33,34,35,36],47]: 6*it(29)+12*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+3 Such that:aux(25) =< V6 aux(46) =< V it(32) =< aux(46) it(29) =< aux(46) it(29) =< aux(25) aux(3) =< aux(46) aux(4) =< aux(25) s(12) =< it(29)*aux(25) s(11) =< it(29)*aux(46) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=2,V5>=0,Out>=2*V+2] * Chain [43,[29,30,31,32,33,34,35,36],39,49]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+4 Such that:aux(27) =< V6 aux(47) =< V it(29) =< aux(47) it(32) =< aux(47) it(29) =< aux(27) aux(3) =< aux(47) aux(4) =< aux(27) s(12) =< it(29)*aux(27) s(11) =< it(29)*aux(47) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=3,V6>=2,V5>=0,Out>=6] * Chain [43,[29,30,31,32,33,34,35,36],38,49]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+1*s(40)+4 Such that:aux(29) =< V6 aux(48) =< V s(40) =< aux(29) it(29) =< aux(48) it(32) =< aux(48) it(29) =< aux(29) aux(3) =< aux(48) aux(4) =< aux(29) s(12) =< it(29)*aux(29) s(11) =< it(29)*aux(48) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=3,V6>=2,V5>=0,Out>=7] * Chain [43,[29,30,31,32,33,34,35,36],37,49]: 6*it(29)+11*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+4 Such that:aux(32) =< V6 aux(49) =< V it(32) =< aux(49) it(29) =< aux(49) it(29) =< aux(32) aux(3) =< aux(49) aux(4) =< aux(32) s(12) =< it(29)*aux(32) s(11) =< it(29)*aux(49) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=3,V6>=2,V5>=0,Out>=7] * Chain [43,53]: 3 with precondition: [V1=0,Out=3,V>=1,V6>=2,V5>=0] * Chain [43,52]: 12*s(16)+3 Such that:aux(12) =< V6 s(16) =< aux(12) with precondition: [V1=0,V>=1,V5>=0,Out>=4,V6+2>=Out] * Chain [43,49]: 2 with precondition: [V1=0,Out=2,V>=1,V6>=2,V5>=0] * Chain [43,48]: 6*s(28)+4*s(29)+3 Such that:aux(17) =< 1 aux(18) =< V s(29) =< aux(17) s(28) =< aux(18) with precondition: [V1=0,Out=4,V>=1,V6>=2,V5>=0] * Chain [43,47]: 2*s(38)+3 Such that:aux(22) =< 1 s(38) =< aux(22) with precondition: [V1=0,V=1,Out=4,V6>=2,V5>=0] * Chain [43,39,49]: 4 with precondition: [V1=0,Out=4,V>=2,V6>=2,V5>=0] * Chain [43,38,49]: 1*s(40)+4 Such that:s(40) =< V6 with precondition: [V1=0,V>=2,V5>=0,Out>=5,V6+3>=Out] * Chain [43,37,49]: 1*s(41)+4 Such that:s(41) =< 1 with precondition: [V1=0,Out=5,V>=2,V6>=2,V5>=0] * Chain [42,[29,30,31,32,33,34,35,36],53]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+1*s(46)+3 Such that:aux(50) =< V aux(51) =< V6 s(46) =< aux(51) it(29) =< aux(50) it(32) =< aux(50) it(29) =< aux(51) aux(3) =< aux(50) aux(4) =< aux(51) s(12) =< it(29)*aux(51) s(11) =< it(29)*aux(50) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=2,V5>=0,Out>=6] * Chain [42,[29,30,31,32,33,34,35,36],52]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+13*s(16)+3 Such that:aux(52) =< V aux(53) =< V6 s(16) =< aux(53) it(29) =< aux(52) it(32) =< aux(52) it(29) =< aux(53) aux(3) =< aux(52) aux(4) =< aux(53) s(12) =< it(29)*aux(53) s(11) =< it(29)*aux(52) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=2,V5>=0,Out>=7] * Chain [42,[29,30,31,32,33,34,35,36],49]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+1*s(46)+2 Such that:aux(54) =< V aux(55) =< V6 s(46) =< aux(55) it(29) =< aux(54) it(32) =< aux(54) it(29) =< aux(55) aux(3) =< aux(54) aux(4) =< aux(55) s(12) =< it(29)*aux(55) s(11) =< it(29)*aux(54) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=2,V5>=0,Out>=5] * Chain [42,[29,30,31,32,33,34,35,36],48]: 6*it(29)+20*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+1*s(46)+3 Such that:aux(56) =< V aux(57) =< V6 s(46) =< aux(57) it(32) =< aux(56) it(29) =< aux(56) it(29) =< aux(57) aux(3) =< aux(56) aux(4) =< aux(57) s(12) =< it(29)*aux(57) s(11) =< it(29)*aux(56) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=2,V5>=0,Out>=7] * Chain [42,[29,30,31,32,33,34,35,36],47]: 6*it(29)+12*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+1*s(46)+3 Such that:aux(58) =< V aux(59) =< V6 s(46) =< aux(59) it(32) =< aux(58) it(29) =< aux(58) it(29) =< aux(59) aux(3) =< aux(58) aux(4) =< aux(59) s(12) =< it(29)*aux(59) s(11) =< it(29)*aux(58) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=2,V5>=0,Out>=2*V+3] * Chain [42,[29,30,31,32,33,34,35,36],39,49]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+1*s(46)+4 Such that:aux(60) =< V aux(61) =< V6 s(46) =< aux(61) it(29) =< aux(60) it(32) =< aux(60) it(29) =< aux(61) aux(3) =< aux(60) aux(4) =< aux(61) s(12) =< it(29)*aux(61) s(11) =< it(29)*aux(60) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=3,V6>=2,V5>=0,Out>=7] * Chain [42,[29,30,31,32,33,34,35,36],38,49]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+2*s(40)+4 Such that:aux(62) =< V aux(63) =< V6 s(40) =< aux(63) it(29) =< aux(62) it(32) =< aux(62) it(29) =< aux(63) aux(3) =< aux(62) aux(4) =< aux(63) s(12) =< it(29)*aux(63) s(11) =< it(29)*aux(62) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=3,V6>=2,V5>=0,Out>=8] * Chain [42,[29,30,31,32,33,34,35,36],37,49]: 6*it(29)+11*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+1*s(46)+4 Such that:aux(64) =< V aux(65) =< V6 s(46) =< aux(65) it(32) =< aux(64) it(29) =< aux(64) it(29) =< aux(65) aux(3) =< aux(64) aux(4) =< aux(65) s(12) =< it(29)*aux(65) s(11) =< it(29)*aux(64) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=3,V6>=2,V5>=0,Out>=8] * Chain [42,53]: 1*s(46)+3 Such that:s(46) =< V6 with precondition: [V1=0,V>=1,V5>=0,Out>=4,V6+2>=Out] * Chain [42,52]: 13*s(16)+3 Such that:aux(66) =< V6 s(16) =< aux(66) with precondition: [V1=0,V>=1,V5>=0,Out>=5,2*V6+1>=Out] * Chain [42,49]: 1*s(46)+2 Such that:s(46) =< V6 with precondition: [V1=0,V>=1,V5>=0,Out>=3,V6+1>=Out] * Chain [42,48]: 6*s(28)+4*s(29)+1*s(46)+3 Such that:aux(17) =< 1 aux(18) =< V s(46) =< V6 s(29) =< aux(17) s(28) =< aux(18) with precondition: [V1=0,V>=1,V5>=0,Out>=5,V6+3>=Out] * Chain [42,47]: 2*s(38)+1*s(46)+3 Such that:aux(22) =< 1 s(46) =< V6 s(38) =< aux(22) with precondition: [V1=0,V=1,V5>=0,Out>=5,V6+3>=Out] * Chain [42,39,49]: 1*s(46)+4 Such that:s(46) =< V6 with precondition: [V1=0,V>=2,V5>=0,Out>=5,V6+3>=Out] * Chain [42,38,49]: 2*s(40)+4 Such that:aux(67) =< V6 s(40) =< aux(67) with precondition: [V1=0,V>=2,V5>=0,Out>=6,2*V6+2>=Out] * Chain [42,37,49]: 1*s(41)+1*s(46)+4 Such that:s(41) =< 1 s(46) =< V6 with precondition: [V1=0,V>=2,V5>=0,Out>=6,V6+4>=Out] * Chain [41,[29,30,31,32,33,34,35,36],53]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+3 Such that:aux(11) =< V6 aux(68) =< V it(29) =< aux(68) it(32) =< aux(68) it(29) =< aux(11) aux(3) =< aux(68) aux(4) =< aux(11) s(12) =< it(29)*aux(11) s(11) =< it(29)*aux(68) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=2,V5>=0,Out>=5] * Chain [41,[29,30,31,32,33,34,35,36],52]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+12*s(16)+3 Such that:aux(14) =< V6 aux(69) =< V s(16) =< aux(14) it(29) =< aux(69) it(32) =< aux(69) it(29) =< aux(14) aux(3) =< aux(69) aux(4) =< aux(14) s(12) =< it(29)*aux(14) s(11) =< it(29)*aux(69) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=3,V5>=0,Out>=6] * Chain [41,[29,30,31,32,33,34,35,36],49]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+2 Such that:aux(16) =< V6 aux(70) =< V it(29) =< aux(70) it(32) =< aux(70) it(29) =< aux(16) aux(3) =< aux(70) aux(4) =< aux(16) s(12) =< it(29)*aux(16) s(11) =< it(29)*aux(70) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=2,V5>=0,Out>=4] * Chain [41,[29,30,31,32,33,34,35,36],48]: 6*it(29)+20*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+3 Such that:aux(21) =< V6 aux(71) =< V it(32) =< aux(71) it(29) =< aux(71) it(29) =< aux(21) aux(3) =< aux(71) aux(4) =< aux(21) s(12) =< it(29)*aux(21) s(11) =< it(29)*aux(71) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=2,V5>=0,Out>=6] * Chain [41,[29,30,31,32,33,34,35,36],47]: 6*it(29)+12*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+3 Such that:aux(25) =< V6 aux(72) =< V it(32) =< aux(72) it(29) =< aux(72) it(29) =< aux(25) aux(3) =< aux(72) aux(4) =< aux(25) s(12) =< it(29)*aux(25) s(11) =< it(29)*aux(72) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=2,V5>=0,Out>=2*V+2] * Chain [41,[29,30,31,32,33,34,35,36],39,49]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+4 Such that:aux(27) =< V6 aux(73) =< V it(29) =< aux(73) it(32) =< aux(73) it(29) =< aux(27) aux(3) =< aux(73) aux(4) =< aux(27) s(12) =< it(29)*aux(27) s(11) =< it(29)*aux(73) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=3,V6>=2,V5>=0,Out>=6] * Chain [41,[29,30,31,32,33,34,35,36],38,49]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+1*s(40)+4 Such that:aux(29) =< V6 aux(74) =< V s(40) =< aux(29) it(29) =< aux(74) it(32) =< aux(74) it(29) =< aux(29) aux(3) =< aux(74) aux(4) =< aux(29) s(12) =< it(29)*aux(29) s(11) =< it(29)*aux(74) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=3,V6>=3,V5>=0,Out>=7] * Chain [41,[29,30,31,32,33,34,35,36],37,49]: 6*it(29)+11*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+4 Such that:aux(32) =< V6 aux(75) =< V it(32) =< aux(75) it(29) =< aux(75) it(29) =< aux(32) aux(3) =< aux(75) aux(4) =< aux(32) s(12) =< it(29)*aux(32) s(11) =< it(29)*aux(75) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=3,V6>=2,V5>=0,Out>=7] * Chain [41,53]: 3 with precondition: [V1=0,Out=3,V>=1,V6>=2,V5>=0] * Chain [41,52]: 12*s(16)+3 Such that:aux(12) =< V6 s(16) =< aux(12) with precondition: [V1=0,V>=1,V5>=0,Out>=4,V6+1>=Out] * Chain [41,49]: 2 with precondition: [V1=0,Out=2,V>=1,V6>=2,V5>=0] * Chain [41,48]: 6*s(28)+4*s(29)+3 Such that:aux(17) =< 1 aux(18) =< V s(29) =< aux(17) s(28) =< aux(18) with precondition: [V1=0,Out=4,V>=1,V6>=2,V5>=0] * Chain [41,47]: 2*s(38)+3 Such that:aux(22) =< 1 s(38) =< aux(22) with precondition: [V1=0,V=1,Out=4,V6>=2,V5>=0] * Chain [41,39,49]: 4 with precondition: [V1=0,Out=4,V>=2,V6>=2,V5>=0] * Chain [41,38,49]: 1*s(40)+4 Such that:s(40) =< V6 with precondition: [V1=0,V>=2,V5>=0,Out>=5,V6+2>=Out] * Chain [41,37,49]: 1*s(41)+4 Such that:s(41) =< 1 with precondition: [V1=0,Out=5,V>=2,V6>=2,V5>=0] * Chain [40,[29,30,31,32,33,34,35,36],53]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+1*s(47)+3 Such that:aux(76) =< V aux(77) =< V6 s(47) =< aux(77) it(29) =< aux(76) it(32) =< aux(76) it(29) =< aux(77) aux(3) =< aux(76) aux(4) =< aux(77) s(12) =< it(29)*aux(77) s(11) =< it(29)*aux(76) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=2,V5>=0,Out>=6] * Chain [40,[29,30,31,32,33,34,35,36],52]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+13*s(16)+3 Such that:aux(78) =< V aux(79) =< V6 s(16) =< aux(79) it(29) =< aux(78) it(32) =< aux(78) it(29) =< aux(79) aux(3) =< aux(78) aux(4) =< aux(79) s(12) =< it(29)*aux(79) s(11) =< it(29)*aux(78) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=3,V5>=0,Out>=7] * Chain [40,[29,30,31,32,33,34,35,36],49]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+1*s(47)+2 Such that:aux(80) =< V aux(81) =< V6 s(47) =< aux(81) it(29) =< aux(80) it(32) =< aux(80) it(29) =< aux(81) aux(3) =< aux(80) aux(4) =< aux(81) s(12) =< it(29)*aux(81) s(11) =< it(29)*aux(80) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=2,V5>=0,Out>=5] * Chain [40,[29,30,31,32,33,34,35,36],48]: 6*it(29)+20*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+1*s(47)+3 Such that:aux(82) =< V aux(83) =< V6 s(47) =< aux(83) it(32) =< aux(82) it(29) =< aux(82) it(29) =< aux(83) aux(3) =< aux(82) aux(4) =< aux(83) s(12) =< it(29)*aux(83) s(11) =< it(29)*aux(82) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=2,V5>=0,Out>=7] * Chain [40,[29,30,31,32,33,34,35,36],47]: 6*it(29)+12*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+1*s(47)+3 Such that:aux(84) =< V aux(85) =< V6 s(47) =< aux(85) it(32) =< aux(84) it(29) =< aux(84) it(29) =< aux(85) aux(3) =< aux(84) aux(4) =< aux(85) s(12) =< it(29)*aux(85) s(11) =< it(29)*aux(84) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=2,V6>=2,V5>=0,Out>=2*V+3] * Chain [40,[29,30,31,32,33,34,35,36],39,49]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+1*s(47)+4 Such that:aux(86) =< V aux(87) =< V6 s(47) =< aux(87) it(29) =< aux(86) it(32) =< aux(86) it(29) =< aux(87) aux(3) =< aux(86) aux(4) =< aux(87) s(12) =< it(29)*aux(87) s(11) =< it(29)*aux(86) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=3,V6>=2,V5>=0,Out>=7] * Chain [40,[29,30,31,32,33,34,35,36],38,49]: 6*it(29)+10*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+2*s(40)+4 Such that:aux(88) =< V aux(89) =< V6 s(40) =< aux(89) it(29) =< aux(88) it(32) =< aux(88) it(29) =< aux(89) aux(3) =< aux(88) aux(4) =< aux(89) s(12) =< it(29)*aux(89) s(11) =< it(29)*aux(88) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=3,V6>=3,V5>=0,Out>=8] * Chain [40,[29,30,31,32,33,34,35,36],37,49]: 6*it(29)+11*it(32)+1*s(11)+1*s(12)+2*s(13)+1*s(14)+1*s(47)+4 Such that:aux(90) =< V aux(91) =< V6 s(47) =< aux(91) it(32) =< aux(90) it(29) =< aux(90) it(29) =< aux(91) aux(3) =< aux(90) aux(4) =< aux(91) s(12) =< it(29)*aux(91) s(11) =< it(29)*aux(90) s(13) =< it(32)*aux(3) s(14) =< it(32)*aux(4) with precondition: [V1=0,V>=3,V6>=2,V5>=0,Out>=8] * Chain [40,53]: 1*s(47)+3 Such that:s(47) =< V6 with precondition: [V1=0,V>=1,V5>=0,Out>=4,V6+2>=Out] * Chain [40,52]: 13*s(16)+3 Such that:aux(92) =< V6 s(16) =< aux(92) with precondition: [V1=0,V>=1,V6>=3,V5>=0,Out>=5,2*V6>=Out] * Chain [40,49]: 1*s(47)+2 Such that:s(47) =< V6 with precondition: [V1=0,V>=1,V5>=0,Out>=3,V6+1>=Out] * Chain [40,48]: 6*s(28)+4*s(29)+1*s(47)+3 Such that:aux(17) =< 1 aux(18) =< V s(47) =< V6 s(29) =< aux(17) s(28) =< aux(18) with precondition: [V1=0,V>=1,V5>=0,Out>=5,V6+3>=Out] * Chain [40,47]: 2*s(38)+1*s(47)+3 Such that:aux(22) =< 1 s(47) =< V6 s(38) =< aux(22) with precondition: [V1=0,V=1,V5>=0,Out>=5,V6+3>=Out] * Chain [40,39,49]: 1*s(47)+4 Such that:s(47) =< V6 with precondition: [V1=0,V>=2,V5>=0,Out>=5,V6+3>=Out] * Chain [40,38,49]: 2*s(40)+4 Such that:aux(93) =< V6 s(40) =< aux(93) with precondition: [V1=0,V>=2,V6>=3,V5>=0,Out>=6,2*V6+1>=Out] * Chain [40,37,49]: 1*s(41)+1*s(47)+4 Such that:s(41) =< 1 s(47) =< V6 with precondition: [V1=0,V>=2,V5>=0,Out>=6,V6+4>=Out] * Chain [39,49]: 2 with precondition: [Out=2,V1>=1,V6>=1,V5>=0,V>=V1+1] * Chain [38,49]: 1*s(40)+2 Such that:s(40) =< V6 with precondition: [V1>=1,V5>=0,Out>=3,V>=V1+1,V6+1>=Out] * Chain [37,49]: 1*s(41)+2 Such that:s(41) =< V1 with precondition: [V6>=1,V5>=0,Out>=3,V>=V1+1,V1+2>=Out] #### Cost of chains of fun4(V1,Out): * Chain [[54],55]: 1*it(54)+0 Such that:it(54) =< V1 with precondition: [Out>=1,V1>=Out] * Chain [55]: 0 with precondition: [Out=0,V1>=0] #### Cost of chains of start(V1,V,V6,V5,V4): * Chain [58]: 517*s(638)+35*s(641)+192*s(646)+240*s(655)+40*s(658)+40*s(659)+80*s(660)+40*s(661)+7*s(670)+48*s(676)+80*s(677)+8*s(680)+8*s(681)+16*s(682)+8*s(683)+4 Such that:s(671) =< -V1+V aux(109) =< 1 aux(110) =< V1 aux(111) =< V aux(112) =< V6 s(670) =< aux(110) s(638) =< aux(111) s(641) =< aux(109) s(646) =< aux(112) s(655) =< aux(111) s(655) =< aux(112) s(656) =< aux(111) s(657) =< aux(112) s(658) =< s(655)*aux(112) s(659) =< s(655)*aux(111) s(660) =< s(638)*s(656) s(661) =< s(638)*s(657) s(676) =< s(671) s(677) =< s(671) s(676) =< aux(112) s(680) =< s(676)*aux(112) s(681) =< s(676)*aux(111) s(682) =< s(677)*s(656) s(683) =< s(677)*s(657) with precondition: [V1>=0] * Chain [57]: 0 with precondition: [V=0,V1>=0] * Chain [56]: 29*s(691)+5*s(692)+21*s(697)+48*s(698)+80*s(699)+8*s(702)+8*s(703)+16*s(704)+8*s(705)+3 Such that:s(693) =< -V5+V4 aux(113) =< V1 aux(114) =< V5+1 aux(115) =< V4 s(692) =< aux(114) s(691) =< aux(113) s(697) =< aux(115) s(698) =< s(693) s(699) =< s(693) s(698) =< aux(113) s(700) =< aux(115) s(701) =< aux(113) s(702) =< s(698)*aux(113) s(703) =< s(698)*aux(115) s(704) =< s(699)*s(700) s(705) =< s(699)*s(701) with precondition: [V=1,V1>=0,V6>=0,V5>=0,V4>=0] Closed-form bounds of start(V1,V,V6,V5,V4): ------------------------------------- * Chain [58] with precondition: [V1>=0] - Upper bound: 7*V1+39+nat(V)*757+nat(V)*120*nat(V)+nat(V)*80*nat(V6)+nat(V)*24*nat(-V1+V)+nat(V6)*192+nat(V6)*16*nat(-V1+V)+nat(-V1+V)*128 - Complexity: n^2 * Chain [57] with precondition: [V=0,V1>=0] - Upper bound: 0 - Complexity: constant * Chain [56] with precondition: [V=1,V1>=0,V6>=0,V5>=0,V4>=0] - Upper bound: 29*V1+3+16*V1*nat(-V5+V4)+21*V4+24*V4*nat(-V5+V4)+(5*V5+5)+nat(-V5+V4)*128 - Complexity: n^2 ### Maximum cost of start(V1,V,V6,V5,V4): 7*V1+3+max([16*V1*nat(-V5+V4)+22*V1+nat(V4)*21+nat(V4)*24*nat(-V5+V4)+nat(V5+1)*5+nat(-V5+V4)*128,nat(V)*757+36+nat(V)*120*nat(V)+nat(V)*80*nat(V6)+nat(V)*24*nat(-V1+V)+nat(V6)*192+nat(V6)*16*nat(-V1+V)+nat(-V1+V)*128]) Asymptotic class: n^2 * Total analysis performed in 3037 ms. ---------------------------------------- (22) BOUNDS(1, n^2) ---------------------------------------- (23) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (24) Obligation: Complexity Dependency Tuples Problem Rules: ge(z0, 0) -> true ge(0, s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) rev(z0) -> if(z0, eq(0, length(z0)), nil, 0, length(z0)) if(z0, true, z1, z2, z3) -> z1 if(z0, false, z1, z2, z3) -> help(s(z2), z3, z0, z1) help(z0, z1, cons(z2, z3), z4) -> if(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1) append(nil, z0) -> z0 append(cons(z0, z1), z2) -> cons(z0, append(z1, z2)) length(nil) -> 0 length(cons(z0, z1)) -> s(length(z1)) Tuples: GE(z0, 0) -> c GE(0, s(z0)) -> c1 GE(s(z0), s(z1)) -> c2(GE(z0, z1)) REV(z0) -> c3(IF(z0, eq(0, length(z0)), nil, 0, length(z0)), LENGTH(z0)) REV(z0) -> c4(IF(z0, eq(0, length(z0)), nil, 0, length(z0)), LENGTH(z0)) IF(z0, true, z1, z2, z3) -> c5 IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(nil, z0) -> c9 APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(nil) -> c11 LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) S tuples: GE(z0, 0) -> c GE(0, s(z0)) -> c1 GE(s(z0), s(z1)) -> c2(GE(z0, z1)) REV(z0) -> c3(IF(z0, eq(0, length(z0)), nil, 0, length(z0)), LENGTH(z0)) REV(z0) -> c4(IF(z0, eq(0, length(z0)), nil, 0, length(z0)), LENGTH(z0)) IF(z0, true, z1, z2, z3) -> c5 IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(nil, z0) -> c9 APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(nil) -> c11 LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) K tuples:none Defined Rule Symbols: ge_2, rev_1, if_5, help_4, append_2, length_1 Defined Pair Symbols: GE_2, REV_1, IF_5, HELP_4, APPEND_2, LENGTH_1 Compound Symbols: c, c1, c2_1, c3_2, c4_2, c5, c6_1, c7_2, c8_2, c9, c10_1, c11, c12_1 ---------------------------------------- (25) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (26) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: GE(z0, 0) -> c GE(0, s(z0)) -> c1 GE(s(z0), s(z1)) -> c2(GE(z0, z1)) REV(z0) -> c3(IF(z0, eq(0, length(z0)), nil, 0, length(z0)), LENGTH(z0)) REV(z0) -> c4(IF(z0, eq(0, length(z0)), nil, 0, length(z0)), LENGTH(z0)) IF(z0, true, z1, z2, z3) -> c5 IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(nil, z0) -> c9 APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(nil) -> c11 LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) The (relative) TRS S consists of the following rules: ge(z0, 0) -> true ge(0, s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) rev(z0) -> if(z0, eq(0, length(z0)), nil, 0, length(z0)) if(z0, true, z1, z2, z3) -> z1 if(z0, false, z1, z2, z3) -> help(s(z2), z3, z0, z1) help(z0, z1, cons(z2, z3), z4) -> if(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1) append(nil, z0) -> z0 append(cons(z0, z1), z2) -> cons(z0, append(z1, z2)) length(nil) -> 0 length(cons(z0, z1)) -> s(length(z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (27) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (28) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: GE(z0, 0') -> c GE(0', s(z0)) -> c1 GE(s(z0), s(z1)) -> c2(GE(z0, z1)) REV(z0) -> c3(IF(z0, eq(0', length(z0)), nil, 0', length(z0)), LENGTH(z0)) REV(z0) -> c4(IF(z0, eq(0', length(z0)), nil, 0', length(z0)), LENGTH(z0)) IF(z0, true, z1, z2, z3) -> c5 IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(nil, z0) -> c9 APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(nil) -> c11 LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) The (relative) TRS S consists of the following rules: ge(z0, 0') -> true ge(0', s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) rev(z0) -> if(z0, eq(0', length(z0)), nil, 0', length(z0)) if(z0, true, z1, z2, z3) -> z1 if(z0, false, z1, z2, z3) -> help(s(z2), z3, z0, z1) help(z0, z1, cons(z2, z3), z4) -> if(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1) append(nil, z0) -> z0 append(cons(z0, z1), z2) -> cons(z0, append(z1, z2)) length(nil) -> 0' length(cons(z0, z1)) -> s(length(z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (29) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (30) Obligation: Innermost TRS: Rules: GE(z0, 0') -> c GE(0', s(z0)) -> c1 GE(s(z0), s(z1)) -> c2(GE(z0, z1)) REV(z0) -> c3(IF(z0, eq(0', length(z0)), nil, 0', length(z0)), LENGTH(z0)) REV(z0) -> c4(IF(z0, eq(0', length(z0)), nil, 0', length(z0)), LENGTH(z0)) IF(z0, true, z1, z2, z3) -> c5 IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(nil, z0) -> c9 APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(nil) -> c11 LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) ge(z0, 0') -> true ge(0', s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) rev(z0) -> if(z0, eq(0', length(z0)), nil, 0', length(z0)) if(z0, true, z1, z2, z3) -> z1 if(z0, false, z1, z2, z3) -> help(s(z2), z3, z0, z1) help(z0, z1, cons(z2, z3), z4) -> if(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1) append(nil, z0) -> z0 append(cons(z0, z1), z2) -> cons(z0, append(z1, z2)) length(nil) -> 0' length(cons(z0, z1)) -> s(length(z1)) Types: GE :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 REV :: nil:cons -> c3:c4 c3 :: c5:c6 -> c11:c12 -> c3:c4 IF :: nil:cons -> eq:true:false -> nil:cons -> 0':s -> 0':s -> c5:c6 eq :: 0':s -> 0':s -> eq:true:false length :: nil:cons -> 0':s nil :: nil:cons LENGTH :: nil:cons -> c11:c12 c4 :: c5:c6 -> c11:c12 -> c3:c4 true :: eq:true:false c5 :: c5:c6 false :: eq:true:false c6 :: c7:c8 -> c5:c6 HELP :: 0':s -> 0':s -> nil:cons -> nil:cons -> c7:c8 cons :: a -> nil:cons -> nil:cons c7 :: c5:c6 -> c9:c10 -> c7:c8 append :: nil:cons -> nil:cons -> nil:cons ge :: 0':s -> 0':s -> eq:true:false APPEND :: nil:cons -> nil:cons -> c9:c10 c8 :: c5:c6 -> c:c1:c2 -> c7:c8 c9 :: c9:c10 c10 :: c9:c10 -> c9:c10 c11 :: c11:c12 c12 :: c11:c12 -> c11:c12 rev :: nil:cons -> nil:cons if :: nil:cons -> eq:true:false -> nil:cons -> 0':s -> 0':s -> nil:cons help :: 0':s -> 0':s -> nil:cons -> nil:cons -> nil:cons hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c43_13 :: c3:c4 hole_nil:cons4_13 :: nil:cons hole_c5:c65_13 :: c5:c6 hole_c11:c126_13 :: c11:c12 hole_eq:true:false7_13 :: eq:true:false hole_c7:c88_13 :: c7:c8 hole_a9_13 :: a hole_c9:c1010_13 :: c9:c10 gen_c:c1:c211_13 :: Nat -> c:c1:c2 gen_0':s12_13 :: Nat -> 0':s gen_nil:cons13_13 :: Nat -> nil:cons gen_c11:c1214_13 :: Nat -> c11:c12 gen_c9:c1015_13 :: Nat -> c9:c10 ---------------------------------------- (31) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: GE, length, LENGTH, HELP, append, ge, APPEND, help They will be analysed ascendingly in the following order: GE < HELP append < HELP ge < HELP APPEND < HELP append < help ge < help ---------------------------------------- (32) Obligation: Innermost TRS: Rules: GE(z0, 0') -> c GE(0', s(z0)) -> c1 GE(s(z0), s(z1)) -> c2(GE(z0, z1)) REV(z0) -> c3(IF(z0, eq(0', length(z0)), nil, 0', length(z0)), LENGTH(z0)) REV(z0) -> c4(IF(z0, eq(0', length(z0)), nil, 0', length(z0)), LENGTH(z0)) IF(z0, true, z1, z2, z3) -> c5 IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(nil, z0) -> c9 APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(nil) -> c11 LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) ge(z0, 0') -> true ge(0', s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) rev(z0) -> if(z0, eq(0', length(z0)), nil, 0', length(z0)) if(z0, true, z1, z2, z3) -> z1 if(z0, false, z1, z2, z3) -> help(s(z2), z3, z0, z1) help(z0, z1, cons(z2, z3), z4) -> if(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1) append(nil, z0) -> z0 append(cons(z0, z1), z2) -> cons(z0, append(z1, z2)) length(nil) -> 0' length(cons(z0, z1)) -> s(length(z1)) Types: GE :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 REV :: nil:cons -> c3:c4 c3 :: c5:c6 -> c11:c12 -> c3:c4 IF :: nil:cons -> eq:true:false -> nil:cons -> 0':s -> 0':s -> c5:c6 eq :: 0':s -> 0':s -> eq:true:false length :: nil:cons -> 0':s nil :: nil:cons LENGTH :: nil:cons -> c11:c12 c4 :: c5:c6 -> c11:c12 -> c3:c4 true :: eq:true:false c5 :: c5:c6 false :: eq:true:false c6 :: c7:c8 -> c5:c6 HELP :: 0':s -> 0':s -> nil:cons -> nil:cons -> c7:c8 cons :: a -> nil:cons -> nil:cons c7 :: c5:c6 -> c9:c10 -> c7:c8 append :: nil:cons -> nil:cons -> nil:cons ge :: 0':s -> 0':s -> eq:true:false APPEND :: nil:cons -> nil:cons -> c9:c10 c8 :: c5:c6 -> c:c1:c2 -> c7:c8 c9 :: c9:c10 c10 :: c9:c10 -> c9:c10 c11 :: c11:c12 c12 :: c11:c12 -> c11:c12 rev :: nil:cons -> nil:cons if :: nil:cons -> eq:true:false -> nil:cons -> 0':s -> 0':s -> nil:cons help :: 0':s -> 0':s -> nil:cons -> nil:cons -> nil:cons hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c43_13 :: c3:c4 hole_nil:cons4_13 :: nil:cons hole_c5:c65_13 :: c5:c6 hole_c11:c126_13 :: c11:c12 hole_eq:true:false7_13 :: eq:true:false hole_c7:c88_13 :: c7:c8 hole_a9_13 :: a hole_c9:c1010_13 :: c9:c10 gen_c:c1:c211_13 :: Nat -> c:c1:c2 gen_0':s12_13 :: Nat -> 0':s gen_nil:cons13_13 :: Nat -> nil:cons gen_c11:c1214_13 :: Nat -> c11:c12 gen_c9:c1015_13 :: Nat -> c9:c10 Generator Equations: gen_c:c1:c211_13(0) <=> c gen_c:c1:c211_13(+(x, 1)) <=> c2(gen_c:c1:c211_13(x)) gen_0':s12_13(0) <=> 0' gen_0':s12_13(+(x, 1)) <=> s(gen_0':s12_13(x)) gen_nil:cons13_13(0) <=> nil gen_nil:cons13_13(+(x, 1)) <=> cons(hole_a9_13, gen_nil:cons13_13(x)) gen_c11:c1214_13(0) <=> c11 gen_c11:c1214_13(+(x, 1)) <=> c12(gen_c11:c1214_13(x)) gen_c9:c1015_13(0) <=> c9 gen_c9:c1015_13(+(x, 1)) <=> c10(gen_c9:c1015_13(x)) The following defined symbols remain to be analysed: GE, length, LENGTH, HELP, append, ge, APPEND, help They will be analysed ascendingly in the following order: GE < HELP append < HELP ge < HELP APPEND < HELP append < help ge < help ---------------------------------------- (33) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: GE(gen_0':s12_13(n17_13), gen_0':s12_13(n17_13)) -> gen_c:c1:c211_13(n17_13), rt in Omega(1 + n17_13) Induction Base: GE(gen_0':s12_13(0), gen_0':s12_13(0)) ->_R^Omega(1) c Induction Step: GE(gen_0':s12_13(+(n17_13, 1)), gen_0':s12_13(+(n17_13, 1))) ->_R^Omega(1) c2(GE(gen_0':s12_13(n17_13), gen_0':s12_13(n17_13))) ->_IH c2(gen_c:c1:c211_13(c18_13)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (34) Complex Obligation (BEST) ---------------------------------------- (35) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: GE(z0, 0') -> c GE(0', s(z0)) -> c1 GE(s(z0), s(z1)) -> c2(GE(z0, z1)) REV(z0) -> c3(IF(z0, eq(0', length(z0)), nil, 0', length(z0)), LENGTH(z0)) REV(z0) -> c4(IF(z0, eq(0', length(z0)), nil, 0', length(z0)), LENGTH(z0)) IF(z0, true, z1, z2, z3) -> c5 IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(nil, z0) -> c9 APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(nil) -> c11 LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) ge(z0, 0') -> true ge(0', s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) rev(z0) -> if(z0, eq(0', length(z0)), nil, 0', length(z0)) if(z0, true, z1, z2, z3) -> z1 if(z0, false, z1, z2, z3) -> help(s(z2), z3, z0, z1) help(z0, z1, cons(z2, z3), z4) -> if(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1) append(nil, z0) -> z0 append(cons(z0, z1), z2) -> cons(z0, append(z1, z2)) length(nil) -> 0' length(cons(z0, z1)) -> s(length(z1)) Types: GE :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 REV :: nil:cons -> c3:c4 c3 :: c5:c6 -> c11:c12 -> c3:c4 IF :: nil:cons -> eq:true:false -> nil:cons -> 0':s -> 0':s -> c5:c6 eq :: 0':s -> 0':s -> eq:true:false length :: nil:cons -> 0':s nil :: nil:cons LENGTH :: nil:cons -> c11:c12 c4 :: c5:c6 -> c11:c12 -> c3:c4 true :: eq:true:false c5 :: c5:c6 false :: eq:true:false c6 :: c7:c8 -> c5:c6 HELP :: 0':s -> 0':s -> nil:cons -> nil:cons -> c7:c8 cons :: a -> nil:cons -> nil:cons c7 :: c5:c6 -> c9:c10 -> c7:c8 append :: nil:cons -> nil:cons -> nil:cons ge :: 0':s -> 0':s -> eq:true:false APPEND :: nil:cons -> nil:cons -> c9:c10 c8 :: c5:c6 -> c:c1:c2 -> c7:c8 c9 :: c9:c10 c10 :: c9:c10 -> c9:c10 c11 :: c11:c12 c12 :: c11:c12 -> c11:c12 rev :: nil:cons -> nil:cons if :: nil:cons -> eq:true:false -> nil:cons -> 0':s -> 0':s -> nil:cons help :: 0':s -> 0':s -> nil:cons -> nil:cons -> nil:cons hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c43_13 :: c3:c4 hole_nil:cons4_13 :: nil:cons hole_c5:c65_13 :: c5:c6 hole_c11:c126_13 :: c11:c12 hole_eq:true:false7_13 :: eq:true:false hole_c7:c88_13 :: c7:c8 hole_a9_13 :: a hole_c9:c1010_13 :: c9:c10 gen_c:c1:c211_13 :: Nat -> c:c1:c2 gen_0':s12_13 :: Nat -> 0':s gen_nil:cons13_13 :: Nat -> nil:cons gen_c11:c1214_13 :: Nat -> c11:c12 gen_c9:c1015_13 :: Nat -> c9:c10 Generator Equations: gen_c:c1:c211_13(0) <=> c gen_c:c1:c211_13(+(x, 1)) <=> c2(gen_c:c1:c211_13(x)) gen_0':s12_13(0) <=> 0' gen_0':s12_13(+(x, 1)) <=> s(gen_0':s12_13(x)) gen_nil:cons13_13(0) <=> nil gen_nil:cons13_13(+(x, 1)) <=> cons(hole_a9_13, gen_nil:cons13_13(x)) gen_c11:c1214_13(0) <=> c11 gen_c11:c1214_13(+(x, 1)) <=> c12(gen_c11:c1214_13(x)) gen_c9:c1015_13(0) <=> c9 gen_c9:c1015_13(+(x, 1)) <=> c10(gen_c9:c1015_13(x)) The following defined symbols remain to be analysed: GE, length, LENGTH, HELP, append, ge, APPEND, help They will be analysed ascendingly in the following order: GE < HELP append < HELP ge < HELP APPEND < HELP append < help ge < help ---------------------------------------- (36) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (37) BOUNDS(n^1, INF) ---------------------------------------- (38) Obligation: Innermost TRS: Rules: GE(z0, 0') -> c GE(0', s(z0)) -> c1 GE(s(z0), s(z1)) -> c2(GE(z0, z1)) REV(z0) -> c3(IF(z0, eq(0', length(z0)), nil, 0', length(z0)), LENGTH(z0)) REV(z0) -> c4(IF(z0, eq(0', length(z0)), nil, 0', length(z0)), LENGTH(z0)) IF(z0, true, z1, z2, z3) -> c5 IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(nil, z0) -> c9 APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(nil) -> c11 LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) ge(z0, 0') -> true ge(0', s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) rev(z0) -> if(z0, eq(0', length(z0)), nil, 0', length(z0)) if(z0, true, z1, z2, z3) -> z1 if(z0, false, z1, z2, z3) -> help(s(z2), z3, z0, z1) help(z0, z1, cons(z2, z3), z4) -> if(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1) append(nil, z0) -> z0 append(cons(z0, z1), z2) -> cons(z0, append(z1, z2)) length(nil) -> 0' length(cons(z0, z1)) -> s(length(z1)) Types: GE :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 REV :: nil:cons -> c3:c4 c3 :: c5:c6 -> c11:c12 -> c3:c4 IF :: nil:cons -> eq:true:false -> nil:cons -> 0':s -> 0':s -> c5:c6 eq :: 0':s -> 0':s -> eq:true:false length :: nil:cons -> 0':s nil :: nil:cons LENGTH :: nil:cons -> c11:c12 c4 :: c5:c6 -> c11:c12 -> c3:c4 true :: eq:true:false c5 :: c5:c6 false :: eq:true:false c6 :: c7:c8 -> c5:c6 HELP :: 0':s -> 0':s -> nil:cons -> nil:cons -> c7:c8 cons :: a -> nil:cons -> nil:cons c7 :: c5:c6 -> c9:c10 -> c7:c8 append :: nil:cons -> nil:cons -> nil:cons ge :: 0':s -> 0':s -> eq:true:false APPEND :: nil:cons -> nil:cons -> c9:c10 c8 :: c5:c6 -> c:c1:c2 -> c7:c8 c9 :: c9:c10 c10 :: c9:c10 -> c9:c10 c11 :: c11:c12 c12 :: c11:c12 -> c11:c12 rev :: nil:cons -> nil:cons if :: nil:cons -> eq:true:false -> nil:cons -> 0':s -> 0':s -> nil:cons help :: 0':s -> 0':s -> nil:cons -> nil:cons -> nil:cons hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c43_13 :: c3:c4 hole_nil:cons4_13 :: nil:cons hole_c5:c65_13 :: c5:c6 hole_c11:c126_13 :: c11:c12 hole_eq:true:false7_13 :: eq:true:false hole_c7:c88_13 :: c7:c8 hole_a9_13 :: a hole_c9:c1010_13 :: c9:c10 gen_c:c1:c211_13 :: Nat -> c:c1:c2 gen_0':s12_13 :: Nat -> 0':s gen_nil:cons13_13 :: Nat -> nil:cons gen_c11:c1214_13 :: Nat -> c11:c12 gen_c9:c1015_13 :: Nat -> c9:c10 Lemmas: GE(gen_0':s12_13(n17_13), gen_0':s12_13(n17_13)) -> gen_c:c1:c211_13(n17_13), rt in Omega(1 + n17_13) Generator Equations: gen_c:c1:c211_13(0) <=> c gen_c:c1:c211_13(+(x, 1)) <=> c2(gen_c:c1:c211_13(x)) gen_0':s12_13(0) <=> 0' gen_0':s12_13(+(x, 1)) <=> s(gen_0':s12_13(x)) gen_nil:cons13_13(0) <=> nil gen_nil:cons13_13(+(x, 1)) <=> cons(hole_a9_13, gen_nil:cons13_13(x)) gen_c11:c1214_13(0) <=> c11 gen_c11:c1214_13(+(x, 1)) <=> c12(gen_c11:c1214_13(x)) gen_c9:c1015_13(0) <=> c9 gen_c9:c1015_13(+(x, 1)) <=> c10(gen_c9:c1015_13(x)) The following defined symbols remain to be analysed: length, LENGTH, HELP, append, ge, APPEND, help They will be analysed ascendingly in the following order: append < HELP ge < HELP APPEND < HELP append < help ge < help ---------------------------------------- (39) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: length(gen_nil:cons13_13(n612_13)) -> gen_0':s12_13(n612_13), rt in Omega(0) Induction Base: length(gen_nil:cons13_13(0)) ->_R^Omega(0) 0' Induction Step: length(gen_nil:cons13_13(+(n612_13, 1))) ->_R^Omega(0) s(length(gen_nil:cons13_13(n612_13))) ->_IH s(gen_0':s12_13(c613_13)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (40) Obligation: Innermost TRS: Rules: GE(z0, 0') -> c GE(0', s(z0)) -> c1 GE(s(z0), s(z1)) -> c2(GE(z0, z1)) REV(z0) -> c3(IF(z0, eq(0', length(z0)), nil, 0', length(z0)), LENGTH(z0)) REV(z0) -> c4(IF(z0, eq(0', length(z0)), nil, 0', length(z0)), LENGTH(z0)) IF(z0, true, z1, z2, z3) -> c5 IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(nil, z0) -> c9 APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(nil) -> c11 LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) ge(z0, 0') -> true ge(0', s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) rev(z0) -> if(z0, eq(0', length(z0)), nil, 0', length(z0)) if(z0, true, z1, z2, z3) -> z1 if(z0, false, z1, z2, z3) -> help(s(z2), z3, z0, z1) help(z0, z1, cons(z2, z3), z4) -> if(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1) append(nil, z0) -> z0 append(cons(z0, z1), z2) -> cons(z0, append(z1, z2)) length(nil) -> 0' length(cons(z0, z1)) -> s(length(z1)) Types: GE :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 REV :: nil:cons -> c3:c4 c3 :: c5:c6 -> c11:c12 -> c3:c4 IF :: nil:cons -> eq:true:false -> nil:cons -> 0':s -> 0':s -> c5:c6 eq :: 0':s -> 0':s -> eq:true:false length :: nil:cons -> 0':s nil :: nil:cons LENGTH :: nil:cons -> c11:c12 c4 :: c5:c6 -> c11:c12 -> c3:c4 true :: eq:true:false c5 :: c5:c6 false :: eq:true:false c6 :: c7:c8 -> c5:c6 HELP :: 0':s -> 0':s -> nil:cons -> nil:cons -> c7:c8 cons :: a -> nil:cons -> nil:cons c7 :: c5:c6 -> c9:c10 -> c7:c8 append :: nil:cons -> nil:cons -> nil:cons ge :: 0':s -> 0':s -> eq:true:false APPEND :: nil:cons -> nil:cons -> c9:c10 c8 :: c5:c6 -> c:c1:c2 -> c7:c8 c9 :: c9:c10 c10 :: c9:c10 -> c9:c10 c11 :: c11:c12 c12 :: c11:c12 -> c11:c12 rev :: nil:cons -> nil:cons if :: nil:cons -> eq:true:false -> nil:cons -> 0':s -> 0':s -> nil:cons help :: 0':s -> 0':s -> nil:cons -> nil:cons -> nil:cons hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c43_13 :: c3:c4 hole_nil:cons4_13 :: nil:cons hole_c5:c65_13 :: c5:c6 hole_c11:c126_13 :: c11:c12 hole_eq:true:false7_13 :: eq:true:false hole_c7:c88_13 :: c7:c8 hole_a9_13 :: a hole_c9:c1010_13 :: c9:c10 gen_c:c1:c211_13 :: Nat -> c:c1:c2 gen_0':s12_13 :: Nat -> 0':s gen_nil:cons13_13 :: Nat -> nil:cons gen_c11:c1214_13 :: Nat -> c11:c12 gen_c9:c1015_13 :: Nat -> c9:c10 Lemmas: GE(gen_0':s12_13(n17_13), gen_0':s12_13(n17_13)) -> gen_c:c1:c211_13(n17_13), rt in Omega(1 + n17_13) length(gen_nil:cons13_13(n612_13)) -> gen_0':s12_13(n612_13), rt in Omega(0) Generator Equations: gen_c:c1:c211_13(0) <=> c gen_c:c1:c211_13(+(x, 1)) <=> c2(gen_c:c1:c211_13(x)) gen_0':s12_13(0) <=> 0' gen_0':s12_13(+(x, 1)) <=> s(gen_0':s12_13(x)) gen_nil:cons13_13(0) <=> nil gen_nil:cons13_13(+(x, 1)) <=> cons(hole_a9_13, gen_nil:cons13_13(x)) gen_c11:c1214_13(0) <=> c11 gen_c11:c1214_13(+(x, 1)) <=> c12(gen_c11:c1214_13(x)) gen_c9:c1015_13(0) <=> c9 gen_c9:c1015_13(+(x, 1)) <=> c10(gen_c9:c1015_13(x)) The following defined symbols remain to be analysed: LENGTH, HELP, append, ge, APPEND, help They will be analysed ascendingly in the following order: append < HELP ge < HELP APPEND < HELP append < help ge < help ---------------------------------------- (41) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: LENGTH(gen_nil:cons13_13(n962_13)) -> gen_c11:c1214_13(n962_13), rt in Omega(1 + n962_13) Induction Base: LENGTH(gen_nil:cons13_13(0)) ->_R^Omega(1) c11 Induction Step: LENGTH(gen_nil:cons13_13(+(n962_13, 1))) ->_R^Omega(1) c12(LENGTH(gen_nil:cons13_13(n962_13))) ->_IH c12(gen_c11:c1214_13(c963_13)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (42) Obligation: Innermost TRS: Rules: GE(z0, 0') -> c GE(0', s(z0)) -> c1 GE(s(z0), s(z1)) -> c2(GE(z0, z1)) REV(z0) -> c3(IF(z0, eq(0', length(z0)), nil, 0', length(z0)), LENGTH(z0)) REV(z0) -> c4(IF(z0, eq(0', length(z0)), nil, 0', length(z0)), LENGTH(z0)) IF(z0, true, z1, z2, z3) -> c5 IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(nil, z0) -> c9 APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(nil) -> c11 LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) ge(z0, 0') -> true ge(0', s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) rev(z0) -> if(z0, eq(0', length(z0)), nil, 0', length(z0)) if(z0, true, z1, z2, z3) -> z1 if(z0, false, z1, z2, z3) -> help(s(z2), z3, z0, z1) help(z0, z1, cons(z2, z3), z4) -> if(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1) append(nil, z0) -> z0 append(cons(z0, z1), z2) -> cons(z0, append(z1, z2)) length(nil) -> 0' length(cons(z0, z1)) -> s(length(z1)) Types: GE :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 REV :: nil:cons -> c3:c4 c3 :: c5:c6 -> c11:c12 -> c3:c4 IF :: nil:cons -> eq:true:false -> nil:cons -> 0':s -> 0':s -> c5:c6 eq :: 0':s -> 0':s -> eq:true:false length :: nil:cons -> 0':s nil :: nil:cons LENGTH :: nil:cons -> c11:c12 c4 :: c5:c6 -> c11:c12 -> c3:c4 true :: eq:true:false c5 :: c5:c6 false :: eq:true:false c6 :: c7:c8 -> c5:c6 HELP :: 0':s -> 0':s -> nil:cons -> nil:cons -> c7:c8 cons :: a -> nil:cons -> nil:cons c7 :: c5:c6 -> c9:c10 -> c7:c8 append :: nil:cons -> nil:cons -> nil:cons ge :: 0':s -> 0':s -> eq:true:false APPEND :: nil:cons -> nil:cons -> c9:c10 c8 :: c5:c6 -> c:c1:c2 -> c7:c8 c9 :: c9:c10 c10 :: c9:c10 -> c9:c10 c11 :: c11:c12 c12 :: c11:c12 -> c11:c12 rev :: nil:cons -> nil:cons if :: nil:cons -> eq:true:false -> nil:cons -> 0':s -> 0':s -> nil:cons help :: 0':s -> 0':s -> nil:cons -> nil:cons -> nil:cons hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c43_13 :: c3:c4 hole_nil:cons4_13 :: nil:cons hole_c5:c65_13 :: c5:c6 hole_c11:c126_13 :: c11:c12 hole_eq:true:false7_13 :: eq:true:false hole_c7:c88_13 :: c7:c8 hole_a9_13 :: a hole_c9:c1010_13 :: c9:c10 gen_c:c1:c211_13 :: Nat -> c:c1:c2 gen_0':s12_13 :: Nat -> 0':s gen_nil:cons13_13 :: Nat -> nil:cons gen_c11:c1214_13 :: Nat -> c11:c12 gen_c9:c1015_13 :: Nat -> c9:c10 Lemmas: GE(gen_0':s12_13(n17_13), gen_0':s12_13(n17_13)) -> gen_c:c1:c211_13(n17_13), rt in Omega(1 + n17_13) length(gen_nil:cons13_13(n612_13)) -> gen_0':s12_13(n612_13), rt in Omega(0) LENGTH(gen_nil:cons13_13(n962_13)) -> gen_c11:c1214_13(n962_13), rt in Omega(1 + n962_13) Generator Equations: gen_c:c1:c211_13(0) <=> c gen_c:c1:c211_13(+(x, 1)) <=> c2(gen_c:c1:c211_13(x)) gen_0':s12_13(0) <=> 0' gen_0':s12_13(+(x, 1)) <=> s(gen_0':s12_13(x)) gen_nil:cons13_13(0) <=> nil gen_nil:cons13_13(+(x, 1)) <=> cons(hole_a9_13, gen_nil:cons13_13(x)) gen_c11:c1214_13(0) <=> c11 gen_c11:c1214_13(+(x, 1)) <=> c12(gen_c11:c1214_13(x)) gen_c9:c1015_13(0) <=> c9 gen_c9:c1015_13(+(x, 1)) <=> c10(gen_c9:c1015_13(x)) The following defined symbols remain to be analysed: append, HELP, ge, APPEND, help They will be analysed ascendingly in the following order: append < HELP ge < HELP APPEND < HELP append < help ge < help ---------------------------------------- (43) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: append(gen_nil:cons13_13(n1384_13), gen_nil:cons13_13(b)) -> gen_nil:cons13_13(+(n1384_13, b)), rt in Omega(0) Induction Base: append(gen_nil:cons13_13(0), gen_nil:cons13_13(b)) ->_R^Omega(0) gen_nil:cons13_13(b) Induction Step: append(gen_nil:cons13_13(+(n1384_13, 1)), gen_nil:cons13_13(b)) ->_R^Omega(0) cons(hole_a9_13, append(gen_nil:cons13_13(n1384_13), gen_nil:cons13_13(b))) ->_IH cons(hole_a9_13, gen_nil:cons13_13(+(b, c1385_13))) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (44) Obligation: Innermost TRS: Rules: GE(z0, 0') -> c GE(0', s(z0)) -> c1 GE(s(z0), s(z1)) -> c2(GE(z0, z1)) REV(z0) -> c3(IF(z0, eq(0', length(z0)), nil, 0', length(z0)), LENGTH(z0)) REV(z0) -> c4(IF(z0, eq(0', length(z0)), nil, 0', length(z0)), LENGTH(z0)) IF(z0, true, z1, z2, z3) -> c5 IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(nil, z0) -> c9 APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(nil) -> c11 LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) ge(z0, 0') -> true ge(0', s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) rev(z0) -> if(z0, eq(0', length(z0)), nil, 0', length(z0)) if(z0, true, z1, z2, z3) -> z1 if(z0, false, z1, z2, z3) -> help(s(z2), z3, z0, z1) help(z0, z1, cons(z2, z3), z4) -> if(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1) append(nil, z0) -> z0 append(cons(z0, z1), z2) -> cons(z0, append(z1, z2)) length(nil) -> 0' length(cons(z0, z1)) -> s(length(z1)) Types: GE :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 REV :: nil:cons -> c3:c4 c3 :: c5:c6 -> c11:c12 -> c3:c4 IF :: nil:cons -> eq:true:false -> nil:cons -> 0':s -> 0':s -> c5:c6 eq :: 0':s -> 0':s -> eq:true:false length :: nil:cons -> 0':s nil :: nil:cons LENGTH :: nil:cons -> c11:c12 c4 :: c5:c6 -> c11:c12 -> c3:c4 true :: eq:true:false c5 :: c5:c6 false :: eq:true:false c6 :: c7:c8 -> c5:c6 HELP :: 0':s -> 0':s -> nil:cons -> nil:cons -> c7:c8 cons :: a -> nil:cons -> nil:cons c7 :: c5:c6 -> c9:c10 -> c7:c8 append :: nil:cons -> nil:cons -> nil:cons ge :: 0':s -> 0':s -> eq:true:false APPEND :: nil:cons -> nil:cons -> c9:c10 c8 :: c5:c6 -> c:c1:c2 -> c7:c8 c9 :: c9:c10 c10 :: c9:c10 -> c9:c10 c11 :: c11:c12 c12 :: c11:c12 -> c11:c12 rev :: nil:cons -> nil:cons if :: nil:cons -> eq:true:false -> nil:cons -> 0':s -> 0':s -> nil:cons help :: 0':s -> 0':s -> nil:cons -> nil:cons -> nil:cons hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c43_13 :: c3:c4 hole_nil:cons4_13 :: nil:cons hole_c5:c65_13 :: c5:c6 hole_c11:c126_13 :: c11:c12 hole_eq:true:false7_13 :: eq:true:false hole_c7:c88_13 :: c7:c8 hole_a9_13 :: a hole_c9:c1010_13 :: c9:c10 gen_c:c1:c211_13 :: Nat -> c:c1:c2 gen_0':s12_13 :: Nat -> 0':s gen_nil:cons13_13 :: Nat -> nil:cons gen_c11:c1214_13 :: Nat -> c11:c12 gen_c9:c1015_13 :: Nat -> c9:c10 Lemmas: GE(gen_0':s12_13(n17_13), gen_0':s12_13(n17_13)) -> gen_c:c1:c211_13(n17_13), rt in Omega(1 + n17_13) length(gen_nil:cons13_13(n612_13)) -> gen_0':s12_13(n612_13), rt in Omega(0) LENGTH(gen_nil:cons13_13(n962_13)) -> gen_c11:c1214_13(n962_13), rt in Omega(1 + n962_13) append(gen_nil:cons13_13(n1384_13), gen_nil:cons13_13(b)) -> gen_nil:cons13_13(+(n1384_13, b)), rt in Omega(0) Generator Equations: gen_c:c1:c211_13(0) <=> c gen_c:c1:c211_13(+(x, 1)) <=> c2(gen_c:c1:c211_13(x)) gen_0':s12_13(0) <=> 0' gen_0':s12_13(+(x, 1)) <=> s(gen_0':s12_13(x)) gen_nil:cons13_13(0) <=> nil gen_nil:cons13_13(+(x, 1)) <=> cons(hole_a9_13, gen_nil:cons13_13(x)) gen_c11:c1214_13(0) <=> c11 gen_c11:c1214_13(+(x, 1)) <=> c12(gen_c11:c1214_13(x)) gen_c9:c1015_13(0) <=> c9 gen_c9:c1015_13(+(x, 1)) <=> c10(gen_c9:c1015_13(x)) The following defined symbols remain to be analysed: ge, HELP, APPEND, help They will be analysed ascendingly in the following order: ge < HELP APPEND < HELP ge < help ---------------------------------------- (45) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ge(gen_0':s12_13(n2871_13), gen_0':s12_13(n2871_13)) -> true, rt in Omega(0) Induction Base: ge(gen_0':s12_13(0), gen_0':s12_13(0)) ->_R^Omega(0) true Induction Step: ge(gen_0':s12_13(+(n2871_13, 1)), gen_0':s12_13(+(n2871_13, 1))) ->_R^Omega(0) ge(gen_0':s12_13(n2871_13), gen_0':s12_13(n2871_13)) ->_IH true We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (46) Obligation: Innermost TRS: Rules: GE(z0, 0') -> c GE(0', s(z0)) -> c1 GE(s(z0), s(z1)) -> c2(GE(z0, z1)) REV(z0) -> c3(IF(z0, eq(0', length(z0)), nil, 0', length(z0)), LENGTH(z0)) REV(z0) -> c4(IF(z0, eq(0', length(z0)), nil, 0', length(z0)), LENGTH(z0)) IF(z0, true, z1, z2, z3) -> c5 IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(nil, z0) -> c9 APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(nil) -> c11 LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) ge(z0, 0') -> true ge(0', s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) rev(z0) -> if(z0, eq(0', length(z0)), nil, 0', length(z0)) if(z0, true, z1, z2, z3) -> z1 if(z0, false, z1, z2, z3) -> help(s(z2), z3, z0, z1) help(z0, z1, cons(z2, z3), z4) -> if(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1) append(nil, z0) -> z0 append(cons(z0, z1), z2) -> cons(z0, append(z1, z2)) length(nil) -> 0' length(cons(z0, z1)) -> s(length(z1)) Types: GE :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 REV :: nil:cons -> c3:c4 c3 :: c5:c6 -> c11:c12 -> c3:c4 IF :: nil:cons -> eq:true:false -> nil:cons -> 0':s -> 0':s -> c5:c6 eq :: 0':s -> 0':s -> eq:true:false length :: nil:cons -> 0':s nil :: nil:cons LENGTH :: nil:cons -> c11:c12 c4 :: c5:c6 -> c11:c12 -> c3:c4 true :: eq:true:false c5 :: c5:c6 false :: eq:true:false c6 :: c7:c8 -> c5:c6 HELP :: 0':s -> 0':s -> nil:cons -> nil:cons -> c7:c8 cons :: a -> nil:cons -> nil:cons c7 :: c5:c6 -> c9:c10 -> c7:c8 append :: nil:cons -> nil:cons -> nil:cons ge :: 0':s -> 0':s -> eq:true:false APPEND :: nil:cons -> nil:cons -> c9:c10 c8 :: c5:c6 -> c:c1:c2 -> c7:c8 c9 :: c9:c10 c10 :: c9:c10 -> c9:c10 c11 :: c11:c12 c12 :: c11:c12 -> c11:c12 rev :: nil:cons -> nil:cons if :: nil:cons -> eq:true:false -> nil:cons -> 0':s -> 0':s -> nil:cons help :: 0':s -> 0':s -> nil:cons -> nil:cons -> nil:cons hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c43_13 :: c3:c4 hole_nil:cons4_13 :: nil:cons hole_c5:c65_13 :: c5:c6 hole_c11:c126_13 :: c11:c12 hole_eq:true:false7_13 :: eq:true:false hole_c7:c88_13 :: c7:c8 hole_a9_13 :: a hole_c9:c1010_13 :: c9:c10 gen_c:c1:c211_13 :: Nat -> c:c1:c2 gen_0':s12_13 :: Nat -> 0':s gen_nil:cons13_13 :: Nat -> nil:cons gen_c11:c1214_13 :: Nat -> c11:c12 gen_c9:c1015_13 :: Nat -> c9:c10 Lemmas: GE(gen_0':s12_13(n17_13), gen_0':s12_13(n17_13)) -> gen_c:c1:c211_13(n17_13), rt in Omega(1 + n17_13) length(gen_nil:cons13_13(n612_13)) -> gen_0':s12_13(n612_13), rt in Omega(0) LENGTH(gen_nil:cons13_13(n962_13)) -> gen_c11:c1214_13(n962_13), rt in Omega(1 + n962_13) append(gen_nil:cons13_13(n1384_13), gen_nil:cons13_13(b)) -> gen_nil:cons13_13(+(n1384_13, b)), rt in Omega(0) ge(gen_0':s12_13(n2871_13), gen_0':s12_13(n2871_13)) -> true, rt in Omega(0) Generator Equations: gen_c:c1:c211_13(0) <=> c gen_c:c1:c211_13(+(x, 1)) <=> c2(gen_c:c1:c211_13(x)) gen_0':s12_13(0) <=> 0' gen_0':s12_13(+(x, 1)) <=> s(gen_0':s12_13(x)) gen_nil:cons13_13(0) <=> nil gen_nil:cons13_13(+(x, 1)) <=> cons(hole_a9_13, gen_nil:cons13_13(x)) gen_c11:c1214_13(0) <=> c11 gen_c11:c1214_13(+(x, 1)) <=> c12(gen_c11:c1214_13(x)) gen_c9:c1015_13(0) <=> c9 gen_c9:c1015_13(+(x, 1)) <=> c10(gen_c9:c1015_13(x)) The following defined symbols remain to be analysed: APPEND, HELP, help They will be analysed ascendingly in the following order: APPEND < HELP ---------------------------------------- (47) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: APPEND(gen_nil:cons13_13(n3253_13), gen_nil:cons13_13(b)) -> gen_c9:c1015_13(n3253_13), rt in Omega(1 + n3253_13) Induction Base: APPEND(gen_nil:cons13_13(0), gen_nil:cons13_13(b)) ->_R^Omega(1) c9 Induction Step: APPEND(gen_nil:cons13_13(+(n3253_13, 1)), gen_nil:cons13_13(b)) ->_R^Omega(1) c10(APPEND(gen_nil:cons13_13(n3253_13), gen_nil:cons13_13(b))) ->_IH c10(gen_c9:c1015_13(c3254_13)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (48) Obligation: Innermost TRS: Rules: GE(z0, 0') -> c GE(0', s(z0)) -> c1 GE(s(z0), s(z1)) -> c2(GE(z0, z1)) REV(z0) -> c3(IF(z0, eq(0', length(z0)), nil, 0', length(z0)), LENGTH(z0)) REV(z0) -> c4(IF(z0, eq(0', length(z0)), nil, 0', length(z0)), LENGTH(z0)) IF(z0, true, z1, z2, z3) -> c5 IF(z0, false, z1, z2, z3) -> c6(HELP(s(z2), z3, z0, z1)) HELP(z0, z1, cons(z2, z3), z4) -> c7(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), APPEND(z3, cons(z2, nil))) HELP(z0, z1, cons(z2, z3), z4) -> c8(IF(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1), GE(z0, z1)) APPEND(nil, z0) -> c9 APPEND(cons(z0, z1), z2) -> c10(APPEND(z1, z2)) LENGTH(nil) -> c11 LENGTH(cons(z0, z1)) -> c12(LENGTH(z1)) ge(z0, 0') -> true ge(0', s(z0)) -> false ge(s(z0), s(z1)) -> ge(z0, z1) rev(z0) -> if(z0, eq(0', length(z0)), nil, 0', length(z0)) if(z0, true, z1, z2, z3) -> z1 if(z0, false, z1, z2, z3) -> help(s(z2), z3, z0, z1) help(z0, z1, cons(z2, z3), z4) -> if(append(z3, cons(z2, nil)), ge(z0, z1), cons(z2, z4), z0, z1) append(nil, z0) -> z0 append(cons(z0, z1), z2) -> cons(z0, append(z1, z2)) length(nil) -> 0' length(cons(z0, z1)) -> s(length(z1)) Types: GE :: 0':s -> 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 REV :: nil:cons -> c3:c4 c3 :: c5:c6 -> c11:c12 -> c3:c4 IF :: nil:cons -> eq:true:false -> nil:cons -> 0':s -> 0':s -> c5:c6 eq :: 0':s -> 0':s -> eq:true:false length :: nil:cons -> 0':s nil :: nil:cons LENGTH :: nil:cons -> c11:c12 c4 :: c5:c6 -> c11:c12 -> c3:c4 true :: eq:true:false c5 :: c5:c6 false :: eq:true:false c6 :: c7:c8 -> c5:c6 HELP :: 0':s -> 0':s -> nil:cons -> nil:cons -> c7:c8 cons :: a -> nil:cons -> nil:cons c7 :: c5:c6 -> c9:c10 -> c7:c8 append :: nil:cons -> nil:cons -> nil:cons ge :: 0':s -> 0':s -> eq:true:false APPEND :: nil:cons -> nil:cons -> c9:c10 c8 :: c5:c6 -> c:c1:c2 -> c7:c8 c9 :: c9:c10 c10 :: c9:c10 -> c9:c10 c11 :: c11:c12 c12 :: c11:c12 -> c11:c12 rev :: nil:cons -> nil:cons if :: nil:cons -> eq:true:false -> nil:cons -> 0':s -> 0':s -> nil:cons help :: 0':s -> 0':s -> nil:cons -> nil:cons -> nil:cons hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c43_13 :: c3:c4 hole_nil:cons4_13 :: nil:cons hole_c5:c65_13 :: c5:c6 hole_c11:c126_13 :: c11:c12 hole_eq:true:false7_13 :: eq:true:false hole_c7:c88_13 :: c7:c8 hole_a9_13 :: a hole_c9:c1010_13 :: c9:c10 gen_c:c1:c211_13 :: Nat -> c:c1:c2 gen_0':s12_13 :: Nat -> 0':s gen_nil:cons13_13 :: Nat -> nil:cons gen_c11:c1214_13 :: Nat -> c11:c12 gen_c9:c1015_13 :: Nat -> c9:c10 Lemmas: GE(gen_0':s12_13(n17_13), gen_0':s12_13(n17_13)) -> gen_c:c1:c211_13(n17_13), rt in Omega(1 + n17_13) length(gen_nil:cons13_13(n612_13)) -> gen_0':s12_13(n612_13), rt in Omega(0) LENGTH(gen_nil:cons13_13(n962_13)) -> gen_c11:c1214_13(n962_13), rt in Omega(1 + n962_13) append(gen_nil:cons13_13(n1384_13), gen_nil:cons13_13(b)) -> gen_nil:cons13_13(+(n1384_13, b)), rt in Omega(0) ge(gen_0':s12_13(n2871_13), gen_0':s12_13(n2871_13)) -> true, rt in Omega(0) APPEND(gen_nil:cons13_13(n3253_13), gen_nil:cons13_13(b)) -> gen_c9:c1015_13(n3253_13), rt in Omega(1 + n3253_13) Generator Equations: gen_c:c1:c211_13(0) <=> c gen_c:c1:c211_13(+(x, 1)) <=> c2(gen_c:c1:c211_13(x)) gen_0':s12_13(0) <=> 0' gen_0':s12_13(+(x, 1)) <=> s(gen_0':s12_13(x)) gen_nil:cons13_13(0) <=> nil gen_nil:cons13_13(+(x, 1)) <=> cons(hole_a9_13, gen_nil:cons13_13(x)) gen_c11:c1214_13(0) <=> c11 gen_c11:c1214_13(+(x, 1)) <=> c12(gen_c11:c1214_13(x)) gen_c9:c1015_13(0) <=> c9 gen_c9:c1015_13(+(x, 1)) <=> c10(gen_c9:c1015_13(x)) The following defined symbols remain to be analysed: HELP, help