WORST_CASE(Omega(n^1),O(n^2)) proof of input_Mn8gwdUE1a.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) SimplificationProof [BOTH BOUNDS(ID, ID), 3 ms] (12) CpxRNTS (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) IntTrsBoundProof [UPPER BOUND(ID), 339 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 127 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 83 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 6 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 170 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 75 ms] (32) CpxRNTS (33) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 1333 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 597 ms] (38) CpxRNTS (39) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 86 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 2 ms] (44) CpxRNTS (45) FinalProof [FINISHED, 0 ms] (46) BOUNDS(1, n^2) (47) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (48) CdtProblem (49) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (50) CpxRelTRS (51) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (52) CpxRelTRS (53) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (54) typed CpxTrs (55) OrderProof [LOWER BOUND(ID), 9 ms] (56) typed CpxTrs (57) RewriteLemmaProof [LOWER BOUND(ID), 310 ms] (58) BEST (59) proven lower bound (60) LowerBoundPropagationProof [FINISHED, 0 ms] (61) BOUNDS(n^1, INF) (62) typed CpxTrs (63) RewriteLemmaProof [LOWER BOUND(ID), 172 ms] (64) typed CpxTrs (65) RewriteLemmaProof [LOWER BOUND(ID), 0 ms] (66) typed CpxTrs (67) RewriteLemmaProof [LOWER BOUND(ID), 66 ms] (68) typed CpxTrs (69) RewriteLemmaProof [LOWER BOUND(ID), 44 ms] (70) typed CpxTrs (71) RewriteLemmaProof [LOWER BOUND(ID), 47 ms] (72) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) inc(0) -> 0 inc(s(x)) -> s(inc(x)) log(x) -> log2(x, 0) log2(x, y) -> if(le(x, s(0)), x, inc(y)) if(true, x, s(y)) -> y if(false, x, y) -> log2(half(x), y) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: half(0) -> 0 [1] half(s(0)) -> 0 [1] half(s(s(x))) -> s(half(x)) [1] le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] inc(0) -> 0 [1] inc(s(x)) -> s(inc(x)) [1] log(x) -> log2(x, 0) [1] log2(x, y) -> if(le(x, s(0)), x, inc(y)) [1] if(true, x, s(y)) -> y [1] if(false, x, y) -> log2(half(x), y) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: half(0) -> 0 [1] half(s(0)) -> 0 [1] half(s(s(x))) -> s(half(x)) [1] le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] inc(0) -> 0 [1] inc(s(x)) -> s(inc(x)) [1] log(x) -> log2(x, 0) [1] log2(x, y) -> if(le(x, s(0)), x, inc(y)) [1] if(true, x, s(y)) -> y [1] if(false, x, y) -> log2(half(x), y) [1] The TRS has the following type information: half :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s le :: 0:s -> 0:s -> true:false true :: true:false false :: true:false inc :: 0:s -> 0:s log :: 0:s -> 0:s log2 :: 0:s -> 0:s -> 0:s if :: true:false -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: log_1 log2_2 if_3 (c) The following functions are completely defined: half_1 le_2 inc_1 Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: half(0) -> 0 [1] half(s(0)) -> 0 [1] half(s(s(x))) -> s(half(x)) [1] le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] inc(0) -> 0 [1] inc(s(x)) -> s(inc(x)) [1] log(x) -> log2(x, 0) [1] log2(x, y) -> if(le(x, s(0)), x, inc(y)) [1] if(true, x, s(y)) -> y [1] if(false, x, y) -> log2(half(x), y) [1] The TRS has the following type information: half :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s le :: 0:s -> 0:s -> true:false true :: true:false false :: true:false inc :: 0:s -> 0:s log :: 0:s -> 0:s log2 :: 0:s -> 0:s -> 0:s if :: true:false -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: half(0) -> 0 [1] half(s(0)) -> 0 [1] half(s(s(x))) -> s(half(x)) [1] le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] inc(0) -> 0 [1] inc(s(x)) -> s(inc(x)) [1] log(x) -> log2(x, 0) [1] log2(0, 0) -> if(true, 0, 0) [3] log2(0, s(x'')) -> if(true, 0, s(inc(x''))) [3] log2(s(x'), 0) -> if(le(x', 0), s(x'), 0) [3] log2(s(x'), s(x1)) -> if(le(x', 0), s(x'), s(inc(x1))) [3] if(true, x, s(y)) -> y [1] if(false, 0, y) -> log2(0, y) [2] if(false, s(0), y) -> log2(0, y) [2] if(false, s(s(x2)), y) -> log2(s(half(x2)), y) [2] The TRS has the following type information: half :: 0:s -> 0:s 0 :: 0:s s :: 0:s -> 0:s le :: 0:s -> 0:s -> true:false true :: true:false false :: true:false inc :: 0:s -> 0:s log :: 0:s -> 0:s log2 :: 0:s -> 0:s -> 0:s if :: true:false -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 true => 1 false => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: half(z) -{ 1 }-> 0 :|: z = 0 half(z) -{ 1 }-> 0 :|: z = 1 + 0 half(z) -{ 1 }-> 1 + half(x) :|: x >= 0, z = 1 + (1 + x) if(z, z', z'') -{ 1 }-> y :|: z' = x, z = 1, x >= 0, y >= 0, z'' = 1 + y if(z, z', z'') -{ 2 }-> log2(0, y) :|: z'' = y, y >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> log2(0, y) :|: z'' = y, y >= 0, z' = 1 + 0, z = 0 if(z, z', z'') -{ 2 }-> log2(1 + half(x2), y) :|: z'' = y, z' = 1 + (1 + x2), y >= 0, z = 0, x2 >= 0 inc(z) -{ 1 }-> 0 :|: z = 0 inc(z) -{ 1 }-> 1 + inc(x) :|: x >= 0, z = 1 + x le(z, z') -{ 1 }-> le(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x le(z, z') -{ 1 }-> 1 :|: y >= 0, z = 0, z' = y le(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 0 log(z) -{ 1 }-> log2(x, 0) :|: x >= 0, z = x log2(z, z') -{ 3 }-> if(le(x', 0), 1 + x', 0) :|: z = 1 + x', x' >= 0, z' = 0 log2(z, z') -{ 3 }-> if(le(x', 0), 1 + x', 1 + inc(x1)) :|: z = 1 + x', x1 >= 0, x' >= 0, z' = 1 + x1 log2(z, z') -{ 3 }-> if(1, 0, 0) :|: z = 0, z' = 0 log2(z, z') -{ 3 }-> if(1, 0, 1 + inc(x'')) :|: z' = 1 + x'', x'' >= 0, z = 0 ---------------------------------------- (11) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: half(z) -{ 1 }-> 0 :|: z = 0 half(z) -{ 1 }-> 0 :|: z = 1 + 0 half(z) -{ 1 }-> 1 + half(z - 2) :|: z - 2 >= 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 if(z, z', z'') -{ 2 }-> log2(1 + half(z' - 2), z'') :|: z'' >= 0, z = 0, z' - 2 >= 0 if(z, z', z'') -{ 1 }-> z'' - 1 :|: z = 1, z' >= 0, z'' - 1 >= 0 inc(z) -{ 1 }-> 0 :|: z = 0 inc(z) -{ 1 }-> 1 + inc(z - 1) :|: z - 1 >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> log2(z, 0) :|: z >= 0 log2(z, z') -{ 3 }-> if(le(z - 1, 0), 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 log2(z, z') -{ 3 }-> if(le(z - 1, 0), 1 + (z - 1), 1 + inc(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 log2(z, z') -{ 3 }-> if(1, 0, 0) :|: z = 0, z' = 0 log2(z, z') -{ 3 }-> if(1, 0, 1 + inc(z' - 1)) :|: z' - 1 >= 0, z = 0 ---------------------------------------- (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { le } { half } { inc } { log2, if } { log } ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: half(z) -{ 1 }-> 0 :|: z = 0 half(z) -{ 1 }-> 0 :|: z = 1 + 0 half(z) -{ 1 }-> 1 + half(z - 2) :|: z - 2 >= 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 if(z, z', z'') -{ 2 }-> log2(1 + half(z' - 2), z'') :|: z'' >= 0, z = 0, z' - 2 >= 0 if(z, z', z'') -{ 1 }-> z'' - 1 :|: z = 1, z' >= 0, z'' - 1 >= 0 inc(z) -{ 1 }-> 0 :|: z = 0 inc(z) -{ 1 }-> 1 + inc(z - 1) :|: z - 1 >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> log2(z, 0) :|: z >= 0 log2(z, z') -{ 3 }-> if(le(z - 1, 0), 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 log2(z, z') -{ 3 }-> if(le(z - 1, 0), 1 + (z - 1), 1 + inc(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 log2(z, z') -{ 3 }-> if(1, 0, 0) :|: z = 0, z' = 0 log2(z, z') -{ 3 }-> if(1, 0, 1 + inc(z' - 1)) :|: z' - 1 >= 0, z = 0 Function symbols to be analyzed: {le}, {half}, {inc}, {log2,if}, {log} ---------------------------------------- (15) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: half(z) -{ 1 }-> 0 :|: z = 0 half(z) -{ 1 }-> 0 :|: z = 1 + 0 half(z) -{ 1 }-> 1 + half(z - 2) :|: z - 2 >= 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 if(z, z', z'') -{ 2 }-> log2(1 + half(z' - 2), z'') :|: z'' >= 0, z = 0, z' - 2 >= 0 if(z, z', z'') -{ 1 }-> z'' - 1 :|: z = 1, z' >= 0, z'' - 1 >= 0 inc(z) -{ 1 }-> 0 :|: z = 0 inc(z) -{ 1 }-> 1 + inc(z - 1) :|: z - 1 >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> log2(z, 0) :|: z >= 0 log2(z, z') -{ 3 }-> if(le(z - 1, 0), 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 log2(z, z') -{ 3 }-> if(le(z - 1, 0), 1 + (z - 1), 1 + inc(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 log2(z, z') -{ 3 }-> if(1, 0, 0) :|: z = 0, z' = 0 log2(z, z') -{ 3 }-> if(1, 0, 1 + inc(z' - 1)) :|: z' - 1 >= 0, z = 0 Function symbols to be analyzed: {le}, {half}, {inc}, {log2,if}, {log} ---------------------------------------- (17) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: le after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: half(z) -{ 1 }-> 0 :|: z = 0 half(z) -{ 1 }-> 0 :|: z = 1 + 0 half(z) -{ 1 }-> 1 + half(z - 2) :|: z - 2 >= 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 if(z, z', z'') -{ 2 }-> log2(1 + half(z' - 2), z'') :|: z'' >= 0, z = 0, z' - 2 >= 0 if(z, z', z'') -{ 1 }-> z'' - 1 :|: z = 1, z' >= 0, z'' - 1 >= 0 inc(z) -{ 1 }-> 0 :|: z = 0 inc(z) -{ 1 }-> 1 + inc(z - 1) :|: z - 1 >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> log2(z, 0) :|: z >= 0 log2(z, z') -{ 3 }-> if(le(z - 1, 0), 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 log2(z, z') -{ 3 }-> if(le(z - 1, 0), 1 + (z - 1), 1 + inc(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 log2(z, z') -{ 3 }-> if(1, 0, 0) :|: z = 0, z' = 0 log2(z, z') -{ 3 }-> if(1, 0, 1 + inc(z' - 1)) :|: z' - 1 >= 0, z = 0 Function symbols to be analyzed: {le}, {half}, {inc}, {log2,if}, {log} Previous analysis results are: le: runtime: ?, size: O(1) [1] ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: le after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: half(z) -{ 1 }-> 0 :|: z = 0 half(z) -{ 1 }-> 0 :|: z = 1 + 0 half(z) -{ 1 }-> 1 + half(z - 2) :|: z - 2 >= 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 if(z, z', z'') -{ 2 }-> log2(1 + half(z' - 2), z'') :|: z'' >= 0, z = 0, z' - 2 >= 0 if(z, z', z'') -{ 1 }-> z'' - 1 :|: z = 1, z' >= 0, z'' - 1 >= 0 inc(z) -{ 1 }-> 0 :|: z = 0 inc(z) -{ 1 }-> 1 + inc(z - 1) :|: z - 1 >= 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> log2(z, 0) :|: z >= 0 log2(z, z') -{ 3 }-> if(le(z - 1, 0), 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 log2(z, z') -{ 3 }-> if(le(z - 1, 0), 1 + (z - 1), 1 + inc(z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 log2(z, z') -{ 3 }-> if(1, 0, 0) :|: z = 0, z' = 0 log2(z, z') -{ 3 }-> if(1, 0, 1 + inc(z' - 1)) :|: z' - 1 >= 0, z = 0 Function symbols to be analyzed: {half}, {inc}, {log2,if}, {log} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: half(z) -{ 1 }-> 0 :|: z = 0 half(z) -{ 1 }-> 0 :|: z = 1 + 0 half(z) -{ 1 }-> 1 + half(z - 2) :|: z - 2 >= 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 if(z, z', z'') -{ 2 }-> log2(1 + half(z' - 2), z'') :|: z'' >= 0, z = 0, z' - 2 >= 0 if(z, z', z'') -{ 1 }-> z'' - 1 :|: z = 1, z' >= 0, z'' - 1 >= 0 inc(z) -{ 1 }-> 0 :|: z = 0 inc(z) -{ 1 }-> 1 + inc(z - 1) :|: z - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> log2(z, 0) :|: z >= 0 log2(z, z') -{ 5 }-> if(s', 1 + (z - 1), 0) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' = 0 log2(z, z') -{ 5 }-> if(s'', 1 + (z - 1), 1 + inc(z' - 1)) :|: s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 1 >= 0 log2(z, z') -{ 3 }-> if(1, 0, 0) :|: z = 0, z' = 0 log2(z, z') -{ 3 }-> if(1, 0, 1 + inc(z' - 1)) :|: z' - 1 >= 0, z = 0 Function symbols to be analyzed: {half}, {inc}, {log2,if}, {log} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: half after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: half(z) -{ 1 }-> 0 :|: z = 0 half(z) -{ 1 }-> 0 :|: z = 1 + 0 half(z) -{ 1 }-> 1 + half(z - 2) :|: z - 2 >= 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 if(z, z', z'') -{ 2 }-> log2(1 + half(z' - 2), z'') :|: z'' >= 0, z = 0, z' - 2 >= 0 if(z, z', z'') -{ 1 }-> z'' - 1 :|: z = 1, z' >= 0, z'' - 1 >= 0 inc(z) -{ 1 }-> 0 :|: z = 0 inc(z) -{ 1 }-> 1 + inc(z - 1) :|: z - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> log2(z, 0) :|: z >= 0 log2(z, z') -{ 5 }-> if(s', 1 + (z - 1), 0) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' = 0 log2(z, z') -{ 5 }-> if(s'', 1 + (z - 1), 1 + inc(z' - 1)) :|: s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 1 >= 0 log2(z, z') -{ 3 }-> if(1, 0, 0) :|: z = 0, z' = 0 log2(z, z') -{ 3 }-> if(1, 0, 1 + inc(z' - 1)) :|: z' - 1 >= 0, z = 0 Function symbols to be analyzed: {half}, {inc}, {log2,if}, {log} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] half: runtime: ?, size: O(n^1) [z] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: half after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: half(z) -{ 1 }-> 0 :|: z = 0 half(z) -{ 1 }-> 0 :|: z = 1 + 0 half(z) -{ 1 }-> 1 + half(z - 2) :|: z - 2 >= 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 if(z, z', z'') -{ 2 }-> log2(1 + half(z' - 2), z'') :|: z'' >= 0, z = 0, z' - 2 >= 0 if(z, z', z'') -{ 1 }-> z'' - 1 :|: z = 1, z' >= 0, z'' - 1 >= 0 inc(z) -{ 1 }-> 0 :|: z = 0 inc(z) -{ 1 }-> 1 + inc(z - 1) :|: z - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> log2(z, 0) :|: z >= 0 log2(z, z') -{ 5 }-> if(s', 1 + (z - 1), 0) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' = 0 log2(z, z') -{ 5 }-> if(s'', 1 + (z - 1), 1 + inc(z' - 1)) :|: s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 1 >= 0 log2(z, z') -{ 3 }-> if(1, 0, 0) :|: z = 0, z' = 0 log2(z, z') -{ 3 }-> if(1, 0, 1 + inc(z' - 1)) :|: z' - 1 >= 0, z = 0 Function symbols to be analyzed: {inc}, {log2,if}, {log} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] half: runtime: O(n^1) [2 + z], size: O(n^1) [z] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: half(z) -{ 1 }-> 0 :|: z = 0 half(z) -{ 1 }-> 0 :|: z = 1 + 0 half(z) -{ 1 + z }-> 1 + s1 :|: s1 >= 0, s1 <= z - 2, z - 2 >= 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 if(z, z', z'') -{ 2 + z' }-> log2(1 + s2, z'') :|: s2 >= 0, s2 <= z' - 2, z'' >= 0, z = 0, z' - 2 >= 0 if(z, z', z'') -{ 1 }-> z'' - 1 :|: z = 1, z' >= 0, z'' - 1 >= 0 inc(z) -{ 1 }-> 0 :|: z = 0 inc(z) -{ 1 }-> 1 + inc(z - 1) :|: z - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> log2(z, 0) :|: z >= 0 log2(z, z') -{ 5 }-> if(s', 1 + (z - 1), 0) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' = 0 log2(z, z') -{ 5 }-> if(s'', 1 + (z - 1), 1 + inc(z' - 1)) :|: s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 1 >= 0 log2(z, z') -{ 3 }-> if(1, 0, 0) :|: z = 0, z' = 0 log2(z, z') -{ 3 }-> if(1, 0, 1 + inc(z' - 1)) :|: z' - 1 >= 0, z = 0 Function symbols to be analyzed: {inc}, {log2,if}, {log} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] half: runtime: O(n^1) [2 + z], size: O(n^1) [z] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: inc after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: half(z) -{ 1 }-> 0 :|: z = 0 half(z) -{ 1 }-> 0 :|: z = 1 + 0 half(z) -{ 1 + z }-> 1 + s1 :|: s1 >= 0, s1 <= z - 2, z - 2 >= 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 if(z, z', z'') -{ 2 + z' }-> log2(1 + s2, z'') :|: s2 >= 0, s2 <= z' - 2, z'' >= 0, z = 0, z' - 2 >= 0 if(z, z', z'') -{ 1 }-> z'' - 1 :|: z = 1, z' >= 0, z'' - 1 >= 0 inc(z) -{ 1 }-> 0 :|: z = 0 inc(z) -{ 1 }-> 1 + inc(z - 1) :|: z - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> log2(z, 0) :|: z >= 0 log2(z, z') -{ 5 }-> if(s', 1 + (z - 1), 0) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' = 0 log2(z, z') -{ 5 }-> if(s'', 1 + (z - 1), 1 + inc(z' - 1)) :|: s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 1 >= 0 log2(z, z') -{ 3 }-> if(1, 0, 0) :|: z = 0, z' = 0 log2(z, z') -{ 3 }-> if(1, 0, 1 + inc(z' - 1)) :|: z' - 1 >= 0, z = 0 Function symbols to be analyzed: {inc}, {log2,if}, {log} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] half: runtime: O(n^1) [2 + z], size: O(n^1) [z] inc: runtime: ?, size: O(n^1) [z] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: inc after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: half(z) -{ 1 }-> 0 :|: z = 0 half(z) -{ 1 }-> 0 :|: z = 1 + 0 half(z) -{ 1 + z }-> 1 + s1 :|: s1 >= 0, s1 <= z - 2, z - 2 >= 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 if(z, z', z'') -{ 2 + z' }-> log2(1 + s2, z'') :|: s2 >= 0, s2 <= z' - 2, z'' >= 0, z = 0, z' - 2 >= 0 if(z, z', z'') -{ 1 }-> z'' - 1 :|: z = 1, z' >= 0, z'' - 1 >= 0 inc(z) -{ 1 }-> 0 :|: z = 0 inc(z) -{ 1 }-> 1 + inc(z - 1) :|: z - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> log2(z, 0) :|: z >= 0 log2(z, z') -{ 5 }-> if(s', 1 + (z - 1), 0) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' = 0 log2(z, z') -{ 5 }-> if(s'', 1 + (z - 1), 1 + inc(z' - 1)) :|: s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 1 >= 0 log2(z, z') -{ 3 }-> if(1, 0, 0) :|: z = 0, z' = 0 log2(z, z') -{ 3 }-> if(1, 0, 1 + inc(z' - 1)) :|: z' - 1 >= 0, z = 0 Function symbols to be analyzed: {log2,if}, {log} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] half: runtime: O(n^1) [2 + z], size: O(n^1) [z] inc: runtime: O(n^1) [1 + z], size: O(n^1) [z] ---------------------------------------- (33) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: half(z) -{ 1 }-> 0 :|: z = 0 half(z) -{ 1 }-> 0 :|: z = 1 + 0 half(z) -{ 1 + z }-> 1 + s1 :|: s1 >= 0, s1 <= z - 2, z - 2 >= 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 if(z, z', z'') -{ 2 + z' }-> log2(1 + s2, z'') :|: s2 >= 0, s2 <= z' - 2, z'' >= 0, z = 0, z' - 2 >= 0 if(z, z', z'') -{ 1 }-> z'' - 1 :|: z = 1, z' >= 0, z'' - 1 >= 0 inc(z) -{ 1 }-> 0 :|: z = 0 inc(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> log2(z, 0) :|: z >= 0 log2(z, z') -{ 5 }-> if(s', 1 + (z - 1), 0) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' = 0 log2(z, z') -{ 5 + z' }-> if(s'', 1 + (z - 1), 1 + s5) :|: s5 >= 0, s5 <= z' - 1, s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 1 >= 0 log2(z, z') -{ 3 }-> if(1, 0, 0) :|: z = 0, z' = 0 log2(z, z') -{ 3 + z' }-> if(1, 0, 1 + s4) :|: s4 >= 0, s4 <= z' - 1, z' - 1 >= 0, z = 0 Function symbols to be analyzed: {log2,if}, {log} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] half: runtime: O(n^1) [2 + z], size: O(n^1) [z] inc: runtime: O(n^1) [1 + z], size: O(n^1) [z] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: log2 after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' Computed SIZE bound using KoAT for: if after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z'' ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: half(z) -{ 1 }-> 0 :|: z = 0 half(z) -{ 1 }-> 0 :|: z = 1 + 0 half(z) -{ 1 + z }-> 1 + s1 :|: s1 >= 0, s1 <= z - 2, z - 2 >= 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 if(z, z', z'') -{ 2 + z' }-> log2(1 + s2, z'') :|: s2 >= 0, s2 <= z' - 2, z'' >= 0, z = 0, z' - 2 >= 0 if(z, z', z'') -{ 1 }-> z'' - 1 :|: z = 1, z' >= 0, z'' - 1 >= 0 inc(z) -{ 1 }-> 0 :|: z = 0 inc(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> log2(z, 0) :|: z >= 0 log2(z, z') -{ 5 }-> if(s', 1 + (z - 1), 0) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' = 0 log2(z, z') -{ 5 + z' }-> if(s'', 1 + (z - 1), 1 + s5) :|: s5 >= 0, s5 <= z' - 1, s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 1 >= 0 log2(z, z') -{ 3 }-> if(1, 0, 0) :|: z = 0, z' = 0 log2(z, z') -{ 3 + z' }-> if(1, 0, 1 + s4) :|: s4 >= 0, s4 <= z' - 1, z' - 1 >= 0, z = 0 Function symbols to be analyzed: {log2,if}, {log} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] half: runtime: O(n^1) [2 + z], size: O(n^1) [z] inc: runtime: O(n^1) [1 + z], size: O(n^1) [z] log2: runtime: ?, size: O(n^1) [z'] if: runtime: ?, size: O(n^1) [z''] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: log2 after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 18 + 8*z + z*z' + z^2 + 3*z' Computed RUNTIME bound using KoAT for: if after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 54 + 7*z' + z'*z'' + z'^2 + 8*z'' ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: half(z) -{ 1 }-> 0 :|: z = 0 half(z) -{ 1 }-> 0 :|: z = 1 + 0 half(z) -{ 1 + z }-> 1 + s1 :|: s1 >= 0, s1 <= z - 2, z - 2 >= 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 2 }-> log2(0, z'') :|: z'' >= 0, z' = 1 + 0, z = 0 if(z, z', z'') -{ 2 + z' }-> log2(1 + s2, z'') :|: s2 >= 0, s2 <= z' - 2, z'' >= 0, z = 0, z' - 2 >= 0 if(z, z', z'') -{ 1 }-> z'' - 1 :|: z = 1, z' >= 0, z'' - 1 >= 0 inc(z) -{ 1 }-> 0 :|: z = 0 inc(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 1 }-> log2(z, 0) :|: z >= 0 log2(z, z') -{ 5 }-> if(s', 1 + (z - 1), 0) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' = 0 log2(z, z') -{ 5 + z' }-> if(s'', 1 + (z - 1), 1 + s5) :|: s5 >= 0, s5 <= z' - 1, s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 1 >= 0 log2(z, z') -{ 3 }-> if(1, 0, 0) :|: z = 0, z' = 0 log2(z, z') -{ 3 + z' }-> if(1, 0, 1 + s4) :|: s4 >= 0, s4 <= z' - 1, z' - 1 >= 0, z = 0 Function symbols to be analyzed: {log} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] half: runtime: O(n^1) [2 + z], size: O(n^1) [z] inc: runtime: O(n^1) [1 + z], size: O(n^1) [z] log2: runtime: O(n^2) [18 + 8*z + z*z' + z^2 + 3*z'], size: O(n^1) [z'] if: runtime: O(n^2) [54 + 7*z' + z'*z'' + z'^2 + 8*z''], size: O(n^1) [z''] ---------------------------------------- (39) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: half(z) -{ 1 }-> 0 :|: z = 0 half(z) -{ 1 }-> 0 :|: z = 1 + 0 half(z) -{ 1 + z }-> 1 + s1 :|: s1 >= 0, s1 <= z - 2, z - 2 >= 0 if(z, z', z'') -{ 20 + 3*z'' }-> s11 :|: s11 >= 0, s11 <= z'', z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 20 + 3*z'' }-> s12 :|: s12 >= 0, s12 <= z'', z'' >= 0, z' = 1 + 0, z = 0 if(z, z', z'') -{ 29 + 10*s2 + s2*z'' + s2^2 + z' + 4*z'' }-> s13 :|: s13 >= 0, s13 <= z'', s2 >= 0, s2 <= z' - 2, z'' >= 0, z = 0, z' - 2 >= 0 if(z, z', z'') -{ 1 }-> z'' - 1 :|: z = 1, z' >= 0, z'' - 1 >= 0 inc(z) -{ 1 }-> 0 :|: z = 0 inc(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 19 + 8*z + z^2 }-> s6 :|: s6 >= 0, s6 <= 0, z >= 0 log2(z, z') -{ 67 + 8*s5 + s5*z + 8*z + z^2 + z' }-> s10 :|: s10 >= 0, s10 <= 1 + s5, s5 >= 0, s5 <= z' - 1, s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 1 >= 0 log2(z, z') -{ 57 }-> s7 :|: s7 >= 0, s7 <= 0, z = 0, z' = 0 log2(z, z') -{ 65 + 8*s4 + z' }-> s8 :|: s8 >= 0, s8 <= 1 + s4, s4 >= 0, s4 <= z' - 1, z' - 1 >= 0, z = 0 log2(z, z') -{ 59 + 7*z + z^2 }-> s9 :|: s9 >= 0, s9 <= 0, s' >= 0, s' <= 1, z - 1 >= 0, z' = 0 Function symbols to be analyzed: {log} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] half: runtime: O(n^1) [2 + z], size: O(n^1) [z] inc: runtime: O(n^1) [1 + z], size: O(n^1) [z] log2: runtime: O(n^2) [18 + 8*z + z*z' + z^2 + 3*z'], size: O(n^1) [z'] if: runtime: O(n^2) [54 + 7*z' + z'*z'' + z'^2 + 8*z''], size: O(n^1) [z''] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: log after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: half(z) -{ 1 }-> 0 :|: z = 0 half(z) -{ 1 }-> 0 :|: z = 1 + 0 half(z) -{ 1 + z }-> 1 + s1 :|: s1 >= 0, s1 <= z - 2, z - 2 >= 0 if(z, z', z'') -{ 20 + 3*z'' }-> s11 :|: s11 >= 0, s11 <= z'', z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 20 + 3*z'' }-> s12 :|: s12 >= 0, s12 <= z'', z'' >= 0, z' = 1 + 0, z = 0 if(z, z', z'') -{ 29 + 10*s2 + s2*z'' + s2^2 + z' + 4*z'' }-> s13 :|: s13 >= 0, s13 <= z'', s2 >= 0, s2 <= z' - 2, z'' >= 0, z = 0, z' - 2 >= 0 if(z, z', z'') -{ 1 }-> z'' - 1 :|: z = 1, z' >= 0, z'' - 1 >= 0 inc(z) -{ 1 }-> 0 :|: z = 0 inc(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 19 + 8*z + z^2 }-> s6 :|: s6 >= 0, s6 <= 0, z >= 0 log2(z, z') -{ 67 + 8*s5 + s5*z + 8*z + z^2 + z' }-> s10 :|: s10 >= 0, s10 <= 1 + s5, s5 >= 0, s5 <= z' - 1, s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 1 >= 0 log2(z, z') -{ 57 }-> s7 :|: s7 >= 0, s7 <= 0, z = 0, z' = 0 log2(z, z') -{ 65 + 8*s4 + z' }-> s8 :|: s8 >= 0, s8 <= 1 + s4, s4 >= 0, s4 <= z' - 1, z' - 1 >= 0, z = 0 log2(z, z') -{ 59 + 7*z + z^2 }-> s9 :|: s9 >= 0, s9 <= 0, s' >= 0, s' <= 1, z - 1 >= 0, z' = 0 Function symbols to be analyzed: {log} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] half: runtime: O(n^1) [2 + z], size: O(n^1) [z] inc: runtime: O(n^1) [1 + z], size: O(n^1) [z] log2: runtime: O(n^2) [18 + 8*z + z*z' + z^2 + 3*z'], size: O(n^1) [z'] if: runtime: O(n^2) [54 + 7*z' + z'*z'' + z'^2 + 8*z''], size: O(n^1) [z''] log: runtime: ?, size: O(1) [0] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: log after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 19 + 8*z + z^2 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: half(z) -{ 1 }-> 0 :|: z = 0 half(z) -{ 1 }-> 0 :|: z = 1 + 0 half(z) -{ 1 + z }-> 1 + s1 :|: s1 >= 0, s1 <= z - 2, z - 2 >= 0 if(z, z', z'') -{ 20 + 3*z'' }-> s11 :|: s11 >= 0, s11 <= z'', z'' >= 0, z = 0, z' = 0 if(z, z', z'') -{ 20 + 3*z'' }-> s12 :|: s12 >= 0, s12 <= z'', z'' >= 0, z' = 1 + 0, z = 0 if(z, z', z'') -{ 29 + 10*s2 + s2*z'' + s2^2 + z' + 4*z'' }-> s13 :|: s13 >= 0, s13 <= z'', s2 >= 0, s2 <= z' - 2, z'' >= 0, z = 0, z' - 2 >= 0 if(z, z', z'') -{ 1 }-> z'' - 1 :|: z = 1, z' >= 0, z'' - 1 >= 0 inc(z) -{ 1 }-> 0 :|: z = 0 inc(z) -{ 1 + z }-> 1 + s3 :|: s3 >= 0, s3 <= z - 1, z - 1 >= 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 log(z) -{ 19 + 8*z + z^2 }-> s6 :|: s6 >= 0, s6 <= 0, z >= 0 log2(z, z') -{ 67 + 8*s5 + s5*z + 8*z + z^2 + z' }-> s10 :|: s10 >= 0, s10 <= 1 + s5, s5 >= 0, s5 <= z' - 1, s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 1 >= 0 log2(z, z') -{ 57 }-> s7 :|: s7 >= 0, s7 <= 0, z = 0, z' = 0 log2(z, z') -{ 65 + 8*s4 + z' }-> s8 :|: s8 >= 0, s8 <= 1 + s4, s4 >= 0, s4 <= z' - 1, z' - 1 >= 0, z = 0 log2(z, z') -{ 59 + 7*z + z^2 }-> s9 :|: s9 >= 0, s9 <= 0, s' >= 0, s' <= 1, z - 1 >= 0, z' = 0 Function symbols to be analyzed: Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] half: runtime: O(n^1) [2 + z], size: O(n^1) [z] inc: runtime: O(n^1) [1 + z], size: O(n^1) [z] log2: runtime: O(n^2) [18 + 8*z + z*z' + z^2 + 3*z'], size: O(n^1) [z'] if: runtime: O(n^2) [54 + 7*z' + z'*z'' + z'^2 + 8*z''], size: O(n^1) [z''] log: runtime: O(n^2) [19 + 8*z + z^2], size: O(1) [0] ---------------------------------------- (45) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (46) BOUNDS(1, n^2) ---------------------------------------- (47) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (48) Obligation: Complexity Dependency Tuples Problem Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(z0))) -> s(half(z0)) le(0, z0) -> true le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) inc(0) -> 0 inc(s(z0)) -> s(inc(z0)) log(z0) -> log2(z0, 0) log2(z0, z1) -> if(le(z0, s(0)), z0, inc(z1)) if(true, z0, s(z1)) -> z1 if(false, z0, z1) -> log2(half(z0), z1) Tuples: HALF(0) -> c HALF(s(0)) -> c1 HALF(s(s(z0))) -> c2(HALF(z0)) LE(0, z0) -> c3 LE(s(z0), 0) -> c4 LE(s(z0), s(z1)) -> c5(LE(z0, z1)) INC(0) -> c6 INC(s(z0)) -> c7(INC(z0)) LOG(z0) -> c8(LOG2(z0, 0)) LOG2(z0, z1) -> c9(IF(le(z0, s(0)), z0, inc(z1)), LE(z0, s(0))) LOG2(z0, z1) -> c10(IF(le(z0, s(0)), z0, inc(z1)), INC(z1)) IF(true, z0, s(z1)) -> c11 IF(false, z0, z1) -> c12(LOG2(half(z0), z1), HALF(z0)) S tuples: HALF(0) -> c HALF(s(0)) -> c1 HALF(s(s(z0))) -> c2(HALF(z0)) LE(0, z0) -> c3 LE(s(z0), 0) -> c4 LE(s(z0), s(z1)) -> c5(LE(z0, z1)) INC(0) -> c6 INC(s(z0)) -> c7(INC(z0)) LOG(z0) -> c8(LOG2(z0, 0)) LOG2(z0, z1) -> c9(IF(le(z0, s(0)), z0, inc(z1)), LE(z0, s(0))) LOG2(z0, z1) -> c10(IF(le(z0, s(0)), z0, inc(z1)), INC(z1)) IF(true, z0, s(z1)) -> c11 IF(false, z0, z1) -> c12(LOG2(half(z0), z1), HALF(z0)) K tuples:none Defined Rule Symbols: half_1, le_2, inc_1, log_1, log2_2, if_3 Defined Pair Symbols: HALF_1, LE_2, INC_1, LOG_1, LOG2_2, IF_3 Compound Symbols: c, c1, c2_1, c3, c4, c5_1, c6, c7_1, c8_1, c9_2, c10_2, c11, c12_2 ---------------------------------------- (49) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (50) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: HALF(0) -> c HALF(s(0)) -> c1 HALF(s(s(z0))) -> c2(HALF(z0)) LE(0, z0) -> c3 LE(s(z0), 0) -> c4 LE(s(z0), s(z1)) -> c5(LE(z0, z1)) INC(0) -> c6 INC(s(z0)) -> c7(INC(z0)) LOG(z0) -> c8(LOG2(z0, 0)) LOG2(z0, z1) -> c9(IF(le(z0, s(0)), z0, inc(z1)), LE(z0, s(0))) LOG2(z0, z1) -> c10(IF(le(z0, s(0)), z0, inc(z1)), INC(z1)) IF(true, z0, s(z1)) -> c11 IF(false, z0, z1) -> c12(LOG2(half(z0), z1), HALF(z0)) The (relative) TRS S consists of the following rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(z0))) -> s(half(z0)) le(0, z0) -> true le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) inc(0) -> 0 inc(s(z0)) -> s(inc(z0)) log(z0) -> log2(z0, 0) log2(z0, z1) -> if(le(z0, s(0)), z0, inc(z1)) if(true, z0, s(z1)) -> z1 if(false, z0, z1) -> log2(half(z0), z1) Rewrite Strategy: INNERMOST ---------------------------------------- (51) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (52) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: HALF(0') -> c HALF(s(0')) -> c1 HALF(s(s(z0))) -> c2(HALF(z0)) LE(0', z0) -> c3 LE(s(z0), 0') -> c4 LE(s(z0), s(z1)) -> c5(LE(z0, z1)) INC(0') -> c6 INC(s(z0)) -> c7(INC(z0)) LOG(z0) -> c8(LOG2(z0, 0')) LOG2(z0, z1) -> c9(IF(le(z0, s(0')), z0, inc(z1)), LE(z0, s(0'))) LOG2(z0, z1) -> c10(IF(le(z0, s(0')), z0, inc(z1)), INC(z1)) IF(true, z0, s(z1)) -> c11 IF(false, z0, z1) -> c12(LOG2(half(z0), z1), HALF(z0)) The (relative) TRS S consists of the following rules: half(0') -> 0' half(s(0')) -> 0' half(s(s(z0))) -> s(half(z0)) le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) inc(0') -> 0' inc(s(z0)) -> s(inc(z0)) log(z0) -> log2(z0, 0') log2(z0, z1) -> if(le(z0, s(0')), z0, inc(z1)) if(true, z0, s(z1)) -> z1 if(false, z0, z1) -> log2(half(z0), z1) Rewrite Strategy: INNERMOST ---------------------------------------- (53) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (54) Obligation: Innermost TRS: Rules: HALF(0') -> c HALF(s(0')) -> c1 HALF(s(s(z0))) -> c2(HALF(z0)) LE(0', z0) -> c3 LE(s(z0), 0') -> c4 LE(s(z0), s(z1)) -> c5(LE(z0, z1)) INC(0') -> c6 INC(s(z0)) -> c7(INC(z0)) LOG(z0) -> c8(LOG2(z0, 0')) LOG2(z0, z1) -> c9(IF(le(z0, s(0')), z0, inc(z1)), LE(z0, s(0'))) LOG2(z0, z1) -> c10(IF(le(z0, s(0')), z0, inc(z1)), INC(z1)) IF(true, z0, s(z1)) -> c11 IF(false, z0, z1) -> c12(LOG2(half(z0), z1), HALF(z0)) half(0') -> 0' half(s(0')) -> 0' half(s(s(z0))) -> s(half(z0)) le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) inc(0') -> 0' inc(s(z0)) -> s(inc(z0)) log(z0) -> log2(z0, 0') log2(z0, z1) -> if(le(z0, s(0')), z0, inc(z1)) if(true, z0, s(z1)) -> z1 if(false, z0, z1) -> log2(half(z0), z1) Types: HALF :: 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 LE :: 0':s -> 0':s -> c3:c4:c5 c3 :: c3:c4:c5 c4 :: c3:c4:c5 c5 :: c3:c4:c5 -> c3:c4:c5 INC :: 0':s -> c6:c7 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 LOG :: 0':s -> c8 c8 :: c9:c10 -> c8 LOG2 :: 0':s -> 0':s -> c9:c10 c9 :: c11:c12 -> c3:c4:c5 -> c9:c10 IF :: true:false -> 0':s -> 0':s -> c11:c12 le :: 0':s -> 0':s -> true:false inc :: 0':s -> 0':s c10 :: c11:c12 -> c6:c7 -> c9:c10 true :: true:false c11 :: c11:c12 false :: true:false c12 :: c9:c10 -> c:c1:c2 -> c11:c12 half :: 0':s -> 0':s log :: 0':s -> 0':s log2 :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c4:c53_13 :: c3:c4:c5 hole_c6:c74_13 :: c6:c7 hole_c85_13 :: c8 hole_c9:c106_13 :: c9:c10 hole_c11:c127_13 :: c11:c12 hole_true:false8_13 :: true:false gen_c:c1:c29_13 :: Nat -> c:c1:c2 gen_0':s10_13 :: Nat -> 0':s gen_c3:c4:c511_13 :: Nat -> c3:c4:c5 gen_c6:c712_13 :: Nat -> c6:c7 ---------------------------------------- (55) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: HALF, LE, INC, LOG2, le, inc, half, log2 They will be analysed ascendingly in the following order: HALF < LOG2 LE < LOG2 INC < LOG2 le < LOG2 inc < LOG2 half < LOG2 le < log2 inc < log2 half < log2 ---------------------------------------- (56) Obligation: Innermost TRS: Rules: HALF(0') -> c HALF(s(0')) -> c1 HALF(s(s(z0))) -> c2(HALF(z0)) LE(0', z0) -> c3 LE(s(z0), 0') -> c4 LE(s(z0), s(z1)) -> c5(LE(z0, z1)) INC(0') -> c6 INC(s(z0)) -> c7(INC(z0)) LOG(z0) -> c8(LOG2(z0, 0')) LOG2(z0, z1) -> c9(IF(le(z0, s(0')), z0, inc(z1)), LE(z0, s(0'))) LOG2(z0, z1) -> c10(IF(le(z0, s(0')), z0, inc(z1)), INC(z1)) IF(true, z0, s(z1)) -> c11 IF(false, z0, z1) -> c12(LOG2(half(z0), z1), HALF(z0)) half(0') -> 0' half(s(0')) -> 0' half(s(s(z0))) -> s(half(z0)) le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) inc(0') -> 0' inc(s(z0)) -> s(inc(z0)) log(z0) -> log2(z0, 0') log2(z0, z1) -> if(le(z0, s(0')), z0, inc(z1)) if(true, z0, s(z1)) -> z1 if(false, z0, z1) -> log2(half(z0), z1) Types: HALF :: 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 LE :: 0':s -> 0':s -> c3:c4:c5 c3 :: c3:c4:c5 c4 :: c3:c4:c5 c5 :: c3:c4:c5 -> c3:c4:c5 INC :: 0':s -> c6:c7 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 LOG :: 0':s -> c8 c8 :: c9:c10 -> c8 LOG2 :: 0':s -> 0':s -> c9:c10 c9 :: c11:c12 -> c3:c4:c5 -> c9:c10 IF :: true:false -> 0':s -> 0':s -> c11:c12 le :: 0':s -> 0':s -> true:false inc :: 0':s -> 0':s c10 :: c11:c12 -> c6:c7 -> c9:c10 true :: true:false c11 :: c11:c12 false :: true:false c12 :: c9:c10 -> c:c1:c2 -> c11:c12 half :: 0':s -> 0':s log :: 0':s -> 0':s log2 :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c4:c53_13 :: c3:c4:c5 hole_c6:c74_13 :: c6:c7 hole_c85_13 :: c8 hole_c9:c106_13 :: c9:c10 hole_c11:c127_13 :: c11:c12 hole_true:false8_13 :: true:false gen_c:c1:c29_13 :: Nat -> c:c1:c2 gen_0':s10_13 :: Nat -> 0':s gen_c3:c4:c511_13 :: Nat -> c3:c4:c5 gen_c6:c712_13 :: Nat -> c6:c7 Generator Equations: gen_c:c1:c29_13(0) <=> c gen_c:c1:c29_13(+(x, 1)) <=> c2(gen_c:c1:c29_13(x)) gen_0':s10_13(0) <=> 0' gen_0':s10_13(+(x, 1)) <=> s(gen_0':s10_13(x)) gen_c3:c4:c511_13(0) <=> c3 gen_c3:c4:c511_13(+(x, 1)) <=> c5(gen_c3:c4:c511_13(x)) gen_c6:c712_13(0) <=> c6 gen_c6:c712_13(+(x, 1)) <=> c7(gen_c6:c712_13(x)) The following defined symbols remain to be analysed: HALF, LE, INC, LOG2, le, inc, half, log2 They will be analysed ascendingly in the following order: HALF < LOG2 LE < LOG2 INC < LOG2 le < LOG2 inc < LOG2 half < LOG2 le < log2 inc < log2 half < log2 ---------------------------------------- (57) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: HALF(gen_0':s10_13(*(2, n14_13))) -> gen_c:c1:c29_13(n14_13), rt in Omega(1 + n14_13) Induction Base: HALF(gen_0':s10_13(*(2, 0))) ->_R^Omega(1) c Induction Step: HALF(gen_0':s10_13(*(2, +(n14_13, 1)))) ->_R^Omega(1) c2(HALF(gen_0':s10_13(*(2, n14_13)))) ->_IH c2(gen_c:c1:c29_13(c15_13)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (58) Complex Obligation (BEST) ---------------------------------------- (59) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: HALF(0') -> c HALF(s(0')) -> c1 HALF(s(s(z0))) -> c2(HALF(z0)) LE(0', z0) -> c3 LE(s(z0), 0') -> c4 LE(s(z0), s(z1)) -> c5(LE(z0, z1)) INC(0') -> c6 INC(s(z0)) -> c7(INC(z0)) LOG(z0) -> c8(LOG2(z0, 0')) LOG2(z0, z1) -> c9(IF(le(z0, s(0')), z0, inc(z1)), LE(z0, s(0'))) LOG2(z0, z1) -> c10(IF(le(z0, s(0')), z0, inc(z1)), INC(z1)) IF(true, z0, s(z1)) -> c11 IF(false, z0, z1) -> c12(LOG2(half(z0), z1), HALF(z0)) half(0') -> 0' half(s(0')) -> 0' half(s(s(z0))) -> s(half(z0)) le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) inc(0') -> 0' inc(s(z0)) -> s(inc(z0)) log(z0) -> log2(z0, 0') log2(z0, z1) -> if(le(z0, s(0')), z0, inc(z1)) if(true, z0, s(z1)) -> z1 if(false, z0, z1) -> log2(half(z0), z1) Types: HALF :: 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 LE :: 0':s -> 0':s -> c3:c4:c5 c3 :: c3:c4:c5 c4 :: c3:c4:c5 c5 :: c3:c4:c5 -> c3:c4:c5 INC :: 0':s -> c6:c7 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 LOG :: 0':s -> c8 c8 :: c9:c10 -> c8 LOG2 :: 0':s -> 0':s -> c9:c10 c9 :: c11:c12 -> c3:c4:c5 -> c9:c10 IF :: true:false -> 0':s -> 0':s -> c11:c12 le :: 0':s -> 0':s -> true:false inc :: 0':s -> 0':s c10 :: c11:c12 -> c6:c7 -> c9:c10 true :: true:false c11 :: c11:c12 false :: true:false c12 :: c9:c10 -> c:c1:c2 -> c11:c12 half :: 0':s -> 0':s log :: 0':s -> 0':s log2 :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c4:c53_13 :: c3:c4:c5 hole_c6:c74_13 :: c6:c7 hole_c85_13 :: c8 hole_c9:c106_13 :: c9:c10 hole_c11:c127_13 :: c11:c12 hole_true:false8_13 :: true:false gen_c:c1:c29_13 :: Nat -> c:c1:c2 gen_0':s10_13 :: Nat -> 0':s gen_c3:c4:c511_13 :: Nat -> c3:c4:c5 gen_c6:c712_13 :: Nat -> c6:c7 Generator Equations: gen_c:c1:c29_13(0) <=> c gen_c:c1:c29_13(+(x, 1)) <=> c2(gen_c:c1:c29_13(x)) gen_0':s10_13(0) <=> 0' gen_0':s10_13(+(x, 1)) <=> s(gen_0':s10_13(x)) gen_c3:c4:c511_13(0) <=> c3 gen_c3:c4:c511_13(+(x, 1)) <=> c5(gen_c3:c4:c511_13(x)) gen_c6:c712_13(0) <=> c6 gen_c6:c712_13(+(x, 1)) <=> c7(gen_c6:c712_13(x)) The following defined symbols remain to be analysed: HALF, LE, INC, LOG2, le, inc, half, log2 They will be analysed ascendingly in the following order: HALF < LOG2 LE < LOG2 INC < LOG2 le < LOG2 inc < LOG2 half < LOG2 le < log2 inc < log2 half < log2 ---------------------------------------- (60) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (61) BOUNDS(n^1, INF) ---------------------------------------- (62) Obligation: Innermost TRS: Rules: HALF(0') -> c HALF(s(0')) -> c1 HALF(s(s(z0))) -> c2(HALF(z0)) LE(0', z0) -> c3 LE(s(z0), 0') -> c4 LE(s(z0), s(z1)) -> c5(LE(z0, z1)) INC(0') -> c6 INC(s(z0)) -> c7(INC(z0)) LOG(z0) -> c8(LOG2(z0, 0')) LOG2(z0, z1) -> c9(IF(le(z0, s(0')), z0, inc(z1)), LE(z0, s(0'))) LOG2(z0, z1) -> c10(IF(le(z0, s(0')), z0, inc(z1)), INC(z1)) IF(true, z0, s(z1)) -> c11 IF(false, z0, z1) -> c12(LOG2(half(z0), z1), HALF(z0)) half(0') -> 0' half(s(0')) -> 0' half(s(s(z0))) -> s(half(z0)) le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) inc(0') -> 0' inc(s(z0)) -> s(inc(z0)) log(z0) -> log2(z0, 0') log2(z0, z1) -> if(le(z0, s(0')), z0, inc(z1)) if(true, z0, s(z1)) -> z1 if(false, z0, z1) -> log2(half(z0), z1) Types: HALF :: 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 LE :: 0':s -> 0':s -> c3:c4:c5 c3 :: c3:c4:c5 c4 :: c3:c4:c5 c5 :: c3:c4:c5 -> c3:c4:c5 INC :: 0':s -> c6:c7 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 LOG :: 0':s -> c8 c8 :: c9:c10 -> c8 LOG2 :: 0':s -> 0':s -> c9:c10 c9 :: c11:c12 -> c3:c4:c5 -> c9:c10 IF :: true:false -> 0':s -> 0':s -> c11:c12 le :: 0':s -> 0':s -> true:false inc :: 0':s -> 0':s c10 :: c11:c12 -> c6:c7 -> c9:c10 true :: true:false c11 :: c11:c12 false :: true:false c12 :: c9:c10 -> c:c1:c2 -> c11:c12 half :: 0':s -> 0':s log :: 0':s -> 0':s log2 :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c4:c53_13 :: c3:c4:c5 hole_c6:c74_13 :: c6:c7 hole_c85_13 :: c8 hole_c9:c106_13 :: c9:c10 hole_c11:c127_13 :: c11:c12 hole_true:false8_13 :: true:false gen_c:c1:c29_13 :: Nat -> c:c1:c2 gen_0':s10_13 :: Nat -> 0':s gen_c3:c4:c511_13 :: Nat -> c3:c4:c5 gen_c6:c712_13 :: Nat -> c6:c7 Lemmas: HALF(gen_0':s10_13(*(2, n14_13))) -> gen_c:c1:c29_13(n14_13), rt in Omega(1 + n14_13) Generator Equations: gen_c:c1:c29_13(0) <=> c gen_c:c1:c29_13(+(x, 1)) <=> c2(gen_c:c1:c29_13(x)) gen_0':s10_13(0) <=> 0' gen_0':s10_13(+(x, 1)) <=> s(gen_0':s10_13(x)) gen_c3:c4:c511_13(0) <=> c3 gen_c3:c4:c511_13(+(x, 1)) <=> c5(gen_c3:c4:c511_13(x)) gen_c6:c712_13(0) <=> c6 gen_c6:c712_13(+(x, 1)) <=> c7(gen_c6:c712_13(x)) The following defined symbols remain to be analysed: LE, INC, LOG2, le, inc, half, log2 They will be analysed ascendingly in the following order: LE < LOG2 INC < LOG2 le < LOG2 inc < LOG2 half < LOG2 le < log2 inc < log2 half < log2 ---------------------------------------- (63) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: LE(gen_0':s10_13(n465_13), gen_0':s10_13(n465_13)) -> gen_c3:c4:c511_13(n465_13), rt in Omega(1 + n465_13) Induction Base: LE(gen_0':s10_13(0), gen_0':s10_13(0)) ->_R^Omega(1) c3 Induction Step: LE(gen_0':s10_13(+(n465_13, 1)), gen_0':s10_13(+(n465_13, 1))) ->_R^Omega(1) c5(LE(gen_0':s10_13(n465_13), gen_0':s10_13(n465_13))) ->_IH c5(gen_c3:c4:c511_13(c466_13)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (64) Obligation: Innermost TRS: Rules: HALF(0') -> c HALF(s(0')) -> c1 HALF(s(s(z0))) -> c2(HALF(z0)) LE(0', z0) -> c3 LE(s(z0), 0') -> c4 LE(s(z0), s(z1)) -> c5(LE(z0, z1)) INC(0') -> c6 INC(s(z0)) -> c7(INC(z0)) LOG(z0) -> c8(LOG2(z0, 0')) LOG2(z0, z1) -> c9(IF(le(z0, s(0')), z0, inc(z1)), LE(z0, s(0'))) LOG2(z0, z1) -> c10(IF(le(z0, s(0')), z0, inc(z1)), INC(z1)) IF(true, z0, s(z1)) -> c11 IF(false, z0, z1) -> c12(LOG2(half(z0), z1), HALF(z0)) half(0') -> 0' half(s(0')) -> 0' half(s(s(z0))) -> s(half(z0)) le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) inc(0') -> 0' inc(s(z0)) -> s(inc(z0)) log(z0) -> log2(z0, 0') log2(z0, z1) -> if(le(z0, s(0')), z0, inc(z1)) if(true, z0, s(z1)) -> z1 if(false, z0, z1) -> log2(half(z0), z1) Types: HALF :: 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 LE :: 0':s -> 0':s -> c3:c4:c5 c3 :: c3:c4:c5 c4 :: c3:c4:c5 c5 :: c3:c4:c5 -> c3:c4:c5 INC :: 0':s -> c6:c7 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 LOG :: 0':s -> c8 c8 :: c9:c10 -> c8 LOG2 :: 0':s -> 0':s -> c9:c10 c9 :: c11:c12 -> c3:c4:c5 -> c9:c10 IF :: true:false -> 0':s -> 0':s -> c11:c12 le :: 0':s -> 0':s -> true:false inc :: 0':s -> 0':s c10 :: c11:c12 -> c6:c7 -> c9:c10 true :: true:false c11 :: c11:c12 false :: true:false c12 :: c9:c10 -> c:c1:c2 -> c11:c12 half :: 0':s -> 0':s log :: 0':s -> 0':s log2 :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c4:c53_13 :: c3:c4:c5 hole_c6:c74_13 :: c6:c7 hole_c85_13 :: c8 hole_c9:c106_13 :: c9:c10 hole_c11:c127_13 :: c11:c12 hole_true:false8_13 :: true:false gen_c:c1:c29_13 :: Nat -> c:c1:c2 gen_0':s10_13 :: Nat -> 0':s gen_c3:c4:c511_13 :: Nat -> c3:c4:c5 gen_c6:c712_13 :: Nat -> c6:c7 Lemmas: HALF(gen_0':s10_13(*(2, n14_13))) -> gen_c:c1:c29_13(n14_13), rt in Omega(1 + n14_13) LE(gen_0':s10_13(n465_13), gen_0':s10_13(n465_13)) -> gen_c3:c4:c511_13(n465_13), rt in Omega(1 + n465_13) Generator Equations: gen_c:c1:c29_13(0) <=> c gen_c:c1:c29_13(+(x, 1)) <=> c2(gen_c:c1:c29_13(x)) gen_0':s10_13(0) <=> 0' gen_0':s10_13(+(x, 1)) <=> s(gen_0':s10_13(x)) gen_c3:c4:c511_13(0) <=> c3 gen_c3:c4:c511_13(+(x, 1)) <=> c5(gen_c3:c4:c511_13(x)) gen_c6:c712_13(0) <=> c6 gen_c6:c712_13(+(x, 1)) <=> c7(gen_c6:c712_13(x)) The following defined symbols remain to be analysed: INC, LOG2, le, inc, half, log2 They will be analysed ascendingly in the following order: INC < LOG2 le < LOG2 inc < LOG2 half < LOG2 le < log2 inc < log2 half < log2 ---------------------------------------- (65) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: INC(gen_0':s10_13(n1175_13)) -> gen_c6:c712_13(n1175_13), rt in Omega(1 + n1175_13) Induction Base: INC(gen_0':s10_13(0)) ->_R^Omega(1) c6 Induction Step: INC(gen_0':s10_13(+(n1175_13, 1))) ->_R^Omega(1) c7(INC(gen_0':s10_13(n1175_13))) ->_IH c7(gen_c6:c712_13(c1176_13)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (66) Obligation: Innermost TRS: Rules: HALF(0') -> c HALF(s(0')) -> c1 HALF(s(s(z0))) -> c2(HALF(z0)) LE(0', z0) -> c3 LE(s(z0), 0') -> c4 LE(s(z0), s(z1)) -> c5(LE(z0, z1)) INC(0') -> c6 INC(s(z0)) -> c7(INC(z0)) LOG(z0) -> c8(LOG2(z0, 0')) LOG2(z0, z1) -> c9(IF(le(z0, s(0')), z0, inc(z1)), LE(z0, s(0'))) LOG2(z0, z1) -> c10(IF(le(z0, s(0')), z0, inc(z1)), INC(z1)) IF(true, z0, s(z1)) -> c11 IF(false, z0, z1) -> c12(LOG2(half(z0), z1), HALF(z0)) half(0') -> 0' half(s(0')) -> 0' half(s(s(z0))) -> s(half(z0)) le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) inc(0') -> 0' inc(s(z0)) -> s(inc(z0)) log(z0) -> log2(z0, 0') log2(z0, z1) -> if(le(z0, s(0')), z0, inc(z1)) if(true, z0, s(z1)) -> z1 if(false, z0, z1) -> log2(half(z0), z1) Types: HALF :: 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 LE :: 0':s -> 0':s -> c3:c4:c5 c3 :: c3:c4:c5 c4 :: c3:c4:c5 c5 :: c3:c4:c5 -> c3:c4:c5 INC :: 0':s -> c6:c7 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 LOG :: 0':s -> c8 c8 :: c9:c10 -> c8 LOG2 :: 0':s -> 0':s -> c9:c10 c9 :: c11:c12 -> c3:c4:c5 -> c9:c10 IF :: true:false -> 0':s -> 0':s -> c11:c12 le :: 0':s -> 0':s -> true:false inc :: 0':s -> 0':s c10 :: c11:c12 -> c6:c7 -> c9:c10 true :: true:false c11 :: c11:c12 false :: true:false c12 :: c9:c10 -> c:c1:c2 -> c11:c12 half :: 0':s -> 0':s log :: 0':s -> 0':s log2 :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c4:c53_13 :: c3:c4:c5 hole_c6:c74_13 :: c6:c7 hole_c85_13 :: c8 hole_c9:c106_13 :: c9:c10 hole_c11:c127_13 :: c11:c12 hole_true:false8_13 :: true:false gen_c:c1:c29_13 :: Nat -> c:c1:c2 gen_0':s10_13 :: Nat -> 0':s gen_c3:c4:c511_13 :: Nat -> c3:c4:c5 gen_c6:c712_13 :: Nat -> c6:c7 Lemmas: HALF(gen_0':s10_13(*(2, n14_13))) -> gen_c:c1:c29_13(n14_13), rt in Omega(1 + n14_13) LE(gen_0':s10_13(n465_13), gen_0':s10_13(n465_13)) -> gen_c3:c4:c511_13(n465_13), rt in Omega(1 + n465_13) INC(gen_0':s10_13(n1175_13)) -> gen_c6:c712_13(n1175_13), rt in Omega(1 + n1175_13) Generator Equations: gen_c:c1:c29_13(0) <=> c gen_c:c1:c29_13(+(x, 1)) <=> c2(gen_c:c1:c29_13(x)) gen_0':s10_13(0) <=> 0' gen_0':s10_13(+(x, 1)) <=> s(gen_0':s10_13(x)) gen_c3:c4:c511_13(0) <=> c3 gen_c3:c4:c511_13(+(x, 1)) <=> c5(gen_c3:c4:c511_13(x)) gen_c6:c712_13(0) <=> c6 gen_c6:c712_13(+(x, 1)) <=> c7(gen_c6:c712_13(x)) The following defined symbols remain to be analysed: le, LOG2, inc, half, log2 They will be analysed ascendingly in the following order: le < LOG2 inc < LOG2 half < LOG2 le < log2 inc < log2 half < log2 ---------------------------------------- (67) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_0':s10_13(n1584_13), gen_0':s10_13(n1584_13)) -> true, rt in Omega(0) Induction Base: le(gen_0':s10_13(0), gen_0':s10_13(0)) ->_R^Omega(0) true Induction Step: le(gen_0':s10_13(+(n1584_13, 1)), gen_0':s10_13(+(n1584_13, 1))) ->_R^Omega(0) le(gen_0':s10_13(n1584_13), gen_0':s10_13(n1584_13)) ->_IH true We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (68) Obligation: Innermost TRS: Rules: HALF(0') -> c HALF(s(0')) -> c1 HALF(s(s(z0))) -> c2(HALF(z0)) LE(0', z0) -> c3 LE(s(z0), 0') -> c4 LE(s(z0), s(z1)) -> c5(LE(z0, z1)) INC(0') -> c6 INC(s(z0)) -> c7(INC(z0)) LOG(z0) -> c8(LOG2(z0, 0')) LOG2(z0, z1) -> c9(IF(le(z0, s(0')), z0, inc(z1)), LE(z0, s(0'))) LOG2(z0, z1) -> c10(IF(le(z0, s(0')), z0, inc(z1)), INC(z1)) IF(true, z0, s(z1)) -> c11 IF(false, z0, z1) -> c12(LOG2(half(z0), z1), HALF(z0)) half(0') -> 0' half(s(0')) -> 0' half(s(s(z0))) -> s(half(z0)) le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) inc(0') -> 0' inc(s(z0)) -> s(inc(z0)) log(z0) -> log2(z0, 0') log2(z0, z1) -> if(le(z0, s(0')), z0, inc(z1)) if(true, z0, s(z1)) -> z1 if(false, z0, z1) -> log2(half(z0), z1) Types: HALF :: 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 LE :: 0':s -> 0':s -> c3:c4:c5 c3 :: c3:c4:c5 c4 :: c3:c4:c5 c5 :: c3:c4:c5 -> c3:c4:c5 INC :: 0':s -> c6:c7 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 LOG :: 0':s -> c8 c8 :: c9:c10 -> c8 LOG2 :: 0':s -> 0':s -> c9:c10 c9 :: c11:c12 -> c3:c4:c5 -> c9:c10 IF :: true:false -> 0':s -> 0':s -> c11:c12 le :: 0':s -> 0':s -> true:false inc :: 0':s -> 0':s c10 :: c11:c12 -> c6:c7 -> c9:c10 true :: true:false c11 :: c11:c12 false :: true:false c12 :: c9:c10 -> c:c1:c2 -> c11:c12 half :: 0':s -> 0':s log :: 0':s -> 0':s log2 :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c4:c53_13 :: c3:c4:c5 hole_c6:c74_13 :: c6:c7 hole_c85_13 :: c8 hole_c9:c106_13 :: c9:c10 hole_c11:c127_13 :: c11:c12 hole_true:false8_13 :: true:false gen_c:c1:c29_13 :: Nat -> c:c1:c2 gen_0':s10_13 :: Nat -> 0':s gen_c3:c4:c511_13 :: Nat -> c3:c4:c5 gen_c6:c712_13 :: Nat -> c6:c7 Lemmas: HALF(gen_0':s10_13(*(2, n14_13))) -> gen_c:c1:c29_13(n14_13), rt in Omega(1 + n14_13) LE(gen_0':s10_13(n465_13), gen_0':s10_13(n465_13)) -> gen_c3:c4:c511_13(n465_13), rt in Omega(1 + n465_13) INC(gen_0':s10_13(n1175_13)) -> gen_c6:c712_13(n1175_13), rt in Omega(1 + n1175_13) le(gen_0':s10_13(n1584_13), gen_0':s10_13(n1584_13)) -> true, rt in Omega(0) Generator Equations: gen_c:c1:c29_13(0) <=> c gen_c:c1:c29_13(+(x, 1)) <=> c2(gen_c:c1:c29_13(x)) gen_0':s10_13(0) <=> 0' gen_0':s10_13(+(x, 1)) <=> s(gen_0':s10_13(x)) gen_c3:c4:c511_13(0) <=> c3 gen_c3:c4:c511_13(+(x, 1)) <=> c5(gen_c3:c4:c511_13(x)) gen_c6:c712_13(0) <=> c6 gen_c6:c712_13(+(x, 1)) <=> c7(gen_c6:c712_13(x)) The following defined symbols remain to be analysed: inc, LOG2, half, log2 They will be analysed ascendingly in the following order: inc < LOG2 half < LOG2 inc < log2 half < log2 ---------------------------------------- (69) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: inc(gen_0':s10_13(n2005_13)) -> gen_0':s10_13(n2005_13), rt in Omega(0) Induction Base: inc(gen_0':s10_13(0)) ->_R^Omega(0) 0' Induction Step: inc(gen_0':s10_13(+(n2005_13, 1))) ->_R^Omega(0) s(inc(gen_0':s10_13(n2005_13))) ->_IH s(gen_0':s10_13(c2006_13)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (70) Obligation: Innermost TRS: Rules: HALF(0') -> c HALF(s(0')) -> c1 HALF(s(s(z0))) -> c2(HALF(z0)) LE(0', z0) -> c3 LE(s(z0), 0') -> c4 LE(s(z0), s(z1)) -> c5(LE(z0, z1)) INC(0') -> c6 INC(s(z0)) -> c7(INC(z0)) LOG(z0) -> c8(LOG2(z0, 0')) LOG2(z0, z1) -> c9(IF(le(z0, s(0')), z0, inc(z1)), LE(z0, s(0'))) LOG2(z0, z1) -> c10(IF(le(z0, s(0')), z0, inc(z1)), INC(z1)) IF(true, z0, s(z1)) -> c11 IF(false, z0, z1) -> c12(LOG2(half(z0), z1), HALF(z0)) half(0') -> 0' half(s(0')) -> 0' half(s(s(z0))) -> s(half(z0)) le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) inc(0') -> 0' inc(s(z0)) -> s(inc(z0)) log(z0) -> log2(z0, 0') log2(z0, z1) -> if(le(z0, s(0')), z0, inc(z1)) if(true, z0, s(z1)) -> z1 if(false, z0, z1) -> log2(half(z0), z1) Types: HALF :: 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 LE :: 0':s -> 0':s -> c3:c4:c5 c3 :: c3:c4:c5 c4 :: c3:c4:c5 c5 :: c3:c4:c5 -> c3:c4:c5 INC :: 0':s -> c6:c7 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 LOG :: 0':s -> c8 c8 :: c9:c10 -> c8 LOG2 :: 0':s -> 0':s -> c9:c10 c9 :: c11:c12 -> c3:c4:c5 -> c9:c10 IF :: true:false -> 0':s -> 0':s -> c11:c12 le :: 0':s -> 0':s -> true:false inc :: 0':s -> 0':s c10 :: c11:c12 -> c6:c7 -> c9:c10 true :: true:false c11 :: c11:c12 false :: true:false c12 :: c9:c10 -> c:c1:c2 -> c11:c12 half :: 0':s -> 0':s log :: 0':s -> 0':s log2 :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c4:c53_13 :: c3:c4:c5 hole_c6:c74_13 :: c6:c7 hole_c85_13 :: c8 hole_c9:c106_13 :: c9:c10 hole_c11:c127_13 :: c11:c12 hole_true:false8_13 :: true:false gen_c:c1:c29_13 :: Nat -> c:c1:c2 gen_0':s10_13 :: Nat -> 0':s gen_c3:c4:c511_13 :: Nat -> c3:c4:c5 gen_c6:c712_13 :: Nat -> c6:c7 Lemmas: HALF(gen_0':s10_13(*(2, n14_13))) -> gen_c:c1:c29_13(n14_13), rt in Omega(1 + n14_13) LE(gen_0':s10_13(n465_13), gen_0':s10_13(n465_13)) -> gen_c3:c4:c511_13(n465_13), rt in Omega(1 + n465_13) INC(gen_0':s10_13(n1175_13)) -> gen_c6:c712_13(n1175_13), rt in Omega(1 + n1175_13) le(gen_0':s10_13(n1584_13), gen_0':s10_13(n1584_13)) -> true, rt in Omega(0) inc(gen_0':s10_13(n2005_13)) -> gen_0':s10_13(n2005_13), rt in Omega(0) Generator Equations: gen_c:c1:c29_13(0) <=> c gen_c:c1:c29_13(+(x, 1)) <=> c2(gen_c:c1:c29_13(x)) gen_0':s10_13(0) <=> 0' gen_0':s10_13(+(x, 1)) <=> s(gen_0':s10_13(x)) gen_c3:c4:c511_13(0) <=> c3 gen_c3:c4:c511_13(+(x, 1)) <=> c5(gen_c3:c4:c511_13(x)) gen_c6:c712_13(0) <=> c6 gen_c6:c712_13(+(x, 1)) <=> c7(gen_c6:c712_13(x)) The following defined symbols remain to be analysed: half, LOG2, log2 They will be analysed ascendingly in the following order: half < LOG2 half < log2 ---------------------------------------- (71) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: half(gen_0':s10_13(*(2, n2361_13))) -> gen_0':s10_13(n2361_13), rt in Omega(0) Induction Base: half(gen_0':s10_13(*(2, 0))) ->_R^Omega(0) 0' Induction Step: half(gen_0':s10_13(*(2, +(n2361_13, 1)))) ->_R^Omega(0) s(half(gen_0':s10_13(*(2, n2361_13)))) ->_IH s(gen_0':s10_13(c2362_13)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (72) Obligation: Innermost TRS: Rules: HALF(0') -> c HALF(s(0')) -> c1 HALF(s(s(z0))) -> c2(HALF(z0)) LE(0', z0) -> c3 LE(s(z0), 0') -> c4 LE(s(z0), s(z1)) -> c5(LE(z0, z1)) INC(0') -> c6 INC(s(z0)) -> c7(INC(z0)) LOG(z0) -> c8(LOG2(z0, 0')) LOG2(z0, z1) -> c9(IF(le(z0, s(0')), z0, inc(z1)), LE(z0, s(0'))) LOG2(z0, z1) -> c10(IF(le(z0, s(0')), z0, inc(z1)), INC(z1)) IF(true, z0, s(z1)) -> c11 IF(false, z0, z1) -> c12(LOG2(half(z0), z1), HALF(z0)) half(0') -> 0' half(s(0')) -> 0' half(s(s(z0))) -> s(half(z0)) le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) inc(0') -> 0' inc(s(z0)) -> s(inc(z0)) log(z0) -> log2(z0, 0') log2(z0, z1) -> if(le(z0, s(0')), z0, inc(z1)) if(true, z0, s(z1)) -> z1 if(false, z0, z1) -> log2(half(z0), z1) Types: HALF :: 0':s -> c:c1:c2 0' :: 0':s c :: c:c1:c2 s :: 0':s -> 0':s c1 :: c:c1:c2 c2 :: c:c1:c2 -> c:c1:c2 LE :: 0':s -> 0':s -> c3:c4:c5 c3 :: c3:c4:c5 c4 :: c3:c4:c5 c5 :: c3:c4:c5 -> c3:c4:c5 INC :: 0':s -> c6:c7 c6 :: c6:c7 c7 :: c6:c7 -> c6:c7 LOG :: 0':s -> c8 c8 :: c9:c10 -> c8 LOG2 :: 0':s -> 0':s -> c9:c10 c9 :: c11:c12 -> c3:c4:c5 -> c9:c10 IF :: true:false -> 0':s -> 0':s -> c11:c12 le :: 0':s -> 0':s -> true:false inc :: 0':s -> 0':s c10 :: c11:c12 -> c6:c7 -> c9:c10 true :: true:false c11 :: c11:c12 false :: true:false c12 :: c9:c10 -> c:c1:c2 -> c11:c12 half :: 0':s -> 0':s log :: 0':s -> 0':s log2 :: 0':s -> 0':s -> 0':s if :: true:false -> 0':s -> 0':s -> 0':s hole_c:c1:c21_13 :: c:c1:c2 hole_0':s2_13 :: 0':s hole_c3:c4:c53_13 :: c3:c4:c5 hole_c6:c74_13 :: c6:c7 hole_c85_13 :: c8 hole_c9:c106_13 :: c9:c10 hole_c11:c127_13 :: c11:c12 hole_true:false8_13 :: true:false gen_c:c1:c29_13 :: Nat -> c:c1:c2 gen_0':s10_13 :: Nat -> 0':s gen_c3:c4:c511_13 :: Nat -> c3:c4:c5 gen_c6:c712_13 :: Nat -> c6:c7 Lemmas: HALF(gen_0':s10_13(*(2, n14_13))) -> gen_c:c1:c29_13(n14_13), rt in Omega(1 + n14_13) LE(gen_0':s10_13(n465_13), gen_0':s10_13(n465_13)) -> gen_c3:c4:c511_13(n465_13), rt in Omega(1 + n465_13) INC(gen_0':s10_13(n1175_13)) -> gen_c6:c712_13(n1175_13), rt in Omega(1 + n1175_13) le(gen_0':s10_13(n1584_13), gen_0':s10_13(n1584_13)) -> true, rt in Omega(0) inc(gen_0':s10_13(n2005_13)) -> gen_0':s10_13(n2005_13), rt in Omega(0) half(gen_0':s10_13(*(2, n2361_13))) -> gen_0':s10_13(n2361_13), rt in Omega(0) Generator Equations: gen_c:c1:c29_13(0) <=> c gen_c:c1:c29_13(+(x, 1)) <=> c2(gen_c:c1:c29_13(x)) gen_0':s10_13(0) <=> 0' gen_0':s10_13(+(x, 1)) <=> s(gen_0':s10_13(x)) gen_c3:c4:c511_13(0) <=> c3 gen_c3:c4:c511_13(+(x, 1)) <=> c5(gen_c3:c4:c511_13(x)) gen_c6:c712_13(0) <=> c6 gen_c6:c712_13(+(x, 1)) <=> c7(gen_c6:c712_13(x)) The following defined symbols remain to be analysed: LOG2, log2