WORST_CASE(Omega(n^1),?) proof of input_fBw9mtd6rC.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CdtProblem (3) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 9 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 290 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 144 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 370 ms] (20) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: numbers -> d(0) d(x) -> if(le(x, nr), x) if(true, x) -> cons(x, d(s(x))) if(false, x) -> nil le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) nr -> ack(s(s(s(s(s(s(0)))))), 0) ack(0, x) -> s(x) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, ack(s(x), y)) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: numbers -> d(0) d(z0) -> if(le(z0, nr), z0) if(true, z0) -> cons(z0, d(s(z0))) if(false, z0) -> nil le(0, z0) -> true le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) nr -> ack(s(s(s(s(s(s(0)))))), 0) ack(0, z0) -> s(z0) ack(s(z0), 0) -> ack(z0, s(0)) ack(s(z0), s(z1)) -> ack(z0, ack(s(z0), z1)) Tuples: NUMBERS -> c(D(0)) D(z0) -> c1(IF(le(z0, nr), z0), LE(z0, nr), NR) IF(true, z0) -> c2(D(s(z0))) IF(false, z0) -> c3 LE(0, z0) -> c4 LE(s(z0), 0) -> c5 LE(s(z0), s(z1)) -> c6(LE(z0, z1)) NR -> c7(ACK(s(s(s(s(s(s(0)))))), 0)) ACK(0, z0) -> c8 ACK(s(z0), 0) -> c9(ACK(z0, s(0))) ACK(s(z0), s(z1)) -> c10(ACK(z0, ack(s(z0), z1)), ACK(s(z0), z1)) S tuples: NUMBERS -> c(D(0)) D(z0) -> c1(IF(le(z0, nr), z0), LE(z0, nr), NR) IF(true, z0) -> c2(D(s(z0))) IF(false, z0) -> c3 LE(0, z0) -> c4 LE(s(z0), 0) -> c5 LE(s(z0), s(z1)) -> c6(LE(z0, z1)) NR -> c7(ACK(s(s(s(s(s(s(0)))))), 0)) ACK(0, z0) -> c8 ACK(s(z0), 0) -> c9(ACK(z0, s(0))) ACK(s(z0), s(z1)) -> c10(ACK(z0, ack(s(z0), z1)), ACK(s(z0), z1)) K tuples:none Defined Rule Symbols: numbers, d_1, if_2, le_2, nr, ack_2 Defined Pair Symbols: NUMBERS, D_1, IF_2, LE_2, NR, ACK_2 Compound Symbols: c_1, c1_3, c2_1, c3, c4, c5, c6_1, c7_1, c8, c9_1, c10_2 ---------------------------------------- (3) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: NUMBERS -> c(D(0)) D(z0) -> c1(IF(le(z0, nr), z0), LE(z0, nr), NR) IF(true, z0) -> c2(D(s(z0))) IF(false, z0) -> c3 LE(0, z0) -> c4 LE(s(z0), 0) -> c5 LE(s(z0), s(z1)) -> c6(LE(z0, z1)) NR -> c7(ACK(s(s(s(s(s(s(0)))))), 0)) ACK(0, z0) -> c8 ACK(s(z0), 0) -> c9(ACK(z0, s(0))) ACK(s(z0), s(z1)) -> c10(ACK(z0, ack(s(z0), z1)), ACK(s(z0), z1)) The (relative) TRS S consists of the following rules: numbers -> d(0) d(z0) -> if(le(z0, nr), z0) if(true, z0) -> cons(z0, d(s(z0))) if(false, z0) -> nil le(0, z0) -> true le(s(z0), 0) -> false le(s(z0), s(z1)) -> le(z0, z1) nr -> ack(s(s(s(s(s(s(0)))))), 0) ack(0, z0) -> s(z0) ack(s(z0), 0) -> ack(z0, s(0)) ack(s(z0), s(z1)) -> ack(z0, ack(s(z0), z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: NUMBERS -> c(D(0')) D(z0) -> c1(IF(le(z0, nr), z0), LE(z0, nr), NR) IF(true, z0) -> c2(D(s(z0))) IF(false, z0) -> c3 LE(0', z0) -> c4 LE(s(z0), 0') -> c5 LE(s(z0), s(z1)) -> c6(LE(z0, z1)) NR -> c7(ACK(s(s(s(s(s(s(0')))))), 0')) ACK(0', z0) -> c8 ACK(s(z0), 0') -> c9(ACK(z0, s(0'))) ACK(s(z0), s(z1)) -> c10(ACK(z0, ack(s(z0), z1)), ACK(s(z0), z1)) The (relative) TRS S consists of the following rules: numbers -> d(0') d(z0) -> if(le(z0, nr), z0) if(true, z0) -> cons(z0, d(s(z0))) if(false, z0) -> nil le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) nr -> ack(s(s(s(s(s(s(0')))))), 0') ack(0', z0) -> s(z0) ack(s(z0), 0') -> ack(z0, s(0')) ack(s(z0), s(z1)) -> ack(z0, ack(s(z0), z1)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (8) Obligation: Innermost TRS: Rules: NUMBERS -> c(D(0')) D(z0) -> c1(IF(le(z0, nr), z0), LE(z0, nr), NR) IF(true, z0) -> c2(D(s(z0))) IF(false, z0) -> c3 LE(0', z0) -> c4 LE(s(z0), 0') -> c5 LE(s(z0), s(z1)) -> c6(LE(z0, z1)) NR -> c7(ACK(s(s(s(s(s(s(0')))))), 0')) ACK(0', z0) -> c8 ACK(s(z0), 0') -> c9(ACK(z0, s(0'))) ACK(s(z0), s(z1)) -> c10(ACK(z0, ack(s(z0), z1)), ACK(s(z0), z1)) numbers -> d(0') d(z0) -> if(le(z0, nr), z0) if(true, z0) -> cons(z0, d(s(z0))) if(false, z0) -> nil le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) nr -> ack(s(s(s(s(s(s(0')))))), 0') ack(0', z0) -> s(z0) ack(s(z0), 0') -> ack(z0, s(0')) ack(s(z0), s(z1)) -> ack(z0, ack(s(z0), z1)) Types: NUMBERS :: c c :: c1 -> c D :: 0':s -> c1 0' :: 0':s c1 :: c2:c3 -> c4:c5:c6 -> c7 -> c1 IF :: true:false -> 0':s -> c2:c3 le :: 0':s -> 0':s -> true:false nr :: 0':s LE :: 0':s -> 0':s -> c4:c5:c6 NR :: c7 true :: true:false c2 :: c1 -> c2:c3 s :: 0':s -> 0':s false :: true:false c3 :: c2:c3 c4 :: c4:c5:c6 c5 :: c4:c5:c6 c6 :: c4:c5:c6 -> c4:c5:c6 c7 :: c8:c9:c10 -> c7 ACK :: 0':s -> 0':s -> c8:c9:c10 c8 :: c8:c9:c10 c9 :: c8:c9:c10 -> c8:c9:c10 c10 :: c8:c9:c10 -> c8:c9:c10 -> c8:c9:c10 ack :: 0':s -> 0':s -> 0':s numbers :: cons:nil d :: 0':s -> cons:nil if :: true:false -> 0':s -> cons:nil cons :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_11 :: c hole_c12_11 :: c1 hole_0':s3_11 :: 0':s hole_c2:c34_11 :: c2:c3 hole_c4:c5:c65_11 :: c4:c5:c6 hole_c76_11 :: c7 hole_true:false7_11 :: true:false hole_c8:c9:c108_11 :: c8:c9:c10 hole_cons:nil9_11 :: cons:nil gen_0':s10_11 :: Nat -> 0':s gen_c4:c5:c611_11 :: Nat -> c4:c5:c6 gen_c8:c9:c1012_11 :: Nat -> c8:c9:c10 gen_cons:nil13_11 :: Nat -> cons:nil ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: D, le, LE, ACK, ack, d They will be analysed ascendingly in the following order: le < D LE < D le < d ack < ACK ---------------------------------------- (10) Obligation: Innermost TRS: Rules: NUMBERS -> c(D(0')) D(z0) -> c1(IF(le(z0, nr), z0), LE(z0, nr), NR) IF(true, z0) -> c2(D(s(z0))) IF(false, z0) -> c3 LE(0', z0) -> c4 LE(s(z0), 0') -> c5 LE(s(z0), s(z1)) -> c6(LE(z0, z1)) NR -> c7(ACK(s(s(s(s(s(s(0')))))), 0')) ACK(0', z0) -> c8 ACK(s(z0), 0') -> c9(ACK(z0, s(0'))) ACK(s(z0), s(z1)) -> c10(ACK(z0, ack(s(z0), z1)), ACK(s(z0), z1)) numbers -> d(0') d(z0) -> if(le(z0, nr), z0) if(true, z0) -> cons(z0, d(s(z0))) if(false, z0) -> nil le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) nr -> ack(s(s(s(s(s(s(0')))))), 0') ack(0', z0) -> s(z0) ack(s(z0), 0') -> ack(z0, s(0')) ack(s(z0), s(z1)) -> ack(z0, ack(s(z0), z1)) Types: NUMBERS :: c c :: c1 -> c D :: 0':s -> c1 0' :: 0':s c1 :: c2:c3 -> c4:c5:c6 -> c7 -> c1 IF :: true:false -> 0':s -> c2:c3 le :: 0':s -> 0':s -> true:false nr :: 0':s LE :: 0':s -> 0':s -> c4:c5:c6 NR :: c7 true :: true:false c2 :: c1 -> c2:c3 s :: 0':s -> 0':s false :: true:false c3 :: c2:c3 c4 :: c4:c5:c6 c5 :: c4:c5:c6 c6 :: c4:c5:c6 -> c4:c5:c6 c7 :: c8:c9:c10 -> c7 ACK :: 0':s -> 0':s -> c8:c9:c10 c8 :: c8:c9:c10 c9 :: c8:c9:c10 -> c8:c9:c10 c10 :: c8:c9:c10 -> c8:c9:c10 -> c8:c9:c10 ack :: 0':s -> 0':s -> 0':s numbers :: cons:nil d :: 0':s -> cons:nil if :: true:false -> 0':s -> cons:nil cons :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_11 :: c hole_c12_11 :: c1 hole_0':s3_11 :: 0':s hole_c2:c34_11 :: c2:c3 hole_c4:c5:c65_11 :: c4:c5:c6 hole_c76_11 :: c7 hole_true:false7_11 :: true:false hole_c8:c9:c108_11 :: c8:c9:c10 hole_cons:nil9_11 :: cons:nil gen_0':s10_11 :: Nat -> 0':s gen_c4:c5:c611_11 :: Nat -> c4:c5:c6 gen_c8:c9:c1012_11 :: Nat -> c8:c9:c10 gen_cons:nil13_11 :: Nat -> cons:nil Generator Equations: gen_0':s10_11(0) <=> 0' gen_0':s10_11(+(x, 1)) <=> s(gen_0':s10_11(x)) gen_c4:c5:c611_11(0) <=> c4 gen_c4:c5:c611_11(+(x, 1)) <=> c6(gen_c4:c5:c611_11(x)) gen_c8:c9:c1012_11(0) <=> c8 gen_c8:c9:c1012_11(+(x, 1)) <=> c9(gen_c8:c9:c1012_11(x)) gen_cons:nil13_11(0) <=> nil gen_cons:nil13_11(+(x, 1)) <=> cons(0', gen_cons:nil13_11(x)) The following defined symbols remain to be analysed: le, D, LE, ACK, ack, d They will be analysed ascendingly in the following order: le < D LE < D le < d ack < ACK ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: le(gen_0':s10_11(n15_11), gen_0':s10_11(n15_11)) -> true, rt in Omega(0) Induction Base: le(gen_0':s10_11(0), gen_0':s10_11(0)) ->_R^Omega(0) true Induction Step: le(gen_0':s10_11(+(n15_11, 1)), gen_0':s10_11(+(n15_11, 1))) ->_R^Omega(0) le(gen_0':s10_11(n15_11), gen_0':s10_11(n15_11)) ->_IH true We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (12) Obligation: Innermost TRS: Rules: NUMBERS -> c(D(0')) D(z0) -> c1(IF(le(z0, nr), z0), LE(z0, nr), NR) IF(true, z0) -> c2(D(s(z0))) IF(false, z0) -> c3 LE(0', z0) -> c4 LE(s(z0), 0') -> c5 LE(s(z0), s(z1)) -> c6(LE(z0, z1)) NR -> c7(ACK(s(s(s(s(s(s(0')))))), 0')) ACK(0', z0) -> c8 ACK(s(z0), 0') -> c9(ACK(z0, s(0'))) ACK(s(z0), s(z1)) -> c10(ACK(z0, ack(s(z0), z1)), ACK(s(z0), z1)) numbers -> d(0') d(z0) -> if(le(z0, nr), z0) if(true, z0) -> cons(z0, d(s(z0))) if(false, z0) -> nil le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) nr -> ack(s(s(s(s(s(s(0')))))), 0') ack(0', z0) -> s(z0) ack(s(z0), 0') -> ack(z0, s(0')) ack(s(z0), s(z1)) -> ack(z0, ack(s(z0), z1)) Types: NUMBERS :: c c :: c1 -> c D :: 0':s -> c1 0' :: 0':s c1 :: c2:c3 -> c4:c5:c6 -> c7 -> c1 IF :: true:false -> 0':s -> c2:c3 le :: 0':s -> 0':s -> true:false nr :: 0':s LE :: 0':s -> 0':s -> c4:c5:c6 NR :: c7 true :: true:false c2 :: c1 -> c2:c3 s :: 0':s -> 0':s false :: true:false c3 :: c2:c3 c4 :: c4:c5:c6 c5 :: c4:c5:c6 c6 :: c4:c5:c6 -> c4:c5:c6 c7 :: c8:c9:c10 -> c7 ACK :: 0':s -> 0':s -> c8:c9:c10 c8 :: c8:c9:c10 c9 :: c8:c9:c10 -> c8:c9:c10 c10 :: c8:c9:c10 -> c8:c9:c10 -> c8:c9:c10 ack :: 0':s -> 0':s -> 0':s numbers :: cons:nil d :: 0':s -> cons:nil if :: true:false -> 0':s -> cons:nil cons :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_11 :: c hole_c12_11 :: c1 hole_0':s3_11 :: 0':s hole_c2:c34_11 :: c2:c3 hole_c4:c5:c65_11 :: c4:c5:c6 hole_c76_11 :: c7 hole_true:false7_11 :: true:false hole_c8:c9:c108_11 :: c8:c9:c10 hole_cons:nil9_11 :: cons:nil gen_0':s10_11 :: Nat -> 0':s gen_c4:c5:c611_11 :: Nat -> c4:c5:c6 gen_c8:c9:c1012_11 :: Nat -> c8:c9:c10 gen_cons:nil13_11 :: Nat -> cons:nil Lemmas: le(gen_0':s10_11(n15_11), gen_0':s10_11(n15_11)) -> true, rt in Omega(0) Generator Equations: gen_0':s10_11(0) <=> 0' gen_0':s10_11(+(x, 1)) <=> s(gen_0':s10_11(x)) gen_c4:c5:c611_11(0) <=> c4 gen_c4:c5:c611_11(+(x, 1)) <=> c6(gen_c4:c5:c611_11(x)) gen_c8:c9:c1012_11(0) <=> c8 gen_c8:c9:c1012_11(+(x, 1)) <=> c9(gen_c8:c9:c1012_11(x)) gen_cons:nil13_11(0) <=> nil gen_cons:nil13_11(+(x, 1)) <=> cons(0', gen_cons:nil13_11(x)) The following defined symbols remain to be analysed: LE, D, ACK, ack, d They will be analysed ascendingly in the following order: LE < D ack < ACK ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: LE(gen_0':s10_11(n370_11), gen_0':s10_11(n370_11)) -> gen_c4:c5:c611_11(n370_11), rt in Omega(1 + n370_11) Induction Base: LE(gen_0':s10_11(0), gen_0':s10_11(0)) ->_R^Omega(1) c4 Induction Step: LE(gen_0':s10_11(+(n370_11, 1)), gen_0':s10_11(+(n370_11, 1))) ->_R^Omega(1) c6(LE(gen_0':s10_11(n370_11), gen_0':s10_11(n370_11))) ->_IH c6(gen_c4:c5:c611_11(c371_11)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: NUMBERS -> c(D(0')) D(z0) -> c1(IF(le(z0, nr), z0), LE(z0, nr), NR) IF(true, z0) -> c2(D(s(z0))) IF(false, z0) -> c3 LE(0', z0) -> c4 LE(s(z0), 0') -> c5 LE(s(z0), s(z1)) -> c6(LE(z0, z1)) NR -> c7(ACK(s(s(s(s(s(s(0')))))), 0')) ACK(0', z0) -> c8 ACK(s(z0), 0') -> c9(ACK(z0, s(0'))) ACK(s(z0), s(z1)) -> c10(ACK(z0, ack(s(z0), z1)), ACK(s(z0), z1)) numbers -> d(0') d(z0) -> if(le(z0, nr), z0) if(true, z0) -> cons(z0, d(s(z0))) if(false, z0) -> nil le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) nr -> ack(s(s(s(s(s(s(0')))))), 0') ack(0', z0) -> s(z0) ack(s(z0), 0') -> ack(z0, s(0')) ack(s(z0), s(z1)) -> ack(z0, ack(s(z0), z1)) Types: NUMBERS :: c c :: c1 -> c D :: 0':s -> c1 0' :: 0':s c1 :: c2:c3 -> c4:c5:c6 -> c7 -> c1 IF :: true:false -> 0':s -> c2:c3 le :: 0':s -> 0':s -> true:false nr :: 0':s LE :: 0':s -> 0':s -> c4:c5:c6 NR :: c7 true :: true:false c2 :: c1 -> c2:c3 s :: 0':s -> 0':s false :: true:false c3 :: c2:c3 c4 :: c4:c5:c6 c5 :: c4:c5:c6 c6 :: c4:c5:c6 -> c4:c5:c6 c7 :: c8:c9:c10 -> c7 ACK :: 0':s -> 0':s -> c8:c9:c10 c8 :: c8:c9:c10 c9 :: c8:c9:c10 -> c8:c9:c10 c10 :: c8:c9:c10 -> c8:c9:c10 -> c8:c9:c10 ack :: 0':s -> 0':s -> 0':s numbers :: cons:nil d :: 0':s -> cons:nil if :: true:false -> 0':s -> cons:nil cons :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_11 :: c hole_c12_11 :: c1 hole_0':s3_11 :: 0':s hole_c2:c34_11 :: c2:c3 hole_c4:c5:c65_11 :: c4:c5:c6 hole_c76_11 :: c7 hole_true:false7_11 :: true:false hole_c8:c9:c108_11 :: c8:c9:c10 hole_cons:nil9_11 :: cons:nil gen_0':s10_11 :: Nat -> 0':s gen_c4:c5:c611_11 :: Nat -> c4:c5:c6 gen_c8:c9:c1012_11 :: Nat -> c8:c9:c10 gen_cons:nil13_11 :: Nat -> cons:nil Lemmas: le(gen_0':s10_11(n15_11), gen_0':s10_11(n15_11)) -> true, rt in Omega(0) Generator Equations: gen_0':s10_11(0) <=> 0' gen_0':s10_11(+(x, 1)) <=> s(gen_0':s10_11(x)) gen_c4:c5:c611_11(0) <=> c4 gen_c4:c5:c611_11(+(x, 1)) <=> c6(gen_c4:c5:c611_11(x)) gen_c8:c9:c1012_11(0) <=> c8 gen_c8:c9:c1012_11(+(x, 1)) <=> c9(gen_c8:c9:c1012_11(x)) gen_cons:nil13_11(0) <=> nil gen_cons:nil13_11(+(x, 1)) <=> cons(0', gen_cons:nil13_11(x)) The following defined symbols remain to be analysed: LE, D, ACK, ack, d They will be analysed ascendingly in the following order: LE < D ack < ACK ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: Innermost TRS: Rules: NUMBERS -> c(D(0')) D(z0) -> c1(IF(le(z0, nr), z0), LE(z0, nr), NR) IF(true, z0) -> c2(D(s(z0))) IF(false, z0) -> c3 LE(0', z0) -> c4 LE(s(z0), 0') -> c5 LE(s(z0), s(z1)) -> c6(LE(z0, z1)) NR -> c7(ACK(s(s(s(s(s(s(0')))))), 0')) ACK(0', z0) -> c8 ACK(s(z0), 0') -> c9(ACK(z0, s(0'))) ACK(s(z0), s(z1)) -> c10(ACK(z0, ack(s(z0), z1)), ACK(s(z0), z1)) numbers -> d(0') d(z0) -> if(le(z0, nr), z0) if(true, z0) -> cons(z0, d(s(z0))) if(false, z0) -> nil le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) nr -> ack(s(s(s(s(s(s(0')))))), 0') ack(0', z0) -> s(z0) ack(s(z0), 0') -> ack(z0, s(0')) ack(s(z0), s(z1)) -> ack(z0, ack(s(z0), z1)) Types: NUMBERS :: c c :: c1 -> c D :: 0':s -> c1 0' :: 0':s c1 :: c2:c3 -> c4:c5:c6 -> c7 -> c1 IF :: true:false -> 0':s -> c2:c3 le :: 0':s -> 0':s -> true:false nr :: 0':s LE :: 0':s -> 0':s -> c4:c5:c6 NR :: c7 true :: true:false c2 :: c1 -> c2:c3 s :: 0':s -> 0':s false :: true:false c3 :: c2:c3 c4 :: c4:c5:c6 c5 :: c4:c5:c6 c6 :: c4:c5:c6 -> c4:c5:c6 c7 :: c8:c9:c10 -> c7 ACK :: 0':s -> 0':s -> c8:c9:c10 c8 :: c8:c9:c10 c9 :: c8:c9:c10 -> c8:c9:c10 c10 :: c8:c9:c10 -> c8:c9:c10 -> c8:c9:c10 ack :: 0':s -> 0':s -> 0':s numbers :: cons:nil d :: 0':s -> cons:nil if :: true:false -> 0':s -> cons:nil cons :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_11 :: c hole_c12_11 :: c1 hole_0':s3_11 :: 0':s hole_c2:c34_11 :: c2:c3 hole_c4:c5:c65_11 :: c4:c5:c6 hole_c76_11 :: c7 hole_true:false7_11 :: true:false hole_c8:c9:c108_11 :: c8:c9:c10 hole_cons:nil9_11 :: cons:nil gen_0':s10_11 :: Nat -> 0':s gen_c4:c5:c611_11 :: Nat -> c4:c5:c6 gen_c8:c9:c1012_11 :: Nat -> c8:c9:c10 gen_cons:nil13_11 :: Nat -> cons:nil Lemmas: le(gen_0':s10_11(n15_11), gen_0':s10_11(n15_11)) -> true, rt in Omega(0) LE(gen_0':s10_11(n370_11), gen_0':s10_11(n370_11)) -> gen_c4:c5:c611_11(n370_11), rt in Omega(1 + n370_11) Generator Equations: gen_0':s10_11(0) <=> 0' gen_0':s10_11(+(x, 1)) <=> s(gen_0':s10_11(x)) gen_c4:c5:c611_11(0) <=> c4 gen_c4:c5:c611_11(+(x, 1)) <=> c6(gen_c4:c5:c611_11(x)) gen_c8:c9:c1012_11(0) <=> c8 gen_c8:c9:c1012_11(+(x, 1)) <=> c9(gen_c8:c9:c1012_11(x)) gen_cons:nil13_11(0) <=> nil gen_cons:nil13_11(+(x, 1)) <=> cons(0', gen_cons:nil13_11(x)) The following defined symbols remain to be analysed: D, ACK, ack, d They will be analysed ascendingly in the following order: ack < ACK ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ack(gen_0':s10_11(1), gen_0':s10_11(+(1, n1713_11))) -> *14_11, rt in Omega(0) Induction Base: ack(gen_0':s10_11(1), gen_0':s10_11(+(1, 0))) Induction Step: ack(gen_0':s10_11(1), gen_0':s10_11(+(1, +(n1713_11, 1)))) ->_R^Omega(0) ack(gen_0':s10_11(0), ack(s(gen_0':s10_11(0)), gen_0':s10_11(+(1, n1713_11)))) ->_IH ack(gen_0':s10_11(0), *14_11) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (20) Obligation: Innermost TRS: Rules: NUMBERS -> c(D(0')) D(z0) -> c1(IF(le(z0, nr), z0), LE(z0, nr), NR) IF(true, z0) -> c2(D(s(z0))) IF(false, z0) -> c3 LE(0', z0) -> c4 LE(s(z0), 0') -> c5 LE(s(z0), s(z1)) -> c6(LE(z0, z1)) NR -> c7(ACK(s(s(s(s(s(s(0')))))), 0')) ACK(0', z0) -> c8 ACK(s(z0), 0') -> c9(ACK(z0, s(0'))) ACK(s(z0), s(z1)) -> c10(ACK(z0, ack(s(z0), z1)), ACK(s(z0), z1)) numbers -> d(0') d(z0) -> if(le(z0, nr), z0) if(true, z0) -> cons(z0, d(s(z0))) if(false, z0) -> nil le(0', z0) -> true le(s(z0), 0') -> false le(s(z0), s(z1)) -> le(z0, z1) nr -> ack(s(s(s(s(s(s(0')))))), 0') ack(0', z0) -> s(z0) ack(s(z0), 0') -> ack(z0, s(0')) ack(s(z0), s(z1)) -> ack(z0, ack(s(z0), z1)) Types: NUMBERS :: c c :: c1 -> c D :: 0':s -> c1 0' :: 0':s c1 :: c2:c3 -> c4:c5:c6 -> c7 -> c1 IF :: true:false -> 0':s -> c2:c3 le :: 0':s -> 0':s -> true:false nr :: 0':s LE :: 0':s -> 0':s -> c4:c5:c6 NR :: c7 true :: true:false c2 :: c1 -> c2:c3 s :: 0':s -> 0':s false :: true:false c3 :: c2:c3 c4 :: c4:c5:c6 c5 :: c4:c5:c6 c6 :: c4:c5:c6 -> c4:c5:c6 c7 :: c8:c9:c10 -> c7 ACK :: 0':s -> 0':s -> c8:c9:c10 c8 :: c8:c9:c10 c9 :: c8:c9:c10 -> c8:c9:c10 c10 :: c8:c9:c10 -> c8:c9:c10 -> c8:c9:c10 ack :: 0':s -> 0':s -> 0':s numbers :: cons:nil d :: 0':s -> cons:nil if :: true:false -> 0':s -> cons:nil cons :: 0':s -> cons:nil -> cons:nil nil :: cons:nil hole_c1_11 :: c hole_c12_11 :: c1 hole_0':s3_11 :: 0':s hole_c2:c34_11 :: c2:c3 hole_c4:c5:c65_11 :: c4:c5:c6 hole_c76_11 :: c7 hole_true:false7_11 :: true:false hole_c8:c9:c108_11 :: c8:c9:c10 hole_cons:nil9_11 :: cons:nil gen_0':s10_11 :: Nat -> 0':s gen_c4:c5:c611_11 :: Nat -> c4:c5:c6 gen_c8:c9:c1012_11 :: Nat -> c8:c9:c10 gen_cons:nil13_11 :: Nat -> cons:nil Lemmas: le(gen_0':s10_11(n15_11), gen_0':s10_11(n15_11)) -> true, rt in Omega(0) LE(gen_0':s10_11(n370_11), gen_0':s10_11(n370_11)) -> gen_c4:c5:c611_11(n370_11), rt in Omega(1 + n370_11) ack(gen_0':s10_11(1), gen_0':s10_11(+(1, n1713_11))) -> *14_11, rt in Omega(0) Generator Equations: gen_0':s10_11(0) <=> 0' gen_0':s10_11(+(x, 1)) <=> s(gen_0':s10_11(x)) gen_c4:c5:c611_11(0) <=> c4 gen_c4:c5:c611_11(+(x, 1)) <=> c6(gen_c4:c5:c611_11(x)) gen_c8:c9:c1012_11(0) <=> c8 gen_c8:c9:c1012_11(+(x, 1)) <=> c9(gen_c8:c9:c1012_11(x)) gen_cons:nil13_11(0) <=> nil gen_cons:nil13_11(+(x, 1)) <=> cons(0', gen_cons:nil13_11(x)) The following defined symbols remain to be analysed: ACK, d