MAYBE proof of input_ND62t60Gka.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (14) TRS for Loop Detection (15) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (16) CpxTRS (17) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (18) CdtProblem (19) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (20) CdtProblem (21) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CdtProblem (23) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CpxTRS (25) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (26) CpxTRS (27) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (28) CpxWeightedTrs (29) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (30) CpxTypedWeightedTrs (31) CompletionProof [UPPER BOUND(ID), 0 ms] (32) CpxTypedWeightedCompleteTrs (33) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (34) CpxTypedWeightedCompleteTrs (35) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (38) CpxRNTS (39) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 5691 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 1826 ms] (46) CpxRNTS (47) CompletionProof [UPPER BOUND(ID), 0 ms] (48) CpxTypedWeightedCompleteTrs (49) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (50) CpxRNTS (51) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (52) CpxWeightedTrs (53) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (54) CpxTypedWeightedTrs (55) CompletionProof [UPPER BOUND(ID), 0 ms] (56) CpxTypedWeightedCompleteTrs (57) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (58) CpxTypedWeightedCompleteTrs (59) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (60) CpxRNTS (61) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (62) CpxRNTS (63) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (64) CpxRNTS (65) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (66) CpxRNTS (67) IntTrsBoundProof [UPPER BOUND(ID), 1129 ms] (68) CpxRNTS (69) IntTrsBoundProof [UPPER BOUND(ID), 341 ms] (70) CpxRNTS (71) CompletionProof [UPPER BOUND(ID), 0 ms] (72) CpxTypedWeightedCompleteTrs (73) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (74) CpxRNTS ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: g(Cons(x, xs), y) -> Cons(x, xs) h(Nil, y) -> h(Nil, y) h(Cons(x, xs), y) -> f(Cons(x, xs), y) g(Nil, y) -> h(Nil, y) f(Nil, y) -> g(Nil, y) f(Cons(x, xs), y) -> h(Cons(x, xs), y) sp1(x, y) -> f(x, y) r(x, y) -> x S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: g(Cons(x, xs), y) -> Cons(x, xs) h(Nil, y) -> h(Nil, y) h(Cons(x, xs), y) -> f(Cons(x, xs), y) g(Nil, y) -> h(Nil, y) f(Nil, y) -> g(Nil, y) f(Cons(x, xs), y) -> h(Cons(x, xs), y) sp1(x, y) -> f(x, y) r(x, y) -> x S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: g(Cons(z0, z1), z2) -> Cons(z0, z1) g(Nil, z0) -> h(Nil, z0) h(Nil, z0) -> h(Nil, z0) h(Cons(z0, z1), z2) -> f(Cons(z0, z1), z2) f(Nil, z0) -> g(Nil, z0) f(Cons(z0, z1), z2) -> h(Cons(z0, z1), z2) sp1(z0, z1) -> f(z0, z1) r(z0, z1) -> z0 Tuples: G(Cons(z0, z1), z2) -> c G(Nil, z0) -> c1(H(Nil, z0)) H(Nil, z0) -> c2(H(Nil, z0)) H(Cons(z0, z1), z2) -> c3(F(Cons(z0, z1), z2)) F(Nil, z0) -> c4(G(Nil, z0)) F(Cons(z0, z1), z2) -> c5(H(Cons(z0, z1), z2)) SP1(z0, z1) -> c6(F(z0, z1)) R(z0, z1) -> c7 S tuples: G(Cons(z0, z1), z2) -> c G(Nil, z0) -> c1(H(Nil, z0)) H(Nil, z0) -> c2(H(Nil, z0)) H(Cons(z0, z1), z2) -> c3(F(Cons(z0, z1), z2)) F(Nil, z0) -> c4(G(Nil, z0)) F(Cons(z0, z1), z2) -> c5(H(Cons(z0, z1), z2)) SP1(z0, z1) -> c6(F(z0, z1)) R(z0, z1) -> c7 K tuples:none Defined Rule Symbols: g_2, h_2, f_2, sp1_2, r_2 Defined Pair Symbols: G_2, H_2, F_2, SP1_2, R_2 Compound Symbols: c, c1_1, c2_1, c3_1, c4_1, c5_1, c6_1, c7 ---------------------------------------- (5) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: G(Cons(z0, z1), z2) -> c G(Nil, z0) -> c1(H(Nil, z0)) H(Nil, z0) -> c2(H(Nil, z0)) H(Cons(z0, z1), z2) -> c3(F(Cons(z0, z1), z2)) F(Nil, z0) -> c4(G(Nil, z0)) F(Cons(z0, z1), z2) -> c5(H(Cons(z0, z1), z2)) SP1(z0, z1) -> c6(F(z0, z1)) R(z0, z1) -> c7 The (relative) TRS S consists of the following rules: g(Cons(z0, z1), z2) -> Cons(z0, z1) g(Nil, z0) -> h(Nil, z0) h(Nil, z0) -> h(Nil, z0) h(Cons(z0, z1), z2) -> f(Cons(z0, z1), z2) f(Nil, z0) -> g(Nil, z0) f(Cons(z0, z1), z2) -> h(Cons(z0, z1), z2) sp1(z0, z1) -> f(z0, z1) r(z0, z1) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (7) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: G(Cons(z0, z1), z2) -> c G(Nil, z0) -> c1(H(Nil, z0)) H(Nil, z0) -> c2(H(Nil, z0)) H(Cons(z0, z1), z2) -> c3(F(Cons(z0, z1), z2)) F(Nil, z0) -> c4(G(Nil, z0)) F(Cons(z0, z1), z2) -> c5(H(Cons(z0, z1), z2)) SP1(z0, z1) -> c6(F(z0, z1)) R(z0, z1) -> c7 The (relative) TRS S consists of the following rules: g(Cons(z0, z1), z2) -> Cons(z0, z1) g(Nil, z0) -> h(Nil, z0) h(Nil, z0) -> h(Nil, z0) h(Cons(z0, z1), z2) -> f(Cons(z0, z1), z2) f(Nil, z0) -> g(Nil, z0) f(Cons(z0, z1), z2) -> h(Cons(z0, z1), z2) sp1(z0, z1) -> f(z0, z1) r(z0, z1) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (10) Obligation: Innermost TRS: Rules: G(Cons(z0, z1), z2) -> c G(Nil, z0) -> c1(H(Nil, z0)) H(Nil, z0) -> c2(H(Nil, z0)) H(Cons(z0, z1), z2) -> c3(F(Cons(z0, z1), z2)) F(Nil, z0) -> c4(G(Nil, z0)) F(Cons(z0, z1), z2) -> c5(H(Cons(z0, z1), z2)) SP1(z0, z1) -> c6(F(z0, z1)) R(z0, z1) -> c7 g(Cons(z0, z1), z2) -> Cons(z0, z1) g(Nil, z0) -> h(Nil, z0) h(Nil, z0) -> h(Nil, z0) h(Cons(z0, z1), z2) -> f(Cons(z0, z1), z2) f(Nil, z0) -> g(Nil, z0) f(Cons(z0, z1), z2) -> h(Cons(z0, z1), z2) sp1(z0, z1) -> f(z0, z1) r(z0, z1) -> z0 Types: G :: Cons:Nil -> c -> c:c1 Cons :: a -> b -> Cons:Nil c :: c:c1 Nil :: Cons:Nil c1 :: c2:c3 -> c:c1 H :: Cons:Nil -> c -> c2:c3 c2 :: c2:c3 -> c2:c3 c3 :: c4:c5 -> c2:c3 F :: Cons:Nil -> c -> c4:c5 c4 :: c:c1 -> c4:c5 c5 :: c2:c3 -> c4:c5 SP1 :: Cons:Nil -> c -> c6 c6 :: c4:c5 -> c6 R :: d -> e -> c7 c7 :: c7 g :: Cons:Nil -> f -> Cons:Nil h :: Cons:Nil -> f -> Cons:Nil f :: Cons:Nil -> f -> Cons:Nil sp1 :: Cons:Nil -> f -> Cons:Nil r :: r -> g -> r hole_c:c11_8 :: c:c1 hole_Cons:Nil2_8 :: Cons:Nil hole_c3_8 :: c hole_a4_8 :: a hole_b5_8 :: b hole_c2:c36_8 :: c2:c3 hole_c4:c57_8 :: c4:c5 hole_c68_8 :: c6 hole_c79_8 :: c7 hole_d10_8 :: d hole_e11_8 :: e hole_f12_8 :: f hole_r13_8 :: r hole_g14_8 :: g gen_c2:c315_8 :: Nat -> c2:c3 ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: G, H, F, g, h, f They will be analysed ascendingly in the following order: G = H G = F H = F g = h g = f h = f ---------------------------------------- (12) Obligation: Innermost TRS: Rules: G(Cons(z0, z1), z2) -> c G(Nil, z0) -> c1(H(Nil, z0)) H(Nil, z0) -> c2(H(Nil, z0)) H(Cons(z0, z1), z2) -> c3(F(Cons(z0, z1), z2)) F(Nil, z0) -> c4(G(Nil, z0)) F(Cons(z0, z1), z2) -> c5(H(Cons(z0, z1), z2)) SP1(z0, z1) -> c6(F(z0, z1)) R(z0, z1) -> c7 g(Cons(z0, z1), z2) -> Cons(z0, z1) g(Nil, z0) -> h(Nil, z0) h(Nil, z0) -> h(Nil, z0) h(Cons(z0, z1), z2) -> f(Cons(z0, z1), z2) f(Nil, z0) -> g(Nil, z0) f(Cons(z0, z1), z2) -> h(Cons(z0, z1), z2) sp1(z0, z1) -> f(z0, z1) r(z0, z1) -> z0 Types: G :: Cons:Nil -> c -> c:c1 Cons :: a -> b -> Cons:Nil c :: c:c1 Nil :: Cons:Nil c1 :: c2:c3 -> c:c1 H :: Cons:Nil -> c -> c2:c3 c2 :: c2:c3 -> c2:c3 c3 :: c4:c5 -> c2:c3 F :: Cons:Nil -> c -> c4:c5 c4 :: c:c1 -> c4:c5 c5 :: c2:c3 -> c4:c5 SP1 :: Cons:Nil -> c -> c6 c6 :: c4:c5 -> c6 R :: d -> e -> c7 c7 :: c7 g :: Cons:Nil -> f -> Cons:Nil h :: Cons:Nil -> f -> Cons:Nil f :: Cons:Nil -> f -> Cons:Nil sp1 :: Cons:Nil -> f -> Cons:Nil r :: r -> g -> r hole_c:c11_8 :: c:c1 hole_Cons:Nil2_8 :: Cons:Nil hole_c3_8 :: c hole_a4_8 :: a hole_b5_8 :: b hole_c2:c36_8 :: c2:c3 hole_c4:c57_8 :: c4:c5 hole_c68_8 :: c6 hole_c79_8 :: c7 hole_d10_8 :: d hole_e11_8 :: e hole_f12_8 :: f hole_r13_8 :: r hole_g14_8 :: g gen_c2:c315_8 :: Nat -> c2:c3 Generator Equations: gen_c2:c315_8(0) <=> c3(c4(c)) gen_c2:c315_8(+(x, 1)) <=> c2(gen_c2:c315_8(x)) The following defined symbols remain to be analysed: h, G, H, F, g, f They will be analysed ascendingly in the following order: G = H G = F H = F g = h g = f h = f ---------------------------------------- (13) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (14) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: G(Cons(z0, z1), z2) -> c G(Nil, z0) -> c1(H(Nil, z0)) H(Nil, z0) -> c2(H(Nil, z0)) H(Cons(z0, z1), z2) -> c3(F(Cons(z0, z1), z2)) F(Nil, z0) -> c4(G(Nil, z0)) F(Cons(z0, z1), z2) -> c5(H(Cons(z0, z1), z2)) SP1(z0, z1) -> c6(F(z0, z1)) R(z0, z1) -> c7 The (relative) TRS S consists of the following rules: g(Cons(z0, z1), z2) -> Cons(z0, z1) g(Nil, z0) -> h(Nil, z0) h(Nil, z0) -> h(Nil, z0) h(Cons(z0, z1), z2) -> f(Cons(z0, z1), z2) f(Nil, z0) -> g(Nil, z0) f(Cons(z0, z1), z2) -> h(Cons(z0, z1), z2) sp1(z0, z1) -> f(z0, z1) r(z0, z1) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (15) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (16) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: g(Cons(x, xs), y) -> Cons(x, xs) h(Nil, y) -> h(Nil, y) h(Cons(x, xs), y) -> f(Cons(x, xs), y) g(Nil, y) -> h(Nil, y) f(Nil, y) -> g(Nil, y) f(Cons(x, xs), y) -> h(Cons(x, xs), y) sp1(x, y) -> f(x, y) r(x, y) -> x S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (17) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: g(Cons(z0, z1), z2) -> Cons(z0, z1) g(Nil, z0) -> h(Nil, z0) h(Nil, z0) -> h(Nil, z0) h(Cons(z0, z1), z2) -> f(Cons(z0, z1), z2) f(Nil, z0) -> g(Nil, z0) f(Cons(z0, z1), z2) -> h(Cons(z0, z1), z2) sp1(z0, z1) -> f(z0, z1) r(z0, z1) -> z0 Tuples: G(Cons(z0, z1), z2) -> c G(Nil, z0) -> c1(H(Nil, z0)) H(Nil, z0) -> c2(H(Nil, z0)) H(Cons(z0, z1), z2) -> c3(F(Cons(z0, z1), z2)) F(Nil, z0) -> c4(G(Nil, z0)) F(Cons(z0, z1), z2) -> c5(H(Cons(z0, z1), z2)) SP1(z0, z1) -> c6(F(z0, z1)) R(z0, z1) -> c7 S tuples: G(Cons(z0, z1), z2) -> c G(Nil, z0) -> c1(H(Nil, z0)) H(Nil, z0) -> c2(H(Nil, z0)) H(Cons(z0, z1), z2) -> c3(F(Cons(z0, z1), z2)) F(Nil, z0) -> c4(G(Nil, z0)) F(Cons(z0, z1), z2) -> c5(H(Cons(z0, z1), z2)) SP1(z0, z1) -> c6(F(z0, z1)) R(z0, z1) -> c7 K tuples:none Defined Rule Symbols: g_2, h_2, f_2, sp1_2, r_2 Defined Pair Symbols: G_2, H_2, F_2, SP1_2, R_2 Compound Symbols: c, c1_1, c2_1, c3_1, c4_1, c5_1, c6_1, c7 ---------------------------------------- (19) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 3 leading nodes: SP1(z0, z1) -> c6(F(z0, z1)) F(Nil, z0) -> c4(G(Nil, z0)) G(Nil, z0) -> c1(H(Nil, z0)) Removed 2 trailing nodes: G(Cons(z0, z1), z2) -> c R(z0, z1) -> c7 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: g(Cons(z0, z1), z2) -> Cons(z0, z1) g(Nil, z0) -> h(Nil, z0) h(Nil, z0) -> h(Nil, z0) h(Cons(z0, z1), z2) -> f(Cons(z0, z1), z2) f(Nil, z0) -> g(Nil, z0) f(Cons(z0, z1), z2) -> h(Cons(z0, z1), z2) sp1(z0, z1) -> f(z0, z1) r(z0, z1) -> z0 Tuples: H(Nil, z0) -> c2(H(Nil, z0)) H(Cons(z0, z1), z2) -> c3(F(Cons(z0, z1), z2)) F(Cons(z0, z1), z2) -> c5(H(Cons(z0, z1), z2)) S tuples: H(Nil, z0) -> c2(H(Nil, z0)) H(Cons(z0, z1), z2) -> c3(F(Cons(z0, z1), z2)) F(Cons(z0, z1), z2) -> c5(H(Cons(z0, z1), z2)) K tuples:none Defined Rule Symbols: g_2, h_2, f_2, sp1_2, r_2 Defined Pair Symbols: H_2, F_2 Compound Symbols: c2_1, c3_1, c5_1 ---------------------------------------- (21) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: g(Cons(z0, z1), z2) -> Cons(z0, z1) g(Nil, z0) -> h(Nil, z0) h(Nil, z0) -> h(Nil, z0) h(Cons(z0, z1), z2) -> f(Cons(z0, z1), z2) f(Nil, z0) -> g(Nil, z0) f(Cons(z0, z1), z2) -> h(Cons(z0, z1), z2) sp1(z0, z1) -> f(z0, z1) r(z0, z1) -> z0 ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: H(Nil, z0) -> c2(H(Nil, z0)) H(Cons(z0, z1), z2) -> c3(F(Cons(z0, z1), z2)) F(Cons(z0, z1), z2) -> c5(H(Cons(z0, z1), z2)) S tuples: H(Nil, z0) -> c2(H(Nil, z0)) H(Cons(z0, z1), z2) -> c3(F(Cons(z0, z1), z2)) F(Cons(z0, z1), z2) -> c5(H(Cons(z0, z1), z2)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: H_2, F_2 Compound Symbols: c2_1, c3_1, c5_1 ---------------------------------------- (23) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (24) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: H(Nil, z0) -> c2(H(Nil, z0)) H(Cons(z0, z1), z2) -> c3(F(Cons(z0, z1), z2)) F(Cons(z0, z1), z2) -> c5(H(Cons(z0, z1), z2)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (25) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (26) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: H(Nil, z0) -> c2(H(Nil, z0)) H(Cons(z0, z1), z2) -> c3(F(Cons(z0, z1), z2)) F(Cons(z0, z1), z2) -> c5(H(Cons(z0, z1), z2)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (27) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (28) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: H(Nil, z0) -> c2(H(Nil, z0)) [1] H(Cons(z0, z1), z2) -> c3(F(Cons(z0, z1), z2)) [1] F(Cons(z0, z1), z2) -> c5(H(Cons(z0, z1), z2)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (29) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (30) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: H(Nil, z0) -> c2(H(Nil, z0)) [1] H(Cons(z0, z1), z2) -> c3(F(Cons(z0, z1), z2)) [1] F(Cons(z0, z1), z2) -> c5(H(Cons(z0, z1), z2)) [1] The TRS has the following type information: H :: Nil:Cons -> a -> c2:c3 Nil :: Nil:Cons c2 :: c2:c3 -> c2:c3 Cons :: b -> c -> Nil:Cons c3 :: c5 -> c2:c3 F :: Nil:Cons -> a -> c5 c5 :: c2:c3 -> c5 Rewrite Strategy: INNERMOST ---------------------------------------- (31) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: H_2 F_2 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: const, const1, const2, const3, const4 ---------------------------------------- (32) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: H(Nil, z0) -> c2(H(Nil, z0)) [1] H(Cons(z0, z1), z2) -> c3(F(Cons(z0, z1), z2)) [1] F(Cons(z0, z1), z2) -> c5(H(Cons(z0, z1), z2)) [1] The TRS has the following type information: H :: Nil:Cons -> a -> c2:c3 Nil :: Nil:Cons c2 :: c2:c3 -> c2:c3 Cons :: b -> c -> Nil:Cons c3 :: c5 -> c2:c3 F :: Nil:Cons -> a -> c5 c5 :: c2:c3 -> c5 const :: c2:c3 const1 :: a const2 :: b const3 :: c const4 :: c5 Rewrite Strategy: INNERMOST ---------------------------------------- (33) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (34) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: H(Nil, z0) -> c2(H(Nil, z0)) [1] H(Cons(z0, z1), z2) -> c3(F(Cons(z0, z1), z2)) [1] F(Cons(z0, z1), z2) -> c5(H(Cons(z0, z1), z2)) [1] The TRS has the following type information: H :: Nil:Cons -> a -> c2:c3 Nil :: Nil:Cons c2 :: c2:c3 -> c2:c3 Cons :: b -> c -> Nil:Cons c3 :: c5 -> c2:c3 F :: Nil:Cons -> a -> c5 c5 :: c2:c3 -> c5 const :: c2:c3 const1 :: a const2 :: b const3 :: c const4 :: c5 Rewrite Strategy: INNERMOST ---------------------------------------- (35) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: Nil => 0 const => 0 const1 => 0 const2 => 0 const3 => 0 const4 => 0 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: F(z, z') -{ 1 }-> 1 + H(1 + z0 + z1, z2) :|: z1 >= 0, z' = z2, z0 >= 0, z = 1 + z0 + z1, z2 >= 0 H(z, z') -{ 1 }-> 1 + H(0, z0) :|: z0 >= 0, z = 0, z' = z0 H(z, z') -{ 1 }-> 1 + F(1 + z0 + z1, z2) :|: z1 >= 0, z' = z2, z0 >= 0, z = 1 + z0 + z1, z2 >= 0 ---------------------------------------- (37) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: F(z, z') -{ 1 }-> 1 + H(1 + z0 + z1, z') :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z' >= 0 H(z, z') -{ 1 }-> 1 + H(0, z') :|: z' >= 0, z = 0 H(z, z') -{ 1 }-> 1 + F(1 + z0 + z1, z') :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z' >= 0 ---------------------------------------- (39) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { H, F } ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: F(z, z') -{ 1 }-> 1 + H(1 + z0 + z1, z') :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z' >= 0 H(z, z') -{ 1 }-> 1 + H(0, z') :|: z' >= 0, z = 0 H(z, z') -{ 1 }-> 1 + F(1 + z0 + z1, z') :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z' >= 0 Function symbols to be analyzed: {H,F} ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: F(z, z') -{ 1 }-> 1 + H(1 + z0 + z1, z') :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z' >= 0 H(z, z') -{ 1 }-> 1 + H(0, z') :|: z' >= 0, z = 0 H(z, z') -{ 1 }-> 1 + F(1 + z0 + z1, z') :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z' >= 0 Function symbols to be analyzed: {H,F} ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: H after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed SIZE bound using CoFloCo for: F after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: F(z, z') -{ 1 }-> 1 + H(1 + z0 + z1, z') :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z' >= 0 H(z, z') -{ 1 }-> 1 + H(0, z') :|: z' >= 0, z = 0 H(z, z') -{ 1 }-> 1 + F(1 + z0 + z1, z') :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z' >= 0 Function symbols to be analyzed: {H,F} Previous analysis results are: H: runtime: ?, size: O(1) [0] F: runtime: ?, size: O(1) [1] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: H after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: F(z, z') -{ 1 }-> 1 + H(1 + z0 + z1, z') :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z' >= 0 H(z, z') -{ 1 }-> 1 + H(0, z') :|: z' >= 0, z = 0 H(z, z') -{ 1 }-> 1 + F(1 + z0 + z1, z') :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z' >= 0 Function symbols to be analyzed: {H,F} Previous analysis results are: H: runtime: INF, size: O(1) [0] F: runtime: ?, size: O(1) [1] ---------------------------------------- (47) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: F(v0, v1) -> null_F [0] And the following fresh constants: null_F, const, const1, const2, const3 ---------------------------------------- (48) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: H(Nil, z0) -> c2(H(Nil, z0)) [1] H(Cons(z0, z1), z2) -> c3(F(Cons(z0, z1), z2)) [1] F(Cons(z0, z1), z2) -> c5(H(Cons(z0, z1), z2)) [1] F(v0, v1) -> null_F [0] The TRS has the following type information: H :: Nil:Cons -> a -> c2:c3 Nil :: Nil:Cons c2 :: c2:c3 -> c2:c3 Cons :: b -> c -> Nil:Cons c3 :: c5:null_F -> c2:c3 F :: Nil:Cons -> a -> c5:null_F c5 :: c2:c3 -> c5:null_F null_F :: c5:null_F const :: c2:c3 const1 :: a const2 :: b const3 :: c Rewrite Strategy: INNERMOST ---------------------------------------- (49) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: Nil => 0 null_F => 0 const => 0 const1 => 0 const2 => 0 const3 => 0 ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: F(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 F(z, z') -{ 1 }-> 1 + H(1 + z0 + z1, z2) :|: z1 >= 0, z' = z2, z0 >= 0, z = 1 + z0 + z1, z2 >= 0 H(z, z') -{ 1 }-> 1 + H(0, z0) :|: z0 >= 0, z = 0, z' = z0 H(z, z') -{ 1 }-> 1 + F(1 + z0 + z1, z2) :|: z1 >= 0, z' = z2, z0 >= 0, z = 1 + z0 + z1, z2 >= 0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (51) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (52) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: g(Cons(x, xs), y) -> Cons(x, xs) [1] h(Nil, y) -> h(Nil, y) [1] h(Cons(x, xs), y) -> f(Cons(x, xs), y) [1] g(Nil, y) -> h(Nil, y) [1] f(Nil, y) -> g(Nil, y) [1] f(Cons(x, xs), y) -> h(Cons(x, xs), y) [1] sp1(x, y) -> f(x, y) [1] r(x, y) -> x [1] Rewrite Strategy: INNERMOST ---------------------------------------- (53) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (54) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: g(Cons(x, xs), y) -> Cons(x, xs) [1] h(Nil, y) -> h(Nil, y) [1] h(Cons(x, xs), y) -> f(Cons(x, xs), y) [1] g(Nil, y) -> h(Nil, y) [1] f(Nil, y) -> g(Nil, y) [1] f(Cons(x, xs), y) -> h(Cons(x, xs), y) [1] sp1(x, y) -> f(x, y) [1] r(x, y) -> x [1] The TRS has the following type information: g :: Cons:Nil -> c -> Cons:Nil Cons :: a -> b -> Cons:Nil h :: Cons:Nil -> c -> Cons:Nil Nil :: Cons:Nil f :: Cons:Nil -> c -> Cons:Nil sp1 :: Cons:Nil -> c -> Cons:Nil r :: r -> d -> r Rewrite Strategy: INNERMOST ---------------------------------------- (55) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: g_2 h_2 f_2 sp1_2 r_2 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: const, const1, const2, const3, const4 ---------------------------------------- (56) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: g(Cons(x, xs), y) -> Cons(x, xs) [1] h(Nil, y) -> h(Nil, y) [1] h(Cons(x, xs), y) -> f(Cons(x, xs), y) [1] g(Nil, y) -> h(Nil, y) [1] f(Nil, y) -> g(Nil, y) [1] f(Cons(x, xs), y) -> h(Cons(x, xs), y) [1] sp1(x, y) -> f(x, y) [1] r(x, y) -> x [1] The TRS has the following type information: g :: Cons:Nil -> c -> Cons:Nil Cons :: a -> b -> Cons:Nil h :: Cons:Nil -> c -> Cons:Nil Nil :: Cons:Nil f :: Cons:Nil -> c -> Cons:Nil sp1 :: Cons:Nil -> c -> Cons:Nil r :: r -> d -> r const :: c const1 :: a const2 :: b const3 :: r const4 :: d Rewrite Strategy: INNERMOST ---------------------------------------- (57) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (58) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: g(Cons(x, xs), y) -> Cons(x, xs) [1] h(Nil, y) -> h(Nil, y) [1] h(Cons(x, xs), y) -> f(Cons(x, xs), y) [1] g(Nil, y) -> h(Nil, y) [1] f(Nil, y) -> g(Nil, y) [1] f(Cons(x, xs), y) -> h(Cons(x, xs), y) [1] sp1(x, y) -> f(x, y) [1] r(x, y) -> x [1] The TRS has the following type information: g :: Cons:Nil -> c -> Cons:Nil Cons :: a -> b -> Cons:Nil h :: Cons:Nil -> c -> Cons:Nil Nil :: Cons:Nil f :: Cons:Nil -> c -> Cons:Nil sp1 :: Cons:Nil -> c -> Cons:Nil r :: r -> d -> r const :: c const1 :: a const2 :: b const3 :: r const4 :: d Rewrite Strategy: INNERMOST ---------------------------------------- (59) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: Nil => 0 const => 0 const1 => 0 const2 => 0 const3 => 0 const4 => 0 ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> h(1 + x + xs, y) :|: z = 1 + x + xs, xs >= 0, x >= 0, y >= 0, z' = y f(z, z') -{ 1 }-> g(0, y) :|: y >= 0, z = 0, z' = y g(z, z') -{ 1 }-> h(0, y) :|: y >= 0, z = 0, z' = y g(z, z') -{ 1 }-> 1 + x + xs :|: z = 1 + x + xs, xs >= 0, x >= 0, y >= 0, z' = y h(z, z') -{ 1 }-> h(0, y) :|: y >= 0, z = 0, z' = y h(z, z') -{ 1 }-> f(1 + x + xs, y) :|: z = 1 + x + xs, xs >= 0, x >= 0, y >= 0, z' = y r(z, z') -{ 1 }-> x :|: x >= 0, y >= 0, z = x, z' = y sp1(z, z') -{ 1 }-> f(x, y) :|: x >= 0, y >= 0, z = x, z' = y ---------------------------------------- (61) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> h(1 + x + xs, z') :|: z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0 f(z, z') -{ 1 }-> g(0, z') :|: z' >= 0, z = 0 g(z, z') -{ 1 }-> h(0, z') :|: z' >= 0, z = 0 g(z, z') -{ 1 }-> 1 + x + xs :|: z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0 h(z, z') -{ 1 }-> h(0, z') :|: z' >= 0, z = 0 h(z, z') -{ 1 }-> f(1 + x + xs, z') :|: z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0 r(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 sp1(z, z') -{ 1 }-> f(z, z') :|: z >= 0, z' >= 0 ---------------------------------------- (63) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { f, h, g } { r } { sp1 } ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> h(1 + x + xs, z') :|: z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0 f(z, z') -{ 1 }-> g(0, z') :|: z' >= 0, z = 0 g(z, z') -{ 1 }-> h(0, z') :|: z' >= 0, z = 0 g(z, z') -{ 1 }-> 1 + x + xs :|: z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0 h(z, z') -{ 1 }-> h(0, z') :|: z' >= 0, z = 0 h(z, z') -{ 1 }-> f(1 + x + xs, z') :|: z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0 r(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 sp1(z, z') -{ 1 }-> f(z, z') :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f,h,g}, {r}, {sp1} ---------------------------------------- (65) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> h(1 + x + xs, z') :|: z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0 f(z, z') -{ 1 }-> g(0, z') :|: z' >= 0, z = 0 g(z, z') -{ 1 }-> h(0, z') :|: z' >= 0, z = 0 g(z, z') -{ 1 }-> 1 + x + xs :|: z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0 h(z, z') -{ 1 }-> h(0, z') :|: z' >= 0, z = 0 h(z, z') -{ 1 }-> f(1 + x + xs, z') :|: z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0 r(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 sp1(z, z') -{ 1 }-> f(z, z') :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f,h,g}, {r}, {sp1} ---------------------------------------- (67) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed SIZE bound using CoFloCo for: h after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 Computed SIZE bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> h(1 + x + xs, z') :|: z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0 f(z, z') -{ 1 }-> g(0, z') :|: z' >= 0, z = 0 g(z, z') -{ 1 }-> h(0, z') :|: z' >= 0, z = 0 g(z, z') -{ 1 }-> 1 + x + xs :|: z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0 h(z, z') -{ 1 }-> h(0, z') :|: z' >= 0, z = 0 h(z, z') -{ 1 }-> f(1 + x + xs, z') :|: z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0 r(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 sp1(z, z') -{ 1 }-> f(z, z') :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f,h,g}, {r}, {sp1} Previous analysis results are: f: runtime: ?, size: O(1) [0] h: runtime: ?, size: O(1) [0] g: runtime: ?, size: O(n^1) [z] ---------------------------------------- (69) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> h(1 + x + xs, z') :|: z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0 f(z, z') -{ 1 }-> g(0, z') :|: z' >= 0, z = 0 g(z, z') -{ 1 }-> h(0, z') :|: z' >= 0, z = 0 g(z, z') -{ 1 }-> 1 + x + xs :|: z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0 h(z, z') -{ 1 }-> h(0, z') :|: z' >= 0, z = 0 h(z, z') -{ 1 }-> f(1 + x + xs, z') :|: z = 1 + x + xs, xs >= 0, x >= 0, z' >= 0 r(z, z') -{ 1 }-> z :|: z >= 0, z' >= 0 sp1(z, z') -{ 1 }-> f(z, z') :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f,h,g}, {r}, {sp1} Previous analysis results are: f: runtime: INF, size: O(1) [0] h: runtime: ?, size: O(1) [0] g: runtime: ?, size: O(n^1) [z] ---------------------------------------- (71) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: none And the following fresh constants: const, const1, const2, const3, const4 ---------------------------------------- (72) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: g(Cons(x, xs), y) -> Cons(x, xs) [1] h(Nil, y) -> h(Nil, y) [1] h(Cons(x, xs), y) -> f(Cons(x, xs), y) [1] g(Nil, y) -> h(Nil, y) [1] f(Nil, y) -> g(Nil, y) [1] f(Cons(x, xs), y) -> h(Cons(x, xs), y) [1] sp1(x, y) -> f(x, y) [1] r(x, y) -> x [1] The TRS has the following type information: g :: Cons:Nil -> c -> Cons:Nil Cons :: a -> b -> Cons:Nil h :: Cons:Nil -> c -> Cons:Nil Nil :: Cons:Nil f :: Cons:Nil -> c -> Cons:Nil sp1 :: Cons:Nil -> c -> Cons:Nil r :: r -> d -> r const :: c const1 :: a const2 :: b const3 :: r const4 :: d Rewrite Strategy: INNERMOST ---------------------------------------- (73) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: Nil => 0 const => 0 const1 => 0 const2 => 0 const3 => 0 const4 => 0 ---------------------------------------- (74) Obligation: Complexity RNTS consisting of the following rules: f(z, z') -{ 1 }-> h(1 + x + xs, y) :|: z = 1 + x + xs, xs >= 0, x >= 0, y >= 0, z' = y f(z, z') -{ 1 }-> g(0, y) :|: y >= 0, z = 0, z' = y g(z, z') -{ 1 }-> h(0, y) :|: y >= 0, z = 0, z' = y g(z, z') -{ 1 }-> 1 + x + xs :|: z = 1 + x + xs, xs >= 0, x >= 0, y >= 0, z' = y h(z, z') -{ 1 }-> h(0, y) :|: y >= 0, z = 0, z' = y h(z, z') -{ 1 }-> f(1 + x + xs, y) :|: z = 1 + x + xs, xs >= 0, x >= 0, y >= 0, z' = y r(z, z') -{ 1 }-> x :|: x >= 0, y >= 0, z = x, z' = y sp1(z, z') -{ 1 }-> f(x, y) :|: x >= 0, y >= 0, z = x, z' = y Only complete derivations are relevant for the runtime complexity.