MAYBE proof of input_4s6qNlpM00.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (10) TRS for Loop Detection (11) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRelTRS (13) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (14) typed CpxTrs (15) OrderProof [LOWER BOUND(ID), 6 ms] (16) typed CpxTrs (17) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (18) CdtProblem (19) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (20) CdtProblem (21) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CdtProblem (23) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CpxTRS (25) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (26) CpxTRS (27) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (28) CpxWeightedTrs (29) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (30) CpxTypedWeightedTrs (31) CompletionProof [UPPER BOUND(ID), 0 ms] (32) CpxTypedWeightedCompleteTrs (33) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (34) CpxTypedWeightedCompleteTrs (35) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (38) CpxRNTS (39) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 1391 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 535 ms] (46) CpxRNTS (47) CompletionProof [UPPER BOUND(ID), 0 ms] (48) CpxTypedWeightedCompleteTrs (49) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (50) CpxRNTS (51) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (52) CpxWeightedTrs (53) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (54) CpxTypedWeightedTrs (55) CompletionProof [UPPER BOUND(ID), 0 ms] (56) CpxTypedWeightedCompleteTrs (57) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (58) CpxTypedWeightedCompleteTrs (59) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (60) CpxRNTS (61) InliningProof [UPPER BOUND(ID), 27 ms] (62) CpxRNTS (63) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (64) CpxRNTS (65) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (66) CpxRNTS (67) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (68) CpxRNTS (69) IntTrsBoundProof [UPPER BOUND(ID), 50 ms] (70) CpxRNTS (71) IntTrsBoundProof [UPPER BOUND(ID), 7 ms] (72) CpxRNTS (73) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (74) CpxRNTS (75) IntTrsBoundProof [UPPER BOUND(ID), 1227 ms] (76) CpxRNTS (77) IntTrsBoundProof [UPPER BOUND(ID), 627 ms] (78) CpxRNTS (79) CompletionProof [UPPER BOUND(ID), 0 ms] (80) CpxTypedWeightedCompleteTrs (81) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (82) CpxRNTS ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: equal0(Nil) -> number42(Nil) equal0(Cons(x, xs)) -> equal0(Cons(x, xs)) number42(x) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))))))))))))))))))))))))))))))))))))))))) goal(x) -> equal0(x) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: equal0(Nil) -> number42(Nil) equal0(Cons(x, xs)) -> equal0(Cons(x, xs)) number42(x) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))))))))))))))))))))))))))))))))))))))))) goal(x) -> equal0(x) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: equal0(Nil) -> number42(Nil) equal0(Cons(x, xs)) -> equal0(Cons(x, xs)) number42(x) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))))))))))))))))))))))))))))))))))))))))) goal(x) -> equal0(x) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: equal0(Nil) -> number42(Nil) equal0(Cons(z0, z1)) -> equal0(Cons(z0, z1)) number42(z0) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))))))))))))))))))))))))))))))))))))))))) goal(z0) -> equal0(z0) Tuples: EQUAL0(Nil) -> c(NUMBER42(Nil)) EQUAL0(Cons(z0, z1)) -> c1(EQUAL0(Cons(z0, z1))) NUMBER42(z0) -> c2 GOAL(z0) -> c3(EQUAL0(z0)) S tuples: EQUAL0(Nil) -> c(NUMBER42(Nil)) EQUAL0(Cons(z0, z1)) -> c1(EQUAL0(Cons(z0, z1))) NUMBER42(z0) -> c2 GOAL(z0) -> c3(EQUAL0(z0)) K tuples:none Defined Rule Symbols: equal0_1, number42_1, goal_1 Defined Pair Symbols: EQUAL0_1, NUMBER42_1, GOAL_1 Compound Symbols: c_1, c1_1, c2, c3_1 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: EQUAL0(Nil) -> c(NUMBER42(Nil)) EQUAL0(Cons(z0, z1)) -> c1(EQUAL0(Cons(z0, z1))) NUMBER42(z0) -> c2 GOAL(z0) -> c3(EQUAL0(z0)) The (relative) TRS S consists of the following rules: equal0(Nil) -> number42(Nil) equal0(Cons(z0, z1)) -> equal0(Cons(z0, z1)) number42(z0) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))))))))))))))))))))))))))))))))))))))))) goal(z0) -> equal0(z0) Rewrite Strategy: INNERMOST ---------------------------------------- (9) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (10) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: EQUAL0(Nil) -> c(NUMBER42(Nil)) EQUAL0(Cons(z0, z1)) -> c1(EQUAL0(Cons(z0, z1))) NUMBER42(z0) -> c2 GOAL(z0) -> c3(EQUAL0(z0)) The (relative) TRS S consists of the following rules: equal0(Nil) -> number42(Nil) equal0(Cons(z0, z1)) -> equal0(Cons(z0, z1)) number42(z0) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))))))))))))))))))))))))))))))))))))))))) goal(z0) -> equal0(z0) Rewrite Strategy: INNERMOST ---------------------------------------- (11) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (12) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: EQUAL0(Nil) -> c(NUMBER42(Nil)) EQUAL0(Cons(z0, z1)) -> c1(EQUAL0(Cons(z0, z1))) NUMBER42(z0) -> c2 GOAL(z0) -> c3(EQUAL0(z0)) The (relative) TRS S consists of the following rules: equal0(Nil) -> number42(Nil) equal0(Cons(z0, z1)) -> equal0(Cons(z0, z1)) number42(z0) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))))))))))))))))))))))))))))))))))))))))) goal(z0) -> equal0(z0) Rewrite Strategy: INNERMOST ---------------------------------------- (13) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (14) Obligation: Innermost TRS: Rules: EQUAL0(Nil) -> c(NUMBER42(Nil)) EQUAL0(Cons(z0, z1)) -> c1(EQUAL0(Cons(z0, z1))) NUMBER42(z0) -> c2 GOAL(z0) -> c3(EQUAL0(z0)) equal0(Nil) -> number42(Nil) equal0(Cons(z0, z1)) -> equal0(Cons(z0, z1)) number42(z0) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))))))))))))))))))))))))))))))))))))))))) goal(z0) -> equal0(z0) Types: EQUAL0 :: Nil:Cons -> c:c1 Nil :: Nil:Cons c :: c2 -> c:c1 NUMBER42 :: Nil:Cons -> c2 Cons :: Nil:Cons -> Nil:Cons -> Nil:Cons c1 :: c:c1 -> c:c1 c2 :: c2 GOAL :: Nil:Cons -> c3 c3 :: c:c1 -> c3 equal0 :: Nil:Cons -> Nil:Cons number42 :: Nil:Cons -> Nil:Cons goal :: Nil:Cons -> Nil:Cons hole_c:c11_4 :: c:c1 hole_Nil:Cons2_4 :: Nil:Cons hole_c23_4 :: c2 hole_c34_4 :: c3 gen_c:c15_4 :: Nat -> c:c1 gen_Nil:Cons6_4 :: Nat -> Nil:Cons ---------------------------------------- (15) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: EQUAL0, equal0 ---------------------------------------- (16) Obligation: Innermost TRS: Rules: EQUAL0(Nil) -> c(NUMBER42(Nil)) EQUAL0(Cons(z0, z1)) -> c1(EQUAL0(Cons(z0, z1))) NUMBER42(z0) -> c2 GOAL(z0) -> c3(EQUAL0(z0)) equal0(Nil) -> number42(Nil) equal0(Cons(z0, z1)) -> equal0(Cons(z0, z1)) number42(z0) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))))))))))))))))))))))))))))))))))))))))) goal(z0) -> equal0(z0) Types: EQUAL0 :: Nil:Cons -> c:c1 Nil :: Nil:Cons c :: c2 -> c:c1 NUMBER42 :: Nil:Cons -> c2 Cons :: Nil:Cons -> Nil:Cons -> Nil:Cons c1 :: c:c1 -> c:c1 c2 :: c2 GOAL :: Nil:Cons -> c3 c3 :: c:c1 -> c3 equal0 :: Nil:Cons -> Nil:Cons number42 :: Nil:Cons -> Nil:Cons goal :: Nil:Cons -> Nil:Cons hole_c:c11_4 :: c:c1 hole_Nil:Cons2_4 :: Nil:Cons hole_c23_4 :: c2 hole_c34_4 :: c3 gen_c:c15_4 :: Nat -> c:c1 gen_Nil:Cons6_4 :: Nat -> Nil:Cons Generator Equations: gen_c:c15_4(0) <=> c(c2) gen_c:c15_4(+(x, 1)) <=> c1(gen_c:c15_4(x)) gen_Nil:Cons6_4(0) <=> Nil gen_Nil:Cons6_4(+(x, 1)) <=> Cons(Nil, gen_Nil:Cons6_4(x)) The following defined symbols remain to be analysed: EQUAL0, equal0 ---------------------------------------- (17) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: equal0(Nil) -> number42(Nil) equal0(Cons(z0, z1)) -> equal0(Cons(z0, z1)) number42(z0) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))))))))))))))))))))))))))))))))))))))))) goal(z0) -> equal0(z0) Tuples: EQUAL0(Nil) -> c(NUMBER42(Nil)) EQUAL0(Cons(z0, z1)) -> c1(EQUAL0(Cons(z0, z1))) NUMBER42(z0) -> c2 GOAL(z0) -> c3(EQUAL0(z0)) S tuples: EQUAL0(Nil) -> c(NUMBER42(Nil)) EQUAL0(Cons(z0, z1)) -> c1(EQUAL0(Cons(z0, z1))) NUMBER42(z0) -> c2 GOAL(z0) -> c3(EQUAL0(z0)) K tuples:none Defined Rule Symbols: equal0_1, number42_1, goal_1 Defined Pair Symbols: EQUAL0_1, NUMBER42_1, GOAL_1 Compound Symbols: c_1, c1_1, c2, c3_1 ---------------------------------------- (19) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: GOAL(z0) -> c3(EQUAL0(z0)) Removed 2 trailing nodes: EQUAL0(Nil) -> c(NUMBER42(Nil)) NUMBER42(z0) -> c2 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: equal0(Nil) -> number42(Nil) equal0(Cons(z0, z1)) -> equal0(Cons(z0, z1)) number42(z0) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))))))))))))))))))))))))))))))))))))))))) goal(z0) -> equal0(z0) Tuples: EQUAL0(Cons(z0, z1)) -> c1(EQUAL0(Cons(z0, z1))) S tuples: EQUAL0(Cons(z0, z1)) -> c1(EQUAL0(Cons(z0, z1))) K tuples:none Defined Rule Symbols: equal0_1, number42_1, goal_1 Defined Pair Symbols: EQUAL0_1 Compound Symbols: c1_1 ---------------------------------------- (21) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: equal0(Nil) -> number42(Nil) equal0(Cons(z0, z1)) -> equal0(Cons(z0, z1)) number42(z0) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))))))))))))))))))))))))))))))))))))))))) goal(z0) -> equal0(z0) ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: EQUAL0(Cons(z0, z1)) -> c1(EQUAL0(Cons(z0, z1))) S tuples: EQUAL0(Cons(z0, z1)) -> c1(EQUAL0(Cons(z0, z1))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: EQUAL0_1 Compound Symbols: c1_1 ---------------------------------------- (23) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (24) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: EQUAL0(Cons(z0, z1)) -> c1(EQUAL0(Cons(z0, z1))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (25) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (26) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: EQUAL0(Cons(z0, z1)) -> c1(EQUAL0(Cons(z0, z1))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (27) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (28) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: EQUAL0(Cons(z0, z1)) -> c1(EQUAL0(Cons(z0, z1))) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (29) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (30) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: EQUAL0(Cons(z0, z1)) -> c1(EQUAL0(Cons(z0, z1))) [1] The TRS has the following type information: EQUAL0 :: Cons -> c1 Cons :: a -> b -> Cons c1 :: c1 -> c1 Rewrite Strategy: INNERMOST ---------------------------------------- (31) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: EQUAL0_1 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: const, const1, const2, const3 ---------------------------------------- (32) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: EQUAL0(Cons(z0, z1)) -> c1(EQUAL0(Cons(z0, z1))) [1] The TRS has the following type information: EQUAL0 :: Cons -> c1 Cons :: a -> b -> Cons c1 :: c1 -> c1 const :: c1 const1 :: Cons const2 :: a const3 :: b Rewrite Strategy: INNERMOST ---------------------------------------- (33) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (34) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: EQUAL0(Cons(z0, z1)) -> c1(EQUAL0(Cons(z0, z1))) [1] The TRS has the following type information: EQUAL0 :: Cons -> c1 Cons :: a -> b -> Cons c1 :: c1 -> c1 const :: c1 const1 :: Cons const2 :: a const3 :: b Rewrite Strategy: INNERMOST ---------------------------------------- (35) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: const => 0 const1 => 0 const2 => 0 const3 => 0 ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: EQUAL0(z) -{ 1 }-> 1 + EQUAL0(1 + z0 + z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ---------------------------------------- (37) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: EQUAL0(z) -{ 1 }-> 1 + EQUAL0(1 + z0 + z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 ---------------------------------------- (39) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { EQUAL0 } ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: EQUAL0(z) -{ 1 }-> 1 + EQUAL0(1 + z0 + z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 Function symbols to be analyzed: {EQUAL0} ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: EQUAL0(z) -{ 1 }-> 1 + EQUAL0(1 + z0 + z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 Function symbols to be analyzed: {EQUAL0} ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: EQUAL0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: EQUAL0(z) -{ 1 }-> 1 + EQUAL0(1 + z0 + z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 Function symbols to be analyzed: {EQUAL0} Previous analysis results are: EQUAL0: runtime: ?, size: O(1) [0] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: EQUAL0 after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: EQUAL0(z) -{ 1 }-> 1 + EQUAL0(1 + z0 + z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 Function symbols to be analyzed: {EQUAL0} Previous analysis results are: EQUAL0: runtime: INF, size: O(1) [0] ---------------------------------------- (47) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: EQUAL0(v0) -> null_EQUAL0 [0] And the following fresh constants: null_EQUAL0, const, const1, const2 ---------------------------------------- (48) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: EQUAL0(Cons(z0, z1)) -> c1(EQUAL0(Cons(z0, z1))) [1] EQUAL0(v0) -> null_EQUAL0 [0] The TRS has the following type information: EQUAL0 :: Cons -> c1:null_EQUAL0 Cons :: a -> b -> Cons c1 :: c1:null_EQUAL0 -> c1:null_EQUAL0 null_EQUAL0 :: c1:null_EQUAL0 const :: Cons const1 :: a const2 :: b Rewrite Strategy: INNERMOST ---------------------------------------- (49) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: null_EQUAL0 => 0 const => 0 const1 => 0 const2 => 0 ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: EQUAL0(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 EQUAL0(z) -{ 1 }-> 1 + EQUAL0(1 + z0 + z1) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (51) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (52) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: equal0(Nil) -> number42(Nil) [1] equal0(Cons(x, xs)) -> equal0(Cons(x, xs)) [1] number42(x) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))))))))))))))))))))))))))))))))))))))))) [1] goal(x) -> equal0(x) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (53) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (54) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: equal0(Nil) -> number42(Nil) [1] equal0(Cons(x, xs)) -> equal0(Cons(x, xs)) [1] number42(x) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))))))))))))))))))))))))))))))))))))))))) [1] goal(x) -> equal0(x) [1] The TRS has the following type information: equal0 :: Nil:Cons -> Nil:Cons Nil :: Nil:Cons number42 :: Nil:Cons -> Nil:Cons Cons :: Nil:Cons -> Nil:Cons -> Nil:Cons goal :: Nil:Cons -> Nil:Cons Rewrite Strategy: INNERMOST ---------------------------------------- (55) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: equal0_1 number42_1 goal_1 (c) The following functions are completely defined: none Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (56) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: equal0(Nil) -> number42(Nil) [1] equal0(Cons(x, xs)) -> equal0(Cons(x, xs)) [1] number42(x) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))))))))))))))))))))))))))))))))))))))))) [1] goal(x) -> equal0(x) [1] The TRS has the following type information: equal0 :: Nil:Cons -> Nil:Cons Nil :: Nil:Cons number42 :: Nil:Cons -> Nil:Cons Cons :: Nil:Cons -> Nil:Cons -> Nil:Cons goal :: Nil:Cons -> Nil:Cons Rewrite Strategy: INNERMOST ---------------------------------------- (57) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (58) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: equal0(Nil) -> number42(Nil) [1] equal0(Cons(x, xs)) -> equal0(Cons(x, xs)) [1] number42(x) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))))))))))))))))))))))))))))))))))))))))) [1] goal(x) -> equal0(x) [1] The TRS has the following type information: equal0 :: Nil:Cons -> Nil:Cons Nil :: Nil:Cons number42 :: Nil:Cons -> Nil:Cons Cons :: Nil:Cons -> Nil:Cons -> Nil:Cons goal :: Nil:Cons -> Nil:Cons Rewrite Strategy: INNERMOST ---------------------------------------- (59) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: Nil => 0 ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: equal0(z) -{ 1 }-> number42(0) :|: z = 0 equal0(z) -{ 1 }-> equal0(1 + x + xs) :|: z = 1 + x + xs, xs >= 0, x >= 0 goal(z) -{ 1 }-> equal0(x) :|: x >= 0, z = x number42(z) -{ 1 }-> 1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + 0))))))))))))))))))))))))))))))))))))))))) :|: x >= 0, z = x ---------------------------------------- (61) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: number42(z) -{ 1 }-> 1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + 0))))))))))))))))))))))))))))))))))))))))) :|: x >= 0, z = x ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: equal0(z) -{ 1 }-> equal0(1 + x + xs) :|: z = 1 + x + xs, xs >= 0, x >= 0 equal0(z) -{ 2 }-> 1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + 0))))))))))))))))))))))))))))))))))))))))) :|: z = 0, x >= 0, 0 = x goal(z) -{ 1 }-> equal0(x) :|: x >= 0, z = x number42(z) -{ 1 }-> 1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + 0))))))))))))))))))))))))))))))))))))))))) :|: x >= 0, z = x ---------------------------------------- (63) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: equal0(z) -{ 1 }-> equal0(1 + x + xs) :|: z = 1 + x + xs, xs >= 0, x >= 0 equal0(z) -{ 2 }-> 1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + 0))))))))))))))))))))))))))))))))))))))))) :|: z = 0, x >= 0, 0 = x goal(z) -{ 1 }-> equal0(z) :|: z >= 0 number42(z) -{ 1 }-> 1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + 0))))))))))))))))))))))))))))))))))))))))) :|: z >= 0 ---------------------------------------- (65) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { number42 } { equal0 } { goal } ---------------------------------------- (66) Obligation: Complexity RNTS consisting of the following rules: equal0(z) -{ 1 }-> equal0(1 + x + xs) :|: z = 1 + x + xs, xs >= 0, x >= 0 equal0(z) -{ 2 }-> 1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + 0))))))))))))))))))))))))))))))))))))))))) :|: z = 0, x >= 0, 0 = x goal(z) -{ 1 }-> equal0(z) :|: z >= 0 number42(z) -{ 1 }-> 1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + 0))))))))))))))))))))))))))))))))))))))))) :|: z >= 0 Function symbols to be analyzed: {number42}, {equal0}, {goal} ---------------------------------------- (67) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (68) Obligation: Complexity RNTS consisting of the following rules: equal0(z) -{ 1 }-> equal0(1 + x + xs) :|: z = 1 + x + xs, xs >= 0, x >= 0 equal0(z) -{ 2 }-> 1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + 0))))))))))))))))))))))))))))))))))))))))) :|: z = 0, x >= 0, 0 = x goal(z) -{ 1 }-> equal0(z) :|: z >= 0 number42(z) -{ 1 }-> 1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + 0))))))))))))))))))))))))))))))))))))))))) :|: z >= 0 Function symbols to be analyzed: {number42}, {equal0}, {goal} ---------------------------------------- (69) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: number42 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 42 ---------------------------------------- (70) Obligation: Complexity RNTS consisting of the following rules: equal0(z) -{ 1 }-> equal0(1 + x + xs) :|: z = 1 + x + xs, xs >= 0, x >= 0 equal0(z) -{ 2 }-> 1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + 0))))))))))))))))))))))))))))))))))))))))) :|: z = 0, x >= 0, 0 = x goal(z) -{ 1 }-> equal0(z) :|: z >= 0 number42(z) -{ 1 }-> 1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + 0))))))))))))))))))))))))))))))))))))))))) :|: z >= 0 Function symbols to be analyzed: {number42}, {equal0}, {goal} Previous analysis results are: number42: runtime: ?, size: O(1) [42] ---------------------------------------- (71) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: number42 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (72) Obligation: Complexity RNTS consisting of the following rules: equal0(z) -{ 1 }-> equal0(1 + x + xs) :|: z = 1 + x + xs, xs >= 0, x >= 0 equal0(z) -{ 2 }-> 1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + 0))))))))))))))))))))))))))))))))))))))))) :|: z = 0, x >= 0, 0 = x goal(z) -{ 1 }-> equal0(z) :|: z >= 0 number42(z) -{ 1 }-> 1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + 0))))))))))))))))))))))))))))))))))))))))) :|: z >= 0 Function symbols to be analyzed: {equal0}, {goal} Previous analysis results are: number42: runtime: O(1) [1], size: O(1) [42] ---------------------------------------- (73) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (74) Obligation: Complexity RNTS consisting of the following rules: equal0(z) -{ 1 }-> equal0(1 + x + xs) :|: z = 1 + x + xs, xs >= 0, x >= 0 equal0(z) -{ 2 }-> 1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + 0))))))))))))))))))))))))))))))))))))))))) :|: z = 0, x >= 0, 0 = x goal(z) -{ 1 }-> equal0(z) :|: z >= 0 number42(z) -{ 1 }-> 1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + 0))))))))))))))))))))))))))))))))))))))))) :|: z >= 0 Function symbols to be analyzed: {equal0}, {goal} Previous analysis results are: number42: runtime: O(1) [1], size: O(1) [42] ---------------------------------------- (75) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: equal0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 42 ---------------------------------------- (76) Obligation: Complexity RNTS consisting of the following rules: equal0(z) -{ 1 }-> equal0(1 + x + xs) :|: z = 1 + x + xs, xs >= 0, x >= 0 equal0(z) -{ 2 }-> 1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + 0))))))))))))))))))))))))))))))))))))))))) :|: z = 0, x >= 0, 0 = x goal(z) -{ 1 }-> equal0(z) :|: z >= 0 number42(z) -{ 1 }-> 1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + 0))))))))))))))))))))))))))))))))))))))))) :|: z >= 0 Function symbols to be analyzed: {equal0}, {goal} Previous analysis results are: number42: runtime: O(1) [1], size: O(1) [42] equal0: runtime: ?, size: O(1) [42] ---------------------------------------- (77) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: equal0 after applying outer abstraction to obtain an ITS, resulting in: INF with polynomial bound: ? ---------------------------------------- (78) Obligation: Complexity RNTS consisting of the following rules: equal0(z) -{ 1 }-> equal0(1 + x + xs) :|: z = 1 + x + xs, xs >= 0, x >= 0 equal0(z) -{ 2 }-> 1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + 0))))))))))))))))))))))))))))))))))))))))) :|: z = 0, x >= 0, 0 = x goal(z) -{ 1 }-> equal0(z) :|: z >= 0 number42(z) -{ 1 }-> 1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + 0))))))))))))))))))))))))))))))))))))))))) :|: z >= 0 Function symbols to be analyzed: {equal0}, {goal} Previous analysis results are: number42: runtime: O(1) [1], size: O(1) [42] equal0: runtime: INF, size: O(1) [42] ---------------------------------------- (79) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: none And the following fresh constants: none ---------------------------------------- (80) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: equal0(Nil) -> number42(Nil) [1] equal0(Cons(x, xs)) -> equal0(Cons(x, xs)) [1] number42(x) -> Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Cons(Nil, Nil)))))))))))))))))))))))))))))))))))))))))) [1] goal(x) -> equal0(x) [1] The TRS has the following type information: equal0 :: Nil:Cons -> Nil:Cons Nil :: Nil:Cons number42 :: Nil:Cons -> Nil:Cons Cons :: Nil:Cons -> Nil:Cons -> Nil:Cons goal :: Nil:Cons -> Nil:Cons Rewrite Strategy: INNERMOST ---------------------------------------- (81) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: Nil => 0 ---------------------------------------- (82) Obligation: Complexity RNTS consisting of the following rules: equal0(z) -{ 1 }-> number42(0) :|: z = 0 equal0(z) -{ 1 }-> equal0(1 + x + xs) :|: z = 1 + x + xs, xs >= 0, x >= 0 goal(z) -{ 1 }-> equal0(x) :|: x >= 0, z = x number42(z) -{ 1 }-> 1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + (1 + 0 + 0))))))))))))))))))))))))))))))))))))))))) :|: x >= 0, z = x Only complete derivations are relevant for the runtime complexity.