WORST_CASE(Omega(n^1),O(n^1)) proof of input_d7AGwh3hIM.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsTAProof [FINISHED, 80 ms] (4) BOUNDS(1, n^1) (5) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (12) typed CpxTrs (13) OrderProof [LOWER BOUND(ID), 5 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 284 ms] (16) BEST (17) proven lower bound (18) LowerBoundPropagationProof [FINISHED, 0 ms] (19) BOUNDS(n^1, INF) (20) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: @(Cons(x, xs), ys) -> Cons(x, @(xs, ys)) @(Nil, ys) -> ys game(p1, Cons(x', xs'), Cons(Capture, xs)) -> game(Cons(x', p1), xs', xs) game(p1, p2, Cons(Swap, xs)) -> game(p2, p1, xs) equal(Capture, Capture) -> True equal(Capture, Swap) -> False equal(Swap, Capture) -> False equal(Swap, Swap) -> True game(p1, p2, Nil) -> @(p1, p2) goal(p1, p2, moves) -> game(p1, p2, moves) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: @(Cons(x, xs), ys) -> Cons(x, @(xs, ys)) @(Nil, ys) -> ys game(p1, Cons(x', xs'), Cons(Capture, xs)) -> game(Cons(x', p1), xs', xs) game(p1, p2, Cons(Swap, xs)) -> game(p2, p1, xs) equal(Capture, Capture) -> True equal(Capture, Swap) -> False equal(Swap, Capture) -> False equal(Swap, Swap) -> True game(p1, p2, Nil) -> @(p1, p2) goal(p1, p2, moves) -> game(p1, p2, moves) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (3) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4] transitions: Cons0(0, 0) -> 0 Nil0() -> 0 Capture0() -> 0 Swap0() -> 0 True0() -> 0 False0() -> 0 @0(0, 0) -> 1 game0(0, 0, 0) -> 2 equal0(0, 0) -> 3 goal0(0, 0, 0) -> 4 @1(0, 0) -> 5 Cons1(0, 5) -> 1 Cons1(0, 0) -> 6 game1(6, 0, 0) -> 2 game1(0, 0, 0) -> 2 True1() -> 3 False1() -> 3 @1(0, 0) -> 2 game1(0, 0, 0) -> 4 Cons1(0, 5) -> 2 Cons1(0, 5) -> 5 Cons1(0, 6) -> 6 game1(6, 0, 0) -> 4 game1(0, 6, 0) -> 2 @1(6, 0) -> 2 @1(0, 0) -> 4 Cons1(0, 5) -> 4 @2(0, 0) -> 7 Cons2(0, 7) -> 2 @2(6, 0) -> 7 game1(6, 6, 0) -> 2 game1(0, 6, 0) -> 4 @1(0, 6) -> 2 @1(6, 0) -> 4 @1(0, 6) -> 5 Cons2(0, 7) -> 4 game1(6, 6, 0) -> 4 @1(6, 6) -> 2 @1(0, 6) -> 4 Cons1(0, 5) -> 7 Cons2(0, 7) -> 7 @2(0, 6) -> 7 @2(6, 6) -> 7 @1(6, 6) -> 4 0 -> 1 0 -> 2 0 -> 5 0 -> 4 0 -> 7 6 -> 2 6 -> 4 6 -> 5 6 -> 7 ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: @(Cons(z0, z1), z2) -> Cons(z0, @(z1, z2)) @(Nil, z0) -> z0 game(z0, Cons(z1, z2), Cons(Capture, z3)) -> game(Cons(z1, z0), z2, z3) game(z0, z1, Cons(Swap, z2)) -> game(z1, z0, z2) game(z0, z1, Nil) -> @(z0, z1) equal(Capture, Capture) -> True equal(Capture, Swap) -> False equal(Swap, Capture) -> False equal(Swap, Swap) -> True goal(z0, z1, z2) -> game(z0, z1, z2) Tuples: @'(Cons(z0, z1), z2) -> c(@'(z1, z2)) @'(Nil, z0) -> c1 GAME(z0, Cons(z1, z2), Cons(Capture, z3)) -> c2(GAME(Cons(z1, z0), z2, z3)) GAME(z0, z1, Cons(Swap, z2)) -> c3(GAME(z1, z0, z2)) GAME(z0, z1, Nil) -> c4(@'(z0, z1)) EQUAL(Capture, Capture) -> c5 EQUAL(Capture, Swap) -> c6 EQUAL(Swap, Capture) -> c7 EQUAL(Swap, Swap) -> c8 GOAL(z0, z1, z2) -> c9(GAME(z0, z1, z2)) S tuples: @'(Cons(z0, z1), z2) -> c(@'(z1, z2)) @'(Nil, z0) -> c1 GAME(z0, Cons(z1, z2), Cons(Capture, z3)) -> c2(GAME(Cons(z1, z0), z2, z3)) GAME(z0, z1, Cons(Swap, z2)) -> c3(GAME(z1, z0, z2)) GAME(z0, z1, Nil) -> c4(@'(z0, z1)) EQUAL(Capture, Capture) -> c5 EQUAL(Capture, Swap) -> c6 EQUAL(Swap, Capture) -> c7 EQUAL(Swap, Swap) -> c8 GOAL(z0, z1, z2) -> c9(GAME(z0, z1, z2)) K tuples:none Defined Rule Symbols: @_2, game_3, equal_2, goal_3 Defined Pair Symbols: @'_2, GAME_3, EQUAL_2, GOAL_3 Compound Symbols: c_1, c1, c2_1, c3_1, c4_1, c5, c6, c7, c8, c9_1 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: @'(Cons(z0, z1), z2) -> c(@'(z1, z2)) @'(Nil, z0) -> c1 GAME(z0, Cons(z1, z2), Cons(Capture, z3)) -> c2(GAME(Cons(z1, z0), z2, z3)) GAME(z0, z1, Cons(Swap, z2)) -> c3(GAME(z1, z0, z2)) GAME(z0, z1, Nil) -> c4(@'(z0, z1)) EQUAL(Capture, Capture) -> c5 EQUAL(Capture, Swap) -> c6 EQUAL(Swap, Capture) -> c7 EQUAL(Swap, Swap) -> c8 GOAL(z0, z1, z2) -> c9(GAME(z0, z1, z2)) The (relative) TRS S consists of the following rules: @(Cons(z0, z1), z2) -> Cons(z0, @(z1, z2)) @(Nil, z0) -> z0 game(z0, Cons(z1, z2), Cons(Capture, z3)) -> game(Cons(z1, z0), z2, z3) game(z0, z1, Cons(Swap, z2)) -> game(z1, z0, z2) game(z0, z1, Nil) -> @(z0, z1) equal(Capture, Capture) -> True equal(Capture, Swap) -> False equal(Swap, Capture) -> False equal(Swap, Swap) -> True goal(z0, z1, z2) -> game(z0, z1, z2) Rewrite Strategy: INNERMOST ---------------------------------------- (9) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: @'(Cons(z0, z1), z2) -> c(@'(z1, z2)) @'(Nil, z0) -> c1 GAME(z0, Cons(z1, z2), Cons(Capture, z3)) -> c2(GAME(Cons(z1, z0), z2, z3)) GAME(z0, z1, Cons(Swap, z2)) -> c3(GAME(z1, z0, z2)) GAME(z0, z1, Nil) -> c4(@'(z0, z1)) EQUAL(Capture, Capture) -> c5 EQUAL(Capture, Swap) -> c6 EQUAL(Swap, Capture) -> c7 EQUAL(Swap, Swap) -> c8 GOAL(z0, z1, z2) -> c9(GAME(z0, z1, z2)) The (relative) TRS S consists of the following rules: @(Cons(z0, z1), z2) -> Cons(z0, @(z1, z2)) @(Nil, z0) -> z0 game(z0, Cons(z1, z2), Cons(Capture, z3)) -> game(Cons(z1, z0), z2, z3) game(z0, z1, Cons(Swap, z2)) -> game(z1, z0, z2) game(z0, z1, Nil) -> @(z0, z1) equal(Capture, Capture) -> True equal(Capture, Swap) -> False equal(Swap, Capture) -> False equal(Swap, Swap) -> True goal(z0, z1, z2) -> game(z0, z1, z2) Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (12) Obligation: Innermost TRS: Rules: @'(Cons(z0, z1), z2) -> c(@'(z1, z2)) @'(Nil, z0) -> c1 GAME(z0, Cons(z1, z2), Cons(Capture, z3)) -> c2(GAME(Cons(z1, z0), z2, z3)) GAME(z0, z1, Cons(Swap, z2)) -> c3(GAME(z1, z0, z2)) GAME(z0, z1, Nil) -> c4(@'(z0, z1)) EQUAL(Capture, Capture) -> c5 EQUAL(Capture, Swap) -> c6 EQUAL(Swap, Capture) -> c7 EQUAL(Swap, Swap) -> c8 GOAL(z0, z1, z2) -> c9(GAME(z0, z1, z2)) @(Cons(z0, z1), z2) -> Cons(z0, @(z1, z2)) @(Nil, z0) -> z0 game(z0, Cons(z1, z2), Cons(Capture, z3)) -> game(Cons(z1, z0), z2, z3) game(z0, z1, Cons(Swap, z2)) -> game(z1, z0, z2) game(z0, z1, Nil) -> @(z0, z1) equal(Capture, Capture) -> True equal(Capture, Swap) -> False equal(Swap, Capture) -> False equal(Swap, Swap) -> True goal(z0, z1, z2) -> game(z0, z1, z2) Types: @' :: Cons:Nil -> Cons:Nil -> c:c1 Cons :: Capture:Swap -> Cons:Nil -> Cons:Nil c :: c:c1 -> c:c1 Nil :: Cons:Nil c1 :: c:c1 GAME :: Cons:Nil -> Cons:Nil -> Cons:Nil -> c2:c3:c4 Capture :: Capture:Swap c2 :: c2:c3:c4 -> c2:c3:c4 Swap :: Capture:Swap c3 :: c2:c3:c4 -> c2:c3:c4 c4 :: c:c1 -> c2:c3:c4 EQUAL :: Capture:Swap -> Capture:Swap -> c5:c6:c7:c8 c5 :: c5:c6:c7:c8 c6 :: c5:c6:c7:c8 c7 :: c5:c6:c7:c8 c8 :: c5:c6:c7:c8 GOAL :: Cons:Nil -> Cons:Nil -> Cons:Nil -> c9 c9 :: c2:c3:c4 -> c9 @ :: Cons:Nil -> Cons:Nil -> Cons:Nil game :: Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil equal :: Capture:Swap -> Capture:Swap -> True:False True :: True:False False :: True:False goal :: Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil hole_c:c11_10 :: c:c1 hole_Cons:Nil2_10 :: Cons:Nil hole_Capture:Swap3_10 :: Capture:Swap hole_c2:c3:c44_10 :: c2:c3:c4 hole_c5:c6:c7:c85_10 :: c5:c6:c7:c8 hole_c96_10 :: c9 hole_True:False7_10 :: True:False gen_c:c18_10 :: Nat -> c:c1 gen_Cons:Nil9_10 :: Nat -> Cons:Nil gen_c2:c3:c410_10 :: Nat -> c2:c3:c4 ---------------------------------------- (13) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: @', GAME, @, game They will be analysed ascendingly in the following order: @' < GAME @ < game ---------------------------------------- (14) Obligation: Innermost TRS: Rules: @'(Cons(z0, z1), z2) -> c(@'(z1, z2)) @'(Nil, z0) -> c1 GAME(z0, Cons(z1, z2), Cons(Capture, z3)) -> c2(GAME(Cons(z1, z0), z2, z3)) GAME(z0, z1, Cons(Swap, z2)) -> c3(GAME(z1, z0, z2)) GAME(z0, z1, Nil) -> c4(@'(z0, z1)) EQUAL(Capture, Capture) -> c5 EQUAL(Capture, Swap) -> c6 EQUAL(Swap, Capture) -> c7 EQUAL(Swap, Swap) -> c8 GOAL(z0, z1, z2) -> c9(GAME(z0, z1, z2)) @(Cons(z0, z1), z2) -> Cons(z0, @(z1, z2)) @(Nil, z0) -> z0 game(z0, Cons(z1, z2), Cons(Capture, z3)) -> game(Cons(z1, z0), z2, z3) game(z0, z1, Cons(Swap, z2)) -> game(z1, z0, z2) game(z0, z1, Nil) -> @(z0, z1) equal(Capture, Capture) -> True equal(Capture, Swap) -> False equal(Swap, Capture) -> False equal(Swap, Swap) -> True goal(z0, z1, z2) -> game(z0, z1, z2) Types: @' :: Cons:Nil -> Cons:Nil -> c:c1 Cons :: Capture:Swap -> Cons:Nil -> Cons:Nil c :: c:c1 -> c:c1 Nil :: Cons:Nil c1 :: c:c1 GAME :: Cons:Nil -> Cons:Nil -> Cons:Nil -> c2:c3:c4 Capture :: Capture:Swap c2 :: c2:c3:c4 -> c2:c3:c4 Swap :: Capture:Swap c3 :: c2:c3:c4 -> c2:c3:c4 c4 :: c:c1 -> c2:c3:c4 EQUAL :: Capture:Swap -> Capture:Swap -> c5:c6:c7:c8 c5 :: c5:c6:c7:c8 c6 :: c5:c6:c7:c8 c7 :: c5:c6:c7:c8 c8 :: c5:c6:c7:c8 GOAL :: Cons:Nil -> Cons:Nil -> Cons:Nil -> c9 c9 :: c2:c3:c4 -> c9 @ :: Cons:Nil -> Cons:Nil -> Cons:Nil game :: Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil equal :: Capture:Swap -> Capture:Swap -> True:False True :: True:False False :: True:False goal :: Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil hole_c:c11_10 :: c:c1 hole_Cons:Nil2_10 :: Cons:Nil hole_Capture:Swap3_10 :: Capture:Swap hole_c2:c3:c44_10 :: c2:c3:c4 hole_c5:c6:c7:c85_10 :: c5:c6:c7:c8 hole_c96_10 :: c9 hole_True:False7_10 :: True:False gen_c:c18_10 :: Nat -> c:c1 gen_Cons:Nil9_10 :: Nat -> Cons:Nil gen_c2:c3:c410_10 :: Nat -> c2:c3:c4 Generator Equations: gen_c:c18_10(0) <=> c1 gen_c:c18_10(+(x, 1)) <=> c(gen_c:c18_10(x)) gen_Cons:Nil9_10(0) <=> Nil gen_Cons:Nil9_10(+(x, 1)) <=> Cons(Capture, gen_Cons:Nil9_10(x)) gen_c2:c3:c410_10(0) <=> c4(c1) gen_c2:c3:c410_10(+(x, 1)) <=> c2(gen_c2:c3:c410_10(x)) The following defined symbols remain to be analysed: @', GAME, @, game They will be analysed ascendingly in the following order: @' < GAME @ < game ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: @'(gen_Cons:Nil9_10(n12_10), gen_Cons:Nil9_10(b)) -> gen_c:c18_10(n12_10), rt in Omega(1 + n12_10) Induction Base: @'(gen_Cons:Nil9_10(0), gen_Cons:Nil9_10(b)) ->_R^Omega(1) c1 Induction Step: @'(gen_Cons:Nil9_10(+(n12_10, 1)), gen_Cons:Nil9_10(b)) ->_R^Omega(1) c(@'(gen_Cons:Nil9_10(n12_10), gen_Cons:Nil9_10(b))) ->_IH c(gen_c:c18_10(c13_10)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) Complex Obligation (BEST) ---------------------------------------- (17) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: @'(Cons(z0, z1), z2) -> c(@'(z1, z2)) @'(Nil, z0) -> c1 GAME(z0, Cons(z1, z2), Cons(Capture, z3)) -> c2(GAME(Cons(z1, z0), z2, z3)) GAME(z0, z1, Cons(Swap, z2)) -> c3(GAME(z1, z0, z2)) GAME(z0, z1, Nil) -> c4(@'(z0, z1)) EQUAL(Capture, Capture) -> c5 EQUAL(Capture, Swap) -> c6 EQUAL(Swap, Capture) -> c7 EQUAL(Swap, Swap) -> c8 GOAL(z0, z1, z2) -> c9(GAME(z0, z1, z2)) @(Cons(z0, z1), z2) -> Cons(z0, @(z1, z2)) @(Nil, z0) -> z0 game(z0, Cons(z1, z2), Cons(Capture, z3)) -> game(Cons(z1, z0), z2, z3) game(z0, z1, Cons(Swap, z2)) -> game(z1, z0, z2) game(z0, z1, Nil) -> @(z0, z1) equal(Capture, Capture) -> True equal(Capture, Swap) -> False equal(Swap, Capture) -> False equal(Swap, Swap) -> True goal(z0, z1, z2) -> game(z0, z1, z2) Types: @' :: Cons:Nil -> Cons:Nil -> c:c1 Cons :: Capture:Swap -> Cons:Nil -> Cons:Nil c :: c:c1 -> c:c1 Nil :: Cons:Nil c1 :: c:c1 GAME :: Cons:Nil -> Cons:Nil -> Cons:Nil -> c2:c3:c4 Capture :: Capture:Swap c2 :: c2:c3:c4 -> c2:c3:c4 Swap :: Capture:Swap c3 :: c2:c3:c4 -> c2:c3:c4 c4 :: c:c1 -> c2:c3:c4 EQUAL :: Capture:Swap -> Capture:Swap -> c5:c6:c7:c8 c5 :: c5:c6:c7:c8 c6 :: c5:c6:c7:c8 c7 :: c5:c6:c7:c8 c8 :: c5:c6:c7:c8 GOAL :: Cons:Nil -> Cons:Nil -> Cons:Nil -> c9 c9 :: c2:c3:c4 -> c9 @ :: Cons:Nil -> Cons:Nil -> Cons:Nil game :: Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil equal :: Capture:Swap -> Capture:Swap -> True:False True :: True:False False :: True:False goal :: Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil hole_c:c11_10 :: c:c1 hole_Cons:Nil2_10 :: Cons:Nil hole_Capture:Swap3_10 :: Capture:Swap hole_c2:c3:c44_10 :: c2:c3:c4 hole_c5:c6:c7:c85_10 :: c5:c6:c7:c8 hole_c96_10 :: c9 hole_True:False7_10 :: True:False gen_c:c18_10 :: Nat -> c:c1 gen_Cons:Nil9_10 :: Nat -> Cons:Nil gen_c2:c3:c410_10 :: Nat -> c2:c3:c4 Generator Equations: gen_c:c18_10(0) <=> c1 gen_c:c18_10(+(x, 1)) <=> c(gen_c:c18_10(x)) gen_Cons:Nil9_10(0) <=> Nil gen_Cons:Nil9_10(+(x, 1)) <=> Cons(Capture, gen_Cons:Nil9_10(x)) gen_c2:c3:c410_10(0) <=> c4(c1) gen_c2:c3:c410_10(+(x, 1)) <=> c2(gen_c2:c3:c410_10(x)) The following defined symbols remain to be analysed: @', GAME, @, game They will be analysed ascendingly in the following order: @' < GAME @ < game ---------------------------------------- (18) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (19) BOUNDS(n^1, INF) ---------------------------------------- (20) Obligation: Innermost TRS: Rules: @'(Cons(z0, z1), z2) -> c(@'(z1, z2)) @'(Nil, z0) -> c1 GAME(z0, Cons(z1, z2), Cons(Capture, z3)) -> c2(GAME(Cons(z1, z0), z2, z3)) GAME(z0, z1, Cons(Swap, z2)) -> c3(GAME(z1, z0, z2)) GAME(z0, z1, Nil) -> c4(@'(z0, z1)) EQUAL(Capture, Capture) -> c5 EQUAL(Capture, Swap) -> c6 EQUAL(Swap, Capture) -> c7 EQUAL(Swap, Swap) -> c8 GOAL(z0, z1, z2) -> c9(GAME(z0, z1, z2)) @(Cons(z0, z1), z2) -> Cons(z0, @(z1, z2)) @(Nil, z0) -> z0 game(z0, Cons(z1, z2), Cons(Capture, z3)) -> game(Cons(z1, z0), z2, z3) game(z0, z1, Cons(Swap, z2)) -> game(z1, z0, z2) game(z0, z1, Nil) -> @(z0, z1) equal(Capture, Capture) -> True equal(Capture, Swap) -> False equal(Swap, Capture) -> False equal(Swap, Swap) -> True goal(z0, z1, z2) -> game(z0, z1, z2) Types: @' :: Cons:Nil -> Cons:Nil -> c:c1 Cons :: Capture:Swap -> Cons:Nil -> Cons:Nil c :: c:c1 -> c:c1 Nil :: Cons:Nil c1 :: c:c1 GAME :: Cons:Nil -> Cons:Nil -> Cons:Nil -> c2:c3:c4 Capture :: Capture:Swap c2 :: c2:c3:c4 -> c2:c3:c4 Swap :: Capture:Swap c3 :: c2:c3:c4 -> c2:c3:c4 c4 :: c:c1 -> c2:c3:c4 EQUAL :: Capture:Swap -> Capture:Swap -> c5:c6:c7:c8 c5 :: c5:c6:c7:c8 c6 :: c5:c6:c7:c8 c7 :: c5:c6:c7:c8 c8 :: c5:c6:c7:c8 GOAL :: Cons:Nil -> Cons:Nil -> Cons:Nil -> c9 c9 :: c2:c3:c4 -> c9 @ :: Cons:Nil -> Cons:Nil -> Cons:Nil game :: Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil equal :: Capture:Swap -> Capture:Swap -> True:False True :: True:False False :: True:False goal :: Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil hole_c:c11_10 :: c:c1 hole_Cons:Nil2_10 :: Cons:Nil hole_Capture:Swap3_10 :: Capture:Swap hole_c2:c3:c44_10 :: c2:c3:c4 hole_c5:c6:c7:c85_10 :: c5:c6:c7:c8 hole_c96_10 :: c9 hole_True:False7_10 :: True:False gen_c:c18_10 :: Nat -> c:c1 gen_Cons:Nil9_10 :: Nat -> Cons:Nil gen_c2:c3:c410_10 :: Nat -> c2:c3:c4 Lemmas: @'(gen_Cons:Nil9_10(n12_10), gen_Cons:Nil9_10(b)) -> gen_c:c18_10(n12_10), rt in Omega(1 + n12_10) Generator Equations: gen_c:c18_10(0) <=> c1 gen_c:c18_10(+(x, 1)) <=> c(gen_c:c18_10(x)) gen_Cons:Nil9_10(0) <=> Nil gen_Cons:Nil9_10(+(x, 1)) <=> Cons(Capture, gen_Cons:Nil9_10(x)) gen_c2:c3:c410_10(0) <=> c4(c1) gen_c2:c3:c410_10(+(x, 1)) <=> c2(gen_c2:c3:c410_10(x)) The following defined symbols remain to be analysed: GAME, @, game They will be analysed ascendingly in the following order: @ < game