WORST_CASE(Omega(n^1),O(n^1)) proof of input_lNHVLMrZgi.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (4) CdtProblem (5) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTRS (9) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (10) CpxTRS (11) CpxTrsMatchBoundsTAProof [FINISHED, 36 ms] (12) BOUNDS(1, n^1) (13) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRelTRS (17) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CpxRelTRS (19) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (20) typed CpxTrs (21) OrderProof [LOWER BOUND(ID), 8 ms] (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 316 ms] (24) BEST (25) proven lower bound (26) LowerBoundPropagationProof [FINISHED, 0 ms] (27) BOUNDS(n^1, INF) (28) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: selects(x', revprefix, Cons(x, xs)) -> Cons(Cons(x', revapp(revprefix, Cons(x, xs))), selects(x, Cons(x', revprefix), xs)) select(Cons(x, xs)) -> selects(x, Nil, xs) revapp(Cons(x, xs), rest) -> revapp(xs, Cons(x, rest)) selects(x, revprefix, Nil) -> Cons(Cons(x, revapp(revprefix, Nil)), Nil) select(Nil) -> Nil revapp(Nil, rest) -> rest S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: selects(z0, z1, Cons(z2, z3)) -> Cons(Cons(z0, revapp(z1, Cons(z2, z3))), selects(z2, Cons(z0, z1), z3)) selects(z0, z1, Nil) -> Cons(Cons(z0, revapp(z1, Nil)), Nil) select(Cons(z0, z1)) -> selects(z0, Nil, z1) select(Nil) -> Nil revapp(Cons(z0, z1), z2) -> revapp(z1, Cons(z0, z2)) revapp(Nil, z0) -> z0 Tuples: SELECTS(z0, z1, Cons(z2, z3)) -> c(REVAPP(z1, Cons(z2, z3))) SELECTS(z0, z1, Cons(z2, z3)) -> c1(SELECTS(z2, Cons(z0, z1), z3)) SELECTS(z0, z1, Nil) -> c2(REVAPP(z1, Nil)) SELECT(Cons(z0, z1)) -> c3(SELECTS(z0, Nil, z1)) SELECT(Nil) -> c4 REVAPP(Cons(z0, z1), z2) -> c5(REVAPP(z1, Cons(z0, z2))) REVAPP(Nil, z0) -> c6 S tuples: SELECTS(z0, z1, Cons(z2, z3)) -> c(REVAPP(z1, Cons(z2, z3))) SELECTS(z0, z1, Cons(z2, z3)) -> c1(SELECTS(z2, Cons(z0, z1), z3)) SELECTS(z0, z1, Nil) -> c2(REVAPP(z1, Nil)) SELECT(Cons(z0, z1)) -> c3(SELECTS(z0, Nil, z1)) SELECT(Nil) -> c4 REVAPP(Cons(z0, z1), z2) -> c5(REVAPP(z1, Cons(z0, z2))) REVAPP(Nil, z0) -> c6 K tuples:none Defined Rule Symbols: selects_3, select_1, revapp_2 Defined Pair Symbols: SELECTS_3, SELECT_1, REVAPP_2 Compound Symbols: c_1, c1_1, c2_1, c3_1, c4, c5_1, c6 ---------------------------------------- (3) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: SELECT(Cons(z0, z1)) -> c3(SELECTS(z0, Nil, z1)) Removed 2 trailing nodes: SELECT(Nil) -> c4 REVAPP(Nil, z0) -> c6 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: selects(z0, z1, Cons(z2, z3)) -> Cons(Cons(z0, revapp(z1, Cons(z2, z3))), selects(z2, Cons(z0, z1), z3)) selects(z0, z1, Nil) -> Cons(Cons(z0, revapp(z1, Nil)), Nil) select(Cons(z0, z1)) -> selects(z0, Nil, z1) select(Nil) -> Nil revapp(Cons(z0, z1), z2) -> revapp(z1, Cons(z0, z2)) revapp(Nil, z0) -> z0 Tuples: SELECTS(z0, z1, Cons(z2, z3)) -> c(REVAPP(z1, Cons(z2, z3))) SELECTS(z0, z1, Cons(z2, z3)) -> c1(SELECTS(z2, Cons(z0, z1), z3)) SELECTS(z0, z1, Nil) -> c2(REVAPP(z1, Nil)) REVAPP(Cons(z0, z1), z2) -> c5(REVAPP(z1, Cons(z0, z2))) S tuples: SELECTS(z0, z1, Cons(z2, z3)) -> c(REVAPP(z1, Cons(z2, z3))) SELECTS(z0, z1, Cons(z2, z3)) -> c1(SELECTS(z2, Cons(z0, z1), z3)) SELECTS(z0, z1, Nil) -> c2(REVAPP(z1, Nil)) REVAPP(Cons(z0, z1), z2) -> c5(REVAPP(z1, Cons(z0, z2))) K tuples:none Defined Rule Symbols: selects_3, select_1, revapp_2 Defined Pair Symbols: SELECTS_3, REVAPP_2 Compound Symbols: c_1, c1_1, c2_1, c5_1 ---------------------------------------- (5) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: selects(z0, z1, Cons(z2, z3)) -> Cons(Cons(z0, revapp(z1, Cons(z2, z3))), selects(z2, Cons(z0, z1), z3)) selects(z0, z1, Nil) -> Cons(Cons(z0, revapp(z1, Nil)), Nil) select(Cons(z0, z1)) -> selects(z0, Nil, z1) select(Nil) -> Nil revapp(Cons(z0, z1), z2) -> revapp(z1, Cons(z0, z2)) revapp(Nil, z0) -> z0 ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: SELECTS(z0, z1, Cons(z2, z3)) -> c(REVAPP(z1, Cons(z2, z3))) SELECTS(z0, z1, Cons(z2, z3)) -> c1(SELECTS(z2, Cons(z0, z1), z3)) SELECTS(z0, z1, Nil) -> c2(REVAPP(z1, Nil)) REVAPP(Cons(z0, z1), z2) -> c5(REVAPP(z1, Cons(z0, z2))) S tuples: SELECTS(z0, z1, Cons(z2, z3)) -> c(REVAPP(z1, Cons(z2, z3))) SELECTS(z0, z1, Cons(z2, z3)) -> c1(SELECTS(z2, Cons(z0, z1), z3)) SELECTS(z0, z1, Nil) -> c2(REVAPP(z1, Nil)) REVAPP(Cons(z0, z1), z2) -> c5(REVAPP(z1, Cons(z0, z2))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: SELECTS_3, REVAPP_2 Compound Symbols: c_1, c1_1, c2_1, c5_1 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: SELECTS(z0, z1, Cons(z2, z3)) -> c(REVAPP(z1, Cons(z2, z3))) SELECTS(z0, z1, Cons(z2, z3)) -> c1(SELECTS(z2, Cons(z0, z1), z3)) SELECTS(z0, z1, Nil) -> c2(REVAPP(z1, Nil)) REVAPP(Cons(z0, z1), z2) -> c5(REVAPP(z1, Cons(z0, z2))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (9) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: SELECTS(z0, z1, Cons(z2, z3)) -> c(REVAPP(z1, Cons(z2, z3))) SELECTS(z0, z1, Cons(z2, z3)) -> c1(SELECTS(z2, Cons(z0, z1), z3)) SELECTS(z0, z1, Nil) -> c2(REVAPP(z1, Nil)) REVAPP(Cons(z0, z1), z2) -> c5(REVAPP(z1, Cons(z0, z2))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2] transitions: Cons0(0, 0) -> 0 c0(0) -> 0 c10(0) -> 0 Nil0() -> 0 c20(0) -> 0 c50(0) -> 0 SELECTS0(0, 0, 0) -> 1 REVAPP0(0, 0) -> 2 Cons1(0, 0) -> 4 REVAPP1(0, 4) -> 3 c1(3) -> 1 Cons1(0, 0) -> 6 SELECTS1(0, 6, 0) -> 5 c11(5) -> 1 Nil1() -> 8 REVAPP1(0, 8) -> 7 c21(7) -> 1 REVAPP1(0, 4) -> 9 c51(9) -> 2 REVAPP1(6, 4) -> 3 c1(3) -> 5 Cons1(0, 6) -> 6 c11(5) -> 5 REVAPP1(6, 8) -> 7 c21(7) -> 5 Cons1(0, 4) -> 4 c51(9) -> 3 Cons1(0, 8) -> 4 c51(9) -> 7 c51(9) -> 9 Cons2(0, 4) -> 11 REVAPP2(0, 11) -> 10 c52(10) -> 3 REVAPP2(6, 11) -> 10 Cons2(0, 8) -> 11 c52(10) -> 7 Cons1(0, 11) -> 4 c51(9) -> 10 Cons2(0, 11) -> 11 c52(10) -> 10 ---------------------------------------- (12) BOUNDS(1, n^1) ---------------------------------------- (13) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: selects(z0, z1, Cons(z2, z3)) -> Cons(Cons(z0, revapp(z1, Cons(z2, z3))), selects(z2, Cons(z0, z1), z3)) selects(z0, z1, Nil) -> Cons(Cons(z0, revapp(z1, Nil)), Nil) select(Cons(z0, z1)) -> selects(z0, Nil, z1) select(Nil) -> Nil revapp(Cons(z0, z1), z2) -> revapp(z1, Cons(z0, z2)) revapp(Nil, z0) -> z0 Tuples: SELECTS(z0, z1, Cons(z2, z3)) -> c(REVAPP(z1, Cons(z2, z3))) SELECTS(z0, z1, Cons(z2, z3)) -> c1(SELECTS(z2, Cons(z0, z1), z3)) SELECTS(z0, z1, Nil) -> c2(REVAPP(z1, Nil)) SELECT(Cons(z0, z1)) -> c3(SELECTS(z0, Nil, z1)) SELECT(Nil) -> c4 REVAPP(Cons(z0, z1), z2) -> c5(REVAPP(z1, Cons(z0, z2))) REVAPP(Nil, z0) -> c6 S tuples: SELECTS(z0, z1, Cons(z2, z3)) -> c(REVAPP(z1, Cons(z2, z3))) SELECTS(z0, z1, Cons(z2, z3)) -> c1(SELECTS(z2, Cons(z0, z1), z3)) SELECTS(z0, z1, Nil) -> c2(REVAPP(z1, Nil)) SELECT(Cons(z0, z1)) -> c3(SELECTS(z0, Nil, z1)) SELECT(Nil) -> c4 REVAPP(Cons(z0, z1), z2) -> c5(REVAPP(z1, Cons(z0, z2))) REVAPP(Nil, z0) -> c6 K tuples:none Defined Rule Symbols: selects_3, select_1, revapp_2 Defined Pair Symbols: SELECTS_3, SELECT_1, REVAPP_2 Compound Symbols: c_1, c1_1, c2_1, c3_1, c4, c5_1, c6 ---------------------------------------- (15) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (16) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: SELECTS(z0, z1, Cons(z2, z3)) -> c(REVAPP(z1, Cons(z2, z3))) SELECTS(z0, z1, Cons(z2, z3)) -> c1(SELECTS(z2, Cons(z0, z1), z3)) SELECTS(z0, z1, Nil) -> c2(REVAPP(z1, Nil)) SELECT(Cons(z0, z1)) -> c3(SELECTS(z0, Nil, z1)) SELECT(Nil) -> c4 REVAPP(Cons(z0, z1), z2) -> c5(REVAPP(z1, Cons(z0, z2))) REVAPP(Nil, z0) -> c6 The (relative) TRS S consists of the following rules: selects(z0, z1, Cons(z2, z3)) -> Cons(Cons(z0, revapp(z1, Cons(z2, z3))), selects(z2, Cons(z0, z1), z3)) selects(z0, z1, Nil) -> Cons(Cons(z0, revapp(z1, Nil)), Nil) select(Cons(z0, z1)) -> selects(z0, Nil, z1) select(Nil) -> Nil revapp(Cons(z0, z1), z2) -> revapp(z1, Cons(z0, z2)) revapp(Nil, z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (17) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (18) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: SELECTS(z0, z1, Cons(z2, z3)) -> c(REVAPP(z1, Cons(z2, z3))) SELECTS(z0, z1, Cons(z2, z3)) -> c1(SELECTS(z2, Cons(z0, z1), z3)) SELECTS(z0, z1, Nil) -> c2(REVAPP(z1, Nil)) SELECT(Cons(z0, z1)) -> c3(SELECTS(z0, Nil, z1)) SELECT(Nil) -> c4 REVAPP(Cons(z0, z1), z2) -> c5(REVAPP(z1, Cons(z0, z2))) REVAPP(Nil, z0) -> c6 The (relative) TRS S consists of the following rules: selects(z0, z1, Cons(z2, z3)) -> Cons(Cons(z0, revapp(z1, Cons(z2, z3))), selects(z2, Cons(z0, z1), z3)) selects(z0, z1, Nil) -> Cons(Cons(z0, revapp(z1, Nil)), Nil) select(Cons(z0, z1)) -> selects(z0, Nil, z1) select(Nil) -> Nil revapp(Cons(z0, z1), z2) -> revapp(z1, Cons(z0, z2)) revapp(Nil, z0) -> z0 Rewrite Strategy: INNERMOST ---------------------------------------- (19) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (20) Obligation: Innermost TRS: Rules: SELECTS(z0, z1, Cons(z2, z3)) -> c(REVAPP(z1, Cons(z2, z3))) SELECTS(z0, z1, Cons(z2, z3)) -> c1(SELECTS(z2, Cons(z0, z1), z3)) SELECTS(z0, z1, Nil) -> c2(REVAPP(z1, Nil)) SELECT(Cons(z0, z1)) -> c3(SELECTS(z0, Nil, z1)) SELECT(Nil) -> c4 REVAPP(Cons(z0, z1), z2) -> c5(REVAPP(z1, Cons(z0, z2))) REVAPP(Nil, z0) -> c6 selects(z0, z1, Cons(z2, z3)) -> Cons(Cons(z0, revapp(z1, Cons(z2, z3))), selects(z2, Cons(z0, z1), z3)) selects(z0, z1, Nil) -> Cons(Cons(z0, revapp(z1, Nil)), Nil) select(Cons(z0, z1)) -> selects(z0, Nil, z1) select(Nil) -> Nil revapp(Cons(z0, z1), z2) -> revapp(z1, Cons(z0, z2)) revapp(Nil, z0) -> z0 Types: SELECTS :: Cons:Nil -> Cons:Nil -> Cons:Nil -> c:c1:c2 Cons :: Cons:Nil -> Cons:Nil -> Cons:Nil c :: c5:c6 -> c:c1:c2 REVAPP :: Cons:Nil -> Cons:Nil -> c5:c6 c1 :: c:c1:c2 -> c:c1:c2 Nil :: Cons:Nil c2 :: c5:c6 -> c:c1:c2 SELECT :: Cons:Nil -> c3:c4 c3 :: c:c1:c2 -> c3:c4 c4 :: c3:c4 c5 :: c5:c6 -> c5:c6 c6 :: c5:c6 selects :: Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil revapp :: Cons:Nil -> Cons:Nil -> Cons:Nil select :: Cons:Nil -> Cons:Nil hole_c:c1:c21_7 :: c:c1:c2 hole_Cons:Nil2_7 :: Cons:Nil hole_c5:c63_7 :: c5:c6 hole_c3:c44_7 :: c3:c4 gen_c:c1:c25_7 :: Nat -> c:c1:c2 gen_Cons:Nil6_7 :: Nat -> Cons:Nil gen_c5:c67_7 :: Nat -> c5:c6 ---------------------------------------- (21) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: SELECTS, REVAPP, selects, revapp They will be analysed ascendingly in the following order: REVAPP < SELECTS revapp < selects ---------------------------------------- (22) Obligation: Innermost TRS: Rules: SELECTS(z0, z1, Cons(z2, z3)) -> c(REVAPP(z1, Cons(z2, z3))) SELECTS(z0, z1, Cons(z2, z3)) -> c1(SELECTS(z2, Cons(z0, z1), z3)) SELECTS(z0, z1, Nil) -> c2(REVAPP(z1, Nil)) SELECT(Cons(z0, z1)) -> c3(SELECTS(z0, Nil, z1)) SELECT(Nil) -> c4 REVAPP(Cons(z0, z1), z2) -> c5(REVAPP(z1, Cons(z0, z2))) REVAPP(Nil, z0) -> c6 selects(z0, z1, Cons(z2, z3)) -> Cons(Cons(z0, revapp(z1, Cons(z2, z3))), selects(z2, Cons(z0, z1), z3)) selects(z0, z1, Nil) -> Cons(Cons(z0, revapp(z1, Nil)), Nil) select(Cons(z0, z1)) -> selects(z0, Nil, z1) select(Nil) -> Nil revapp(Cons(z0, z1), z2) -> revapp(z1, Cons(z0, z2)) revapp(Nil, z0) -> z0 Types: SELECTS :: Cons:Nil -> Cons:Nil -> Cons:Nil -> c:c1:c2 Cons :: Cons:Nil -> Cons:Nil -> Cons:Nil c :: c5:c6 -> c:c1:c2 REVAPP :: Cons:Nil -> Cons:Nil -> c5:c6 c1 :: c:c1:c2 -> c:c1:c2 Nil :: Cons:Nil c2 :: c5:c6 -> c:c1:c2 SELECT :: Cons:Nil -> c3:c4 c3 :: c:c1:c2 -> c3:c4 c4 :: c3:c4 c5 :: c5:c6 -> c5:c6 c6 :: c5:c6 selects :: Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil revapp :: Cons:Nil -> Cons:Nil -> Cons:Nil select :: Cons:Nil -> Cons:Nil hole_c:c1:c21_7 :: c:c1:c2 hole_Cons:Nil2_7 :: Cons:Nil hole_c5:c63_7 :: c5:c6 hole_c3:c44_7 :: c3:c4 gen_c:c1:c25_7 :: Nat -> c:c1:c2 gen_Cons:Nil6_7 :: Nat -> Cons:Nil gen_c5:c67_7 :: Nat -> c5:c6 Generator Equations: gen_c:c1:c25_7(0) <=> c(c6) gen_c:c1:c25_7(+(x, 1)) <=> c1(gen_c:c1:c25_7(x)) gen_Cons:Nil6_7(0) <=> Nil gen_Cons:Nil6_7(+(x, 1)) <=> Cons(Nil, gen_Cons:Nil6_7(x)) gen_c5:c67_7(0) <=> c6 gen_c5:c67_7(+(x, 1)) <=> c5(gen_c5:c67_7(x)) The following defined symbols remain to be analysed: REVAPP, SELECTS, selects, revapp They will be analysed ascendingly in the following order: REVAPP < SELECTS revapp < selects ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: REVAPP(gen_Cons:Nil6_7(n9_7), gen_Cons:Nil6_7(b)) -> gen_c5:c67_7(n9_7), rt in Omega(1 + n9_7) Induction Base: REVAPP(gen_Cons:Nil6_7(0), gen_Cons:Nil6_7(b)) ->_R^Omega(1) c6 Induction Step: REVAPP(gen_Cons:Nil6_7(+(n9_7, 1)), gen_Cons:Nil6_7(b)) ->_R^Omega(1) c5(REVAPP(gen_Cons:Nil6_7(n9_7), Cons(Nil, gen_Cons:Nil6_7(b)))) ->_IH c5(gen_c5:c67_7(c10_7)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Complex Obligation (BEST) ---------------------------------------- (25) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: SELECTS(z0, z1, Cons(z2, z3)) -> c(REVAPP(z1, Cons(z2, z3))) SELECTS(z0, z1, Cons(z2, z3)) -> c1(SELECTS(z2, Cons(z0, z1), z3)) SELECTS(z0, z1, Nil) -> c2(REVAPP(z1, Nil)) SELECT(Cons(z0, z1)) -> c3(SELECTS(z0, Nil, z1)) SELECT(Nil) -> c4 REVAPP(Cons(z0, z1), z2) -> c5(REVAPP(z1, Cons(z0, z2))) REVAPP(Nil, z0) -> c6 selects(z0, z1, Cons(z2, z3)) -> Cons(Cons(z0, revapp(z1, Cons(z2, z3))), selects(z2, Cons(z0, z1), z3)) selects(z0, z1, Nil) -> Cons(Cons(z0, revapp(z1, Nil)), Nil) select(Cons(z0, z1)) -> selects(z0, Nil, z1) select(Nil) -> Nil revapp(Cons(z0, z1), z2) -> revapp(z1, Cons(z0, z2)) revapp(Nil, z0) -> z0 Types: SELECTS :: Cons:Nil -> Cons:Nil -> Cons:Nil -> c:c1:c2 Cons :: Cons:Nil -> Cons:Nil -> Cons:Nil c :: c5:c6 -> c:c1:c2 REVAPP :: Cons:Nil -> Cons:Nil -> c5:c6 c1 :: c:c1:c2 -> c:c1:c2 Nil :: Cons:Nil c2 :: c5:c6 -> c:c1:c2 SELECT :: Cons:Nil -> c3:c4 c3 :: c:c1:c2 -> c3:c4 c4 :: c3:c4 c5 :: c5:c6 -> c5:c6 c6 :: c5:c6 selects :: Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil revapp :: Cons:Nil -> Cons:Nil -> Cons:Nil select :: Cons:Nil -> Cons:Nil hole_c:c1:c21_7 :: c:c1:c2 hole_Cons:Nil2_7 :: Cons:Nil hole_c5:c63_7 :: c5:c6 hole_c3:c44_7 :: c3:c4 gen_c:c1:c25_7 :: Nat -> c:c1:c2 gen_Cons:Nil6_7 :: Nat -> Cons:Nil gen_c5:c67_7 :: Nat -> c5:c6 Generator Equations: gen_c:c1:c25_7(0) <=> c(c6) gen_c:c1:c25_7(+(x, 1)) <=> c1(gen_c:c1:c25_7(x)) gen_Cons:Nil6_7(0) <=> Nil gen_Cons:Nil6_7(+(x, 1)) <=> Cons(Nil, gen_Cons:Nil6_7(x)) gen_c5:c67_7(0) <=> c6 gen_c5:c67_7(+(x, 1)) <=> c5(gen_c5:c67_7(x)) The following defined symbols remain to be analysed: REVAPP, SELECTS, selects, revapp They will be analysed ascendingly in the following order: REVAPP < SELECTS revapp < selects ---------------------------------------- (26) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (27) BOUNDS(n^1, INF) ---------------------------------------- (28) Obligation: Innermost TRS: Rules: SELECTS(z0, z1, Cons(z2, z3)) -> c(REVAPP(z1, Cons(z2, z3))) SELECTS(z0, z1, Cons(z2, z3)) -> c1(SELECTS(z2, Cons(z0, z1), z3)) SELECTS(z0, z1, Nil) -> c2(REVAPP(z1, Nil)) SELECT(Cons(z0, z1)) -> c3(SELECTS(z0, Nil, z1)) SELECT(Nil) -> c4 REVAPP(Cons(z0, z1), z2) -> c5(REVAPP(z1, Cons(z0, z2))) REVAPP(Nil, z0) -> c6 selects(z0, z1, Cons(z2, z3)) -> Cons(Cons(z0, revapp(z1, Cons(z2, z3))), selects(z2, Cons(z0, z1), z3)) selects(z0, z1, Nil) -> Cons(Cons(z0, revapp(z1, Nil)), Nil) select(Cons(z0, z1)) -> selects(z0, Nil, z1) select(Nil) -> Nil revapp(Cons(z0, z1), z2) -> revapp(z1, Cons(z0, z2)) revapp(Nil, z0) -> z0 Types: SELECTS :: Cons:Nil -> Cons:Nil -> Cons:Nil -> c:c1:c2 Cons :: Cons:Nil -> Cons:Nil -> Cons:Nil c :: c5:c6 -> c:c1:c2 REVAPP :: Cons:Nil -> Cons:Nil -> c5:c6 c1 :: c:c1:c2 -> c:c1:c2 Nil :: Cons:Nil c2 :: c5:c6 -> c:c1:c2 SELECT :: Cons:Nil -> c3:c4 c3 :: c:c1:c2 -> c3:c4 c4 :: c3:c4 c5 :: c5:c6 -> c5:c6 c6 :: c5:c6 selects :: Cons:Nil -> Cons:Nil -> Cons:Nil -> Cons:Nil revapp :: Cons:Nil -> Cons:Nil -> Cons:Nil select :: Cons:Nil -> Cons:Nil hole_c:c1:c21_7 :: c:c1:c2 hole_Cons:Nil2_7 :: Cons:Nil hole_c5:c63_7 :: c5:c6 hole_c3:c44_7 :: c3:c4 gen_c:c1:c25_7 :: Nat -> c:c1:c2 gen_Cons:Nil6_7 :: Nat -> Cons:Nil gen_c5:c67_7 :: Nat -> c5:c6 Lemmas: REVAPP(gen_Cons:Nil6_7(n9_7), gen_Cons:Nil6_7(b)) -> gen_c5:c67_7(n9_7), rt in Omega(1 + n9_7) Generator Equations: gen_c:c1:c25_7(0) <=> c(c6) gen_c:c1:c25_7(+(x, 1)) <=> c1(gen_c:c1:c25_7(x)) gen_Cons:Nil6_7(0) <=> Nil gen_Cons:Nil6_7(+(x, 1)) <=> Cons(Nil, gen_Cons:Nil6_7(x)) gen_c5:c67_7(0) <=> c6 gen_c5:c67_7(+(x, 1)) <=> c5(gen_c5:c67_7(x)) The following defined symbols remain to be analysed: SELECTS, selects, revapp They will be analysed ascendingly in the following order: revapp < selects