KILLED proof of input_2wRS7j11WU.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (4) CpxTRS (5) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (12) typed CpxTrs (13) OrderProof [LOWER BOUND(ID), 16 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 753 ms] (16) typed CpxTrs (17) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (18) TRS for Loop Detection (19) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (20) CdtProblem (21) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (22) CdtProblem (23) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (24) CdtProblem (25) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (26) CpxRelTRS (27) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (28) CpxTRS (29) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (30) CpxWeightedTrs (31) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (32) CpxTypedWeightedTrs (33) CompletionProof [UPPER BOUND(ID), 0 ms] (34) CpxTypedWeightedCompleteTrs (35) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (36) CpxTypedWeightedCompleteTrs (37) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (38) CpxRNTS (39) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (40) CpxRNTS (41) CompletionProof [UPPER BOUND(ID), 0 ms] (42) CpxTypedWeightedCompleteTrs (43) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (44) CpxRNTS (45) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (46) CdtProblem (47) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (48) CdtProblem (49) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (50) CdtProblem (51) CdtNarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (52) CdtProblem (53) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (54) CdtProblem (55) CdtRewritingProof [BOTH BOUNDS(ID, ID), 0 ms] (56) CdtProblem (57) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (58) CdtProblem (59) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (60) CdtProblem (61) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (62) CdtProblem (63) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (64) CdtProblem (65) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (66) CdtProblem (67) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (68) CdtProblem (69) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (70) CdtProblem (71) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (72) CdtProblem (73) CdtForwardInstantiationProof [BOTH BOUNDS(ID, ID), 0 ms] (74) CdtProblem (75) RelTrsToWeightedTrsProof [UPPER BOUND(ID), 0 ms] (76) CpxWeightedTrs (77) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (78) CpxTypedWeightedTrs (79) CompletionProof [UPPER BOUND(ID), 0 ms] (80) CpxTypedWeightedCompleteTrs (81) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (82) CpxTypedWeightedCompleteTrs (83) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (84) CpxRNTS (85) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (86) CpxRNTS (87) CompletionProof [UPPER BOUND(ID), 0 ms] (88) CpxTypedWeightedCompleteTrs (89) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (90) CpxRNTS ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: ack(Cons(x, xs), Nil) -> ack(xs, Cons(Nil, Nil)) ack(Cons(x', xs'), Cons(x, xs)) -> ack(xs', ack(Cons(x', xs'), xs)) ack(Nil, n) -> Cons(Cons(Nil, Nil), n) goal(m, n) -> ack(m, n) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: ack(Cons(x, xs), Nil) -> ack(xs, Cons(Nil, Nil)) ack(Cons(x', xs'), Cons(x, xs)) -> ack(xs', ack(Cons(x', xs'), xs)) ack(Nil, n) -> Cons(Cons(Nil, Nil), n) goal(m, n) -> ack(m, n) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (3) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: ack(Cons(x, xs), Nil) -> ack(xs, Cons(Nil, Nil)) ack(Cons(x', xs'), Cons(x, xs)) -> ack(xs', ack(Cons(x', xs'), xs)) ack(Nil, n) -> Cons(Cons(Nil, Nil), n) goal(m, n) -> ack(m, n) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) goal(z0, z1) -> ack(z0, z1) Tuples: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(z0, z1), Cons(z2, z3)) -> c1(ACK(z1, ack(Cons(z0, z1), z3)), ACK(Cons(z0, z1), z3)) ACK(Nil, z0) -> c2 GOAL(z0, z1) -> c3(ACK(z0, z1)) S tuples: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(z0, z1), Cons(z2, z3)) -> c1(ACK(z1, ack(Cons(z0, z1), z3)), ACK(Cons(z0, z1), z3)) ACK(Nil, z0) -> c2 GOAL(z0, z1) -> c3(ACK(z0, z1)) K tuples:none Defined Rule Symbols: ack_2, goal_2 Defined Pair Symbols: ACK_2, GOAL_2 Compound Symbols: c_1, c1_2, c2, c3_1 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(z0, z1), Cons(z2, z3)) -> c1(ACK(z1, ack(Cons(z0, z1), z3)), ACK(Cons(z0, z1), z3)) ACK(Nil, z0) -> c2 GOAL(z0, z1) -> c3(ACK(z0, z1)) The (relative) TRS S consists of the following rules: ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) goal(z0, z1) -> ack(z0, z1) Rewrite Strategy: INNERMOST ---------------------------------------- (9) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(z0, z1), Cons(z2, z3)) -> c1(ACK(z1, ack(Cons(z0, z1), z3)), ACK(Cons(z0, z1), z3)) ACK(Nil, z0) -> c2 GOAL(z0, z1) -> c3(ACK(z0, z1)) The (relative) TRS S consists of the following rules: ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) goal(z0, z1) -> ack(z0, z1) Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (12) Obligation: Innermost TRS: Rules: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(z0, z1), Cons(z2, z3)) -> c1(ACK(z1, ack(Cons(z0, z1), z3)), ACK(Cons(z0, z1), z3)) ACK(Nil, z0) -> c2 GOAL(z0, z1) -> c3(ACK(z0, z1)) ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) goal(z0, z1) -> ack(z0, z1) Types: ACK :: Cons:Nil -> Cons:Nil -> c:c1:c2 Cons :: Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil c :: c:c1:c2 -> c:c1:c2 c1 :: c:c1:c2 -> c:c1:c2 -> c:c1:c2 ack :: Cons:Nil -> Cons:Nil -> Cons:Nil c2 :: c:c1:c2 GOAL :: Cons:Nil -> Cons:Nil -> c3 c3 :: c:c1:c2 -> c3 goal :: Cons:Nil -> Cons:Nil -> Cons:Nil hole_c:c1:c21_4 :: c:c1:c2 hole_Cons:Nil2_4 :: Cons:Nil hole_c33_4 :: c3 gen_c:c1:c24_4 :: Nat -> c:c1:c2 gen_Cons:Nil5_4 :: Nat -> Cons:Nil ---------------------------------------- (13) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: ACK, ack They will be analysed ascendingly in the following order: ack < ACK ---------------------------------------- (14) Obligation: Innermost TRS: Rules: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(z0, z1), Cons(z2, z3)) -> c1(ACK(z1, ack(Cons(z0, z1), z3)), ACK(Cons(z0, z1), z3)) ACK(Nil, z0) -> c2 GOAL(z0, z1) -> c3(ACK(z0, z1)) ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) goal(z0, z1) -> ack(z0, z1) Types: ACK :: Cons:Nil -> Cons:Nil -> c:c1:c2 Cons :: Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil c :: c:c1:c2 -> c:c1:c2 c1 :: c:c1:c2 -> c:c1:c2 -> c:c1:c2 ack :: Cons:Nil -> Cons:Nil -> Cons:Nil c2 :: c:c1:c2 GOAL :: Cons:Nil -> Cons:Nil -> c3 c3 :: c:c1:c2 -> c3 goal :: Cons:Nil -> Cons:Nil -> Cons:Nil hole_c:c1:c21_4 :: c:c1:c2 hole_Cons:Nil2_4 :: Cons:Nil hole_c33_4 :: c3 gen_c:c1:c24_4 :: Nat -> c:c1:c2 gen_Cons:Nil5_4 :: Nat -> Cons:Nil Generator Equations: gen_c:c1:c24_4(0) <=> c2 gen_c:c1:c24_4(+(x, 1)) <=> c(gen_c:c1:c24_4(x)) gen_Cons:Nil5_4(0) <=> Nil gen_Cons:Nil5_4(+(x, 1)) <=> Cons(Nil, gen_Cons:Nil5_4(x)) The following defined symbols remain to be analysed: ack, ACK They will be analysed ascendingly in the following order: ack < ACK ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ack(gen_Cons:Nil5_4(1), gen_Cons:Nil5_4(+(1, n7_4))) -> *6_4, rt in Omega(0) Induction Base: ack(gen_Cons:Nil5_4(1), gen_Cons:Nil5_4(+(1, 0))) Induction Step: ack(gen_Cons:Nil5_4(1), gen_Cons:Nil5_4(+(1, +(n7_4, 1)))) ->_R^Omega(0) ack(gen_Cons:Nil5_4(0), ack(Cons(Nil, gen_Cons:Nil5_4(0)), gen_Cons:Nil5_4(+(1, n7_4)))) ->_IH ack(gen_Cons:Nil5_4(0), *6_4) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (16) Obligation: Innermost TRS: Rules: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(z0, z1), Cons(z2, z3)) -> c1(ACK(z1, ack(Cons(z0, z1), z3)), ACK(Cons(z0, z1), z3)) ACK(Nil, z0) -> c2 GOAL(z0, z1) -> c3(ACK(z0, z1)) ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) goal(z0, z1) -> ack(z0, z1) Types: ACK :: Cons:Nil -> Cons:Nil -> c:c1:c2 Cons :: Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil c :: c:c1:c2 -> c:c1:c2 c1 :: c:c1:c2 -> c:c1:c2 -> c:c1:c2 ack :: Cons:Nil -> Cons:Nil -> Cons:Nil c2 :: c:c1:c2 GOAL :: Cons:Nil -> Cons:Nil -> c3 c3 :: c:c1:c2 -> c3 goal :: Cons:Nil -> Cons:Nil -> Cons:Nil hole_c:c1:c21_4 :: c:c1:c2 hole_Cons:Nil2_4 :: Cons:Nil hole_c33_4 :: c3 gen_c:c1:c24_4 :: Nat -> c:c1:c2 gen_Cons:Nil5_4 :: Nat -> Cons:Nil Lemmas: ack(gen_Cons:Nil5_4(1), gen_Cons:Nil5_4(+(1, n7_4))) -> *6_4, rt in Omega(0) Generator Equations: gen_c:c1:c24_4(0) <=> c2 gen_c:c1:c24_4(+(x, 1)) <=> c(gen_c:c1:c24_4(x)) gen_Cons:Nil5_4(0) <=> Nil gen_Cons:Nil5_4(+(x, 1)) <=> Cons(Nil, gen_Cons:Nil5_4(x)) The following defined symbols remain to be analysed: ACK ---------------------------------------- (17) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (18) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(z0, z1), Cons(z2, z3)) -> c1(ACK(z1, ack(Cons(z0, z1), z3)), ACK(Cons(z0, z1), z3)) ACK(Nil, z0) -> c2 GOAL(z0, z1) -> c3(ACK(z0, z1)) The (relative) TRS S consists of the following rules: ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) goal(z0, z1) -> ack(z0, z1) Rewrite Strategy: INNERMOST ---------------------------------------- (19) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) goal(z0, z1) -> ack(z0, z1) Tuples: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(z0, z1), Cons(z2, z3)) -> c1(ACK(z1, ack(Cons(z0, z1), z3)), ACK(Cons(z0, z1), z3)) ACK(Nil, z0) -> c2 GOAL(z0, z1) -> c3(ACK(z0, z1)) S tuples: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(z0, z1), Cons(z2, z3)) -> c1(ACK(z1, ack(Cons(z0, z1), z3)), ACK(Cons(z0, z1), z3)) ACK(Nil, z0) -> c2 GOAL(z0, z1) -> c3(ACK(z0, z1)) K tuples:none Defined Rule Symbols: ack_2, goal_2 Defined Pair Symbols: ACK_2, GOAL_2 Compound Symbols: c_1, c1_2, c2, c3_1 ---------------------------------------- (21) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: GOAL(z0, z1) -> c3(ACK(z0, z1)) Removed 1 trailing nodes: ACK(Nil, z0) -> c2 ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) goal(z0, z1) -> ack(z0, z1) Tuples: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(z0, z1), Cons(z2, z3)) -> c1(ACK(z1, ack(Cons(z0, z1), z3)), ACK(Cons(z0, z1), z3)) S tuples: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(z0, z1), Cons(z2, z3)) -> c1(ACK(z1, ack(Cons(z0, z1), z3)), ACK(Cons(z0, z1), z3)) K tuples:none Defined Rule Symbols: ack_2, goal_2 Defined Pair Symbols: ACK_2 Compound Symbols: c_1, c1_2 ---------------------------------------- (23) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: goal(z0, z1) -> ack(z0, z1) ---------------------------------------- (24) Obligation: Complexity Dependency Tuples Problem Rules: ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) Tuples: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(z0, z1), Cons(z2, z3)) -> c1(ACK(z1, ack(Cons(z0, z1), z3)), ACK(Cons(z0, z1), z3)) S tuples: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(z0, z1), Cons(z2, z3)) -> c1(ACK(z1, ack(Cons(z0, z1), z3)), ACK(Cons(z0, z1), z3)) K tuples:none Defined Rule Symbols: ack_2 Defined Pair Symbols: ACK_2 Compound Symbols: c_1, c1_2 ---------------------------------------- (25) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (26) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(z0, z1), Cons(z2, z3)) -> c1(ACK(z1, ack(Cons(z0, z1), z3)), ACK(Cons(z0, z1), z3)) The (relative) TRS S consists of the following rules: ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) Rewrite Strategy: INNERMOST ---------------------------------------- (27) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (28) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(z0, z1), Cons(z2, z3)) -> c1(ACK(z1, ack(Cons(z0, z1), z3)), ACK(Cons(z0, z1), z3)) ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (29) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (30) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) [1] ACK(Cons(z0, z1), Cons(z2, z3)) -> c1(ACK(z1, ack(Cons(z0, z1), z3)), ACK(Cons(z0, z1), z3)) [1] ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) [0] ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) [0] ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (31) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (32) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) [1] ACK(Cons(z0, z1), Cons(z2, z3)) -> c1(ACK(z1, ack(Cons(z0, z1), z3)), ACK(Cons(z0, z1), z3)) [1] ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) [0] ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) [0] ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) [0] The TRS has the following type information: ACK :: Cons:Nil -> Cons:Nil -> c:c1 Cons :: Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil c :: c:c1 -> c:c1 c1 :: c:c1 -> c:c1 -> c:c1 ack :: Cons:Nil -> Cons:Nil -> Cons:Nil Rewrite Strategy: INNERMOST ---------------------------------------- (33) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: ACK_2 (c) The following functions are completely defined: ack_2 Due to the following rules being added: ack(v0, v1) -> Nil [0] And the following fresh constants: const ---------------------------------------- (34) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) [1] ACK(Cons(z0, z1), Cons(z2, z3)) -> c1(ACK(z1, ack(Cons(z0, z1), z3)), ACK(Cons(z0, z1), z3)) [1] ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) [0] ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) [0] ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) [0] ack(v0, v1) -> Nil [0] The TRS has the following type information: ACK :: Cons:Nil -> Cons:Nil -> c:c1 Cons :: Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil c :: c:c1 -> c:c1 c1 :: c:c1 -> c:c1 -> c:c1 ack :: Cons:Nil -> Cons:Nil -> Cons:Nil const :: c:c1 Rewrite Strategy: INNERMOST ---------------------------------------- (35) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (36) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) [1] ACK(Cons(z0, z1), Cons(z2, Nil)) -> c1(ACK(z1, ack(z1, Cons(Nil, Nil))), ACK(Cons(z0, z1), Nil)) [1] ACK(Cons(z0, z1), Cons(z2, Cons(z2', z3'))) -> c1(ACK(z1, ack(z1, ack(Cons(z0, z1), z3'))), ACK(Cons(z0, z1), Cons(z2', z3'))) [1] ACK(Cons(z0, z1), Cons(z2, z3)) -> c1(ACK(z1, Nil), ACK(Cons(z0, z1), z3)) [1] ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) [0] ack(Cons(z0, z1), Cons(z2, Nil)) -> ack(z1, ack(z1, Cons(Nil, Nil))) [0] ack(Cons(z0, z1), Cons(z2, Cons(z2'', z3''))) -> ack(z1, ack(z1, ack(Cons(z0, z1), z3''))) [0] ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, Nil) [0] ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) [0] ack(v0, v1) -> Nil [0] The TRS has the following type information: ACK :: Cons:Nil -> Cons:Nil -> c:c1 Cons :: Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil c :: c:c1 -> c:c1 c1 :: c:c1 -> c:c1 -> c:c1 ack :: Cons:Nil -> Cons:Nil -> Cons:Nil const :: c:c1 Rewrite Strategy: INNERMOST ---------------------------------------- (37) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: Nil => 0 const => 0 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: ACK(z, z') -{ 1 }-> 1 + ACK(z1, 1 + 0 + 0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z' = 0 ACK(z, z') -{ 1 }-> 1 + ACK(z1, ack(z1, ack(1 + z0 + z1, z3'))) + ACK(1 + z0 + z1, 1 + z2' + z3') :|: z1 >= 0, z3' >= 0, z2' >= 0, z0 >= 0, z' = 1 + z2 + (1 + z2' + z3'), z = 1 + z0 + z1, z2 >= 0 ACK(z, z') -{ 1 }-> 1 + ACK(z1, ack(z1, 1 + 0 + 0)) + ACK(1 + z0 + z1, 0) :|: z1 >= 0, z' = 1 + z2 + 0, z0 >= 0, z = 1 + z0 + z1, z2 >= 0 ACK(z, z') -{ 1 }-> 1 + ACK(z1, 0) + ACK(1 + z0 + z1, z3) :|: z1 >= 0, z' = 1 + z2 + z3, z0 >= 0, z = 1 + z0 + z1, z2 >= 0, z3 >= 0 ack(z, z') -{ 0 }-> ack(z1, ack(z1, ack(1 + z0 + z1, z3''))) :|: z1 >= 0, z' = 1 + z2 + (1 + z2'' + z3''), z0 >= 0, z3'' >= 0, z2'' >= 0, z = 1 + z0 + z1, z2 >= 0 ack(z, z') -{ 0 }-> ack(z1, ack(z1, 1 + 0 + 0)) :|: z1 >= 0, z' = 1 + z2 + 0, z0 >= 0, z = 1 + z0 + z1, z2 >= 0 ack(z, z') -{ 0 }-> ack(z1, 0) :|: z1 >= 0, z' = 1 + z2 + z3, z0 >= 0, z = 1 + z0 + z1, z2 >= 0, z3 >= 0 ack(z, z') -{ 0 }-> ack(z1, 1 + 0 + 0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z' = 0 ack(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 ack(z, z') -{ 0 }-> 1 + (1 + 0 + 0) + z0 :|: z0 >= 0, z = 0, z' = z0 ---------------------------------------- (39) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: ACK(z, z') -{ 1 }-> 1 + ACK(z1, 1 + 0 + 0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z' = 0 ACK(z, z') -{ 1 }-> 1 + ACK(z1, ack(z1, ack(1 + z0 + z1, z3'))) + ACK(1 + z0 + z1, 1 + z2' + z3') :|: z1 >= 0, z3' >= 0, z2' >= 0, z0 >= 0, z' = 1 + z2 + (1 + z2' + z3'), z = 1 + z0 + z1, z2 >= 0 ACK(z, z') -{ 1 }-> 1 + ACK(z1, ack(z1, 1 + 0 + 0)) + ACK(1 + z0 + z1, 0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z' - 1 >= 0 ACK(z, z') -{ 1 }-> 1 + ACK(z1, 0) + ACK(1 + z0 + z1, z3) :|: z1 >= 0, z' = 1 + z2 + z3, z0 >= 0, z = 1 + z0 + z1, z2 >= 0, z3 >= 0 ack(z, z') -{ 0 }-> ack(z1, ack(z1, ack(1 + z0 + z1, z3''))) :|: z1 >= 0, z' = 1 + z2 + (1 + z2'' + z3''), z0 >= 0, z3'' >= 0, z2'' >= 0, z = 1 + z0 + z1, z2 >= 0 ack(z, z') -{ 0 }-> ack(z1, ack(z1, 1 + 0 + 0)) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z' - 1 >= 0 ack(z, z') -{ 0 }-> ack(z1, 0) :|: z1 >= 0, z' = 1 + z2 + z3, z0 >= 0, z = 1 + z0 + z1, z2 >= 0, z3 >= 0 ack(z, z') -{ 0 }-> ack(z1, 1 + 0 + 0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z' = 0 ack(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 ack(z, z') -{ 0 }-> 1 + (1 + 0 + 0) + z' :|: z' >= 0, z = 0 ---------------------------------------- (41) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: ack(v0, v1) -> null_ack [0] ACK(v0, v1) -> null_ACK [0] And the following fresh constants: null_ack, null_ACK ---------------------------------------- (42) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) [1] ACK(Cons(z0, z1), Cons(z2, z3)) -> c1(ACK(z1, ack(Cons(z0, z1), z3)), ACK(Cons(z0, z1), z3)) [1] ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) [0] ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) [0] ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) [0] ack(v0, v1) -> null_ack [0] ACK(v0, v1) -> null_ACK [0] The TRS has the following type information: ACK :: Cons:Nil:null_ack -> Cons:Nil:null_ack -> c:c1:null_ACK Cons :: Cons:Nil:null_ack -> Cons:Nil:null_ack -> Cons:Nil:null_ack Nil :: Cons:Nil:null_ack c :: c:c1:null_ACK -> c:c1:null_ACK c1 :: c:c1:null_ACK -> c:c1:null_ACK -> c:c1:null_ACK ack :: Cons:Nil:null_ack -> Cons:Nil:null_ack -> Cons:Nil:null_ack null_ack :: Cons:Nil:null_ack null_ACK :: c:c1:null_ACK Rewrite Strategy: INNERMOST ---------------------------------------- (43) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: Nil => 0 null_ack => 0 null_ACK => 0 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: ACK(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 ACK(z, z') -{ 1 }-> 1 + ACK(z1, 1 + 0 + 0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z' = 0 ACK(z, z') -{ 1 }-> 1 + ACK(z1, ack(1 + z0 + z1, z3)) + ACK(1 + z0 + z1, z3) :|: z1 >= 0, z' = 1 + z2 + z3, z0 >= 0, z = 1 + z0 + z1, z2 >= 0, z3 >= 0 ack(z, z') -{ 0 }-> ack(z1, ack(1 + z0 + z1, z3)) :|: z1 >= 0, z' = 1 + z2 + z3, z0 >= 0, z = 1 + z0 + z1, z2 >= 0, z3 >= 0 ack(z, z') -{ 0 }-> ack(z1, 1 + 0 + 0) :|: z1 >= 0, z0 >= 0, z = 1 + z0 + z1, z' = 0 ack(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 ack(z, z') -{ 0 }-> 1 + (1 + 0 + 0) + z0 :|: z0 >= 0, z = 0, z' = z0 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (45) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ACK(Cons(z0, z1), Cons(z2, z3)) -> c1(ACK(z1, ack(Cons(z0, z1), z3)), ACK(Cons(z0, z1), z3)) by ACK(Cons(z0, z1), Cons(x2, Nil)) -> c1(ACK(z1, ack(z1, Cons(Nil, Nil))), ACK(Cons(z0, z1), Nil)) ACK(Cons(z0, z1), Cons(x2, Cons(z2, z3))) -> c1(ACK(z1, ack(z1, ack(Cons(z0, z1), z3))), ACK(Cons(z0, z1), Cons(z2, z3))) ---------------------------------------- (46) Obligation: Complexity Dependency Tuples Problem Rules: ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) Tuples: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(z0, z1), Cons(x2, Nil)) -> c1(ACK(z1, ack(z1, Cons(Nil, Nil))), ACK(Cons(z0, z1), Nil)) ACK(Cons(z0, z1), Cons(x2, Cons(z2, z3))) -> c1(ACK(z1, ack(z1, ack(Cons(z0, z1), z3))), ACK(Cons(z0, z1), Cons(z2, z3))) S tuples: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(z0, z1), Cons(x2, Nil)) -> c1(ACK(z1, ack(z1, Cons(Nil, Nil))), ACK(Cons(z0, z1), Nil)) ACK(Cons(z0, z1), Cons(x2, Cons(z2, z3))) -> c1(ACK(z1, ack(z1, ack(Cons(z0, z1), z3))), ACK(Cons(z0, z1), Cons(z2, z3))) K tuples:none Defined Rule Symbols: ack_2 Defined Pair Symbols: ACK_2 Compound Symbols: c_1, c1_2 ---------------------------------------- (47) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ACK(Cons(z0, z1), Cons(x2, Nil)) -> c1(ACK(z1, ack(z1, Cons(Nil, Nil))), ACK(Cons(z0, z1), Nil)) by ACK(Cons(x0, Cons(z0, z1)), Cons(x2, Nil)) -> c1(ACK(Cons(z0, z1), ack(z1, ack(Cons(z0, z1), Nil))), ACK(Cons(x0, Cons(z0, z1)), Nil)) ACK(Cons(x0, Nil), Cons(x2, Nil)) -> c1(ACK(Nil, Cons(Cons(Nil, Nil), Cons(Nil, Nil))), ACK(Cons(x0, Nil), Nil)) ACK(Cons(x0, x1), Cons(x2, Nil)) -> c1(ACK(Cons(x0, x1), Nil)) ---------------------------------------- (48) Obligation: Complexity Dependency Tuples Problem Rules: ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) Tuples: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(z2, z3))) -> c1(ACK(z1, ack(z1, ack(Cons(z0, z1), z3))), ACK(Cons(z0, z1), Cons(z2, z3))) ACK(Cons(x0, Cons(z0, z1)), Cons(x2, Nil)) -> c1(ACK(Cons(z0, z1), ack(z1, ack(Cons(z0, z1), Nil))), ACK(Cons(x0, Cons(z0, z1)), Nil)) ACK(Cons(x0, Nil), Cons(x2, Nil)) -> c1(ACK(Nil, Cons(Cons(Nil, Nil), Cons(Nil, Nil))), ACK(Cons(x0, Nil), Nil)) ACK(Cons(x0, x1), Cons(x2, Nil)) -> c1(ACK(Cons(x0, x1), Nil)) S tuples: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(z2, z3))) -> c1(ACK(z1, ack(z1, ack(Cons(z0, z1), z3))), ACK(Cons(z0, z1), Cons(z2, z3))) ACK(Cons(x0, Cons(z0, z1)), Cons(x2, Nil)) -> c1(ACK(Cons(z0, z1), ack(z1, ack(Cons(z0, z1), Nil))), ACK(Cons(x0, Cons(z0, z1)), Nil)) ACK(Cons(x0, Nil), Cons(x2, Nil)) -> c1(ACK(Nil, Cons(Cons(Nil, Nil), Cons(Nil, Nil))), ACK(Cons(x0, Nil), Nil)) ACK(Cons(x0, x1), Cons(x2, Nil)) -> c1(ACK(Cons(x0, x1), Nil)) K tuples:none Defined Rule Symbols: ack_2 Defined Pair Symbols: ACK_2 Compound Symbols: c_1, c1_2, c1_1 ---------------------------------------- (49) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (50) Obligation: Complexity Dependency Tuples Problem Rules: ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) Tuples: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(z2, z3))) -> c1(ACK(z1, ack(z1, ack(Cons(z0, z1), z3))), ACK(Cons(z0, z1), Cons(z2, z3))) ACK(Cons(x0, Cons(z0, z1)), Cons(x2, Nil)) -> c1(ACK(Cons(z0, z1), ack(z1, ack(Cons(z0, z1), Nil))), ACK(Cons(x0, Cons(z0, z1)), Nil)) ACK(Cons(x0, x1), Cons(x2, Nil)) -> c1(ACK(Cons(x0, x1), Nil)) ACK(Cons(x0, Nil), Cons(x2, Nil)) -> c1(ACK(Cons(x0, Nil), Nil)) S tuples: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(z2, z3))) -> c1(ACK(z1, ack(z1, ack(Cons(z0, z1), z3))), ACK(Cons(z0, z1), Cons(z2, z3))) ACK(Cons(x0, Cons(z0, z1)), Cons(x2, Nil)) -> c1(ACK(Cons(z0, z1), ack(z1, ack(Cons(z0, z1), Nil))), ACK(Cons(x0, Cons(z0, z1)), Nil)) ACK(Cons(x0, x1), Cons(x2, Nil)) -> c1(ACK(Cons(x0, x1), Nil)) ACK(Cons(x0, Nil), Cons(x2, Nil)) -> c1(ACK(Cons(x0, Nil), Nil)) K tuples:none Defined Rule Symbols: ack_2 Defined Pair Symbols: ACK_2 Compound Symbols: c_1, c1_2, c1_1 ---------------------------------------- (51) CdtNarrowingProof (BOTH BOUNDS(ID, ID)) Use narrowing to replace ACK(Cons(z0, z1), Cons(x2, Cons(z2, z3))) -> c1(ACK(z1, ack(z1, ack(Cons(z0, z1), z3))), ACK(Cons(z0, z1), Cons(z2, z3))) by ACK(Cons(x0, Nil), Cons(x2, Cons(x3, x4))) -> c1(ACK(Nil, Cons(Cons(Nil, Nil), ack(Cons(x0, Nil), x4))), ACK(Cons(x0, Nil), Cons(x3, x4))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) ---------------------------------------- (52) Obligation: Complexity Dependency Tuples Problem Rules: ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) Tuples: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(x0, Cons(z0, z1)), Cons(x2, Nil)) -> c1(ACK(Cons(z0, z1), ack(z1, ack(Cons(z0, z1), Nil))), ACK(Cons(x0, Cons(z0, z1)), Nil)) ACK(Cons(x0, x1), Cons(x2, Nil)) -> c1(ACK(Cons(x0, x1), Nil)) ACK(Cons(x0, Nil), Cons(x2, Nil)) -> c1(ACK(Cons(x0, Nil), Nil)) ACK(Cons(x0, Nil), Cons(x2, Cons(x3, x4))) -> c1(ACK(Nil, Cons(Cons(Nil, Nil), ack(Cons(x0, Nil), x4))), ACK(Cons(x0, Nil), Cons(x3, x4))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) S tuples: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(x0, Cons(z0, z1)), Cons(x2, Nil)) -> c1(ACK(Cons(z0, z1), ack(z1, ack(Cons(z0, z1), Nil))), ACK(Cons(x0, Cons(z0, z1)), Nil)) ACK(Cons(x0, x1), Cons(x2, Nil)) -> c1(ACK(Cons(x0, x1), Nil)) ACK(Cons(x0, Nil), Cons(x2, Nil)) -> c1(ACK(Cons(x0, Nil), Nil)) ACK(Cons(x0, Nil), Cons(x2, Cons(x3, x4))) -> c1(ACK(Nil, Cons(Cons(Nil, Nil), ack(Cons(x0, Nil), x4))), ACK(Cons(x0, Nil), Cons(x3, x4))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) K tuples:none Defined Rule Symbols: ack_2 Defined Pair Symbols: ACK_2 Compound Symbols: c_1, c1_2, c1_1 ---------------------------------------- (53) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (54) Obligation: Complexity Dependency Tuples Problem Rules: ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) Tuples: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(x0, Cons(z0, z1)), Cons(x2, Nil)) -> c1(ACK(Cons(z0, z1), ack(z1, ack(Cons(z0, z1), Nil))), ACK(Cons(x0, Cons(z0, z1)), Nil)) ACK(Cons(x0, x1), Cons(x2, Nil)) -> c1(ACK(Cons(x0, x1), Nil)) ACK(Cons(x0, Nil), Cons(x2, Nil)) -> c1(ACK(Cons(x0, Nil), Nil)) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) ACK(Cons(x0, Nil), Cons(x2, Cons(x3, x4))) -> c1(ACK(Cons(x0, Nil), Cons(x3, x4))) S tuples: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(x0, Cons(z0, z1)), Cons(x2, Nil)) -> c1(ACK(Cons(z0, z1), ack(z1, ack(Cons(z0, z1), Nil))), ACK(Cons(x0, Cons(z0, z1)), Nil)) ACK(Cons(x0, x1), Cons(x2, Nil)) -> c1(ACK(Cons(x0, x1), Nil)) ACK(Cons(x0, Nil), Cons(x2, Nil)) -> c1(ACK(Cons(x0, Nil), Nil)) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) ACK(Cons(x0, Nil), Cons(x2, Cons(x3, x4))) -> c1(ACK(Cons(x0, Nil), Cons(x3, x4))) K tuples:none Defined Rule Symbols: ack_2 Defined Pair Symbols: ACK_2 Compound Symbols: c_1, c1_2, c1_1 ---------------------------------------- (55) CdtRewritingProof (BOTH BOUNDS(ID, ID)) Used rewriting to replace ACK(Cons(x0, Cons(z0, z1)), Cons(x2, Nil)) -> c1(ACK(Cons(z0, z1), ack(z1, ack(Cons(z0, z1), Nil))), ACK(Cons(x0, Cons(z0, z1)), Nil)) by ACK(Cons(z0, Cons(z1, z2)), Cons(z3, Nil)) -> c1(ACK(Cons(z1, z2), ack(z2, ack(z2, Cons(Nil, Nil)))), ACK(Cons(z0, Cons(z1, z2)), Nil)) ---------------------------------------- (56) Obligation: Complexity Dependency Tuples Problem Rules: ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) Tuples: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(x0, x1), Cons(x2, Nil)) -> c1(ACK(Cons(x0, x1), Nil)) ACK(Cons(x0, Nil), Cons(x2, Nil)) -> c1(ACK(Cons(x0, Nil), Nil)) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) ACK(Cons(x0, Nil), Cons(x2, Cons(x3, x4))) -> c1(ACK(Cons(x0, Nil), Cons(x3, x4))) ACK(Cons(z0, Cons(z1, z2)), Cons(z3, Nil)) -> c1(ACK(Cons(z1, z2), ack(z2, ack(z2, Cons(Nil, Nil)))), ACK(Cons(z0, Cons(z1, z2)), Nil)) S tuples: ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) ACK(Cons(x0, x1), Cons(x2, Nil)) -> c1(ACK(Cons(x0, x1), Nil)) ACK(Cons(x0, Nil), Cons(x2, Nil)) -> c1(ACK(Cons(x0, Nil), Nil)) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) ACK(Cons(x0, Nil), Cons(x2, Cons(x3, x4))) -> c1(ACK(Cons(x0, Nil), Cons(x3, x4))) ACK(Cons(z0, Cons(z1, z2)), Cons(z3, Nil)) -> c1(ACK(Cons(z1, z2), ack(z2, ack(z2, Cons(Nil, Nil)))), ACK(Cons(z0, Cons(z1, z2)), Nil)) K tuples:none Defined Rule Symbols: ack_2 Defined Pair Symbols: ACK_2 Compound Symbols: c_1, c1_1, c1_2 ---------------------------------------- (57) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace ACK(Cons(z0, z1), Nil) -> c(ACK(z1, Cons(Nil, Nil))) by ACK(Cons(z0, Cons(y0, y1)), Nil) -> c(ACK(Cons(y0, y1), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y0, Nil)), Nil) -> c(ACK(Cons(y0, Nil), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y0, Cons(y1, y2))), Nil) -> c(ACK(Cons(y0, Cons(y1, y2)), Cons(Nil, Nil))) ---------------------------------------- (58) Obligation: Complexity Dependency Tuples Problem Rules: ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) Tuples: ACK(Cons(x0, x1), Cons(x2, Nil)) -> c1(ACK(Cons(x0, x1), Nil)) ACK(Cons(x0, Nil), Cons(x2, Nil)) -> c1(ACK(Cons(x0, Nil), Nil)) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) ACK(Cons(x0, Nil), Cons(x2, Cons(x3, x4))) -> c1(ACK(Cons(x0, Nil), Cons(x3, x4))) ACK(Cons(z0, Cons(z1, z2)), Cons(z3, Nil)) -> c1(ACK(Cons(z1, z2), ack(z2, ack(z2, Cons(Nil, Nil)))), ACK(Cons(z0, Cons(z1, z2)), Nil)) ACK(Cons(z0, Cons(y0, y1)), Nil) -> c(ACK(Cons(y0, y1), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y0, Nil)), Nil) -> c(ACK(Cons(y0, Nil), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y0, Cons(y1, y2))), Nil) -> c(ACK(Cons(y0, Cons(y1, y2)), Cons(Nil, Nil))) S tuples: ACK(Cons(x0, x1), Cons(x2, Nil)) -> c1(ACK(Cons(x0, x1), Nil)) ACK(Cons(x0, Nil), Cons(x2, Nil)) -> c1(ACK(Cons(x0, Nil), Nil)) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) ACK(Cons(x0, Nil), Cons(x2, Cons(x3, x4))) -> c1(ACK(Cons(x0, Nil), Cons(x3, x4))) ACK(Cons(z0, Cons(z1, z2)), Cons(z3, Nil)) -> c1(ACK(Cons(z1, z2), ack(z2, ack(z2, Cons(Nil, Nil)))), ACK(Cons(z0, Cons(z1, z2)), Nil)) ACK(Cons(z0, Cons(y0, y1)), Nil) -> c(ACK(Cons(y0, y1), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y0, Nil)), Nil) -> c(ACK(Cons(y0, Nil), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y0, Cons(y1, y2))), Nil) -> c(ACK(Cons(y0, Cons(y1, y2)), Cons(Nil, Nil))) K tuples:none Defined Rule Symbols: ack_2 Defined Pair Symbols: ACK_2 Compound Symbols: c1_1, c1_2, c_1 ---------------------------------------- (59) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: ACK(Cons(x0, Nil), Cons(x2, Nil)) -> c1(ACK(Cons(x0, Nil), Nil)) ---------------------------------------- (60) Obligation: Complexity Dependency Tuples Problem Rules: ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) Tuples: ACK(Cons(x0, x1), Cons(x2, Nil)) -> c1(ACK(Cons(x0, x1), Nil)) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) ACK(Cons(x0, Nil), Cons(x2, Cons(x3, x4))) -> c1(ACK(Cons(x0, Nil), Cons(x3, x4))) ACK(Cons(z0, Cons(z1, z2)), Cons(z3, Nil)) -> c1(ACK(Cons(z1, z2), ack(z2, ack(z2, Cons(Nil, Nil)))), ACK(Cons(z0, Cons(z1, z2)), Nil)) ACK(Cons(z0, Cons(y0, y1)), Nil) -> c(ACK(Cons(y0, y1), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y0, Nil)), Nil) -> c(ACK(Cons(y0, Nil), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y0, Cons(y1, y2))), Nil) -> c(ACK(Cons(y0, Cons(y1, y2)), Cons(Nil, Nil))) S tuples: ACK(Cons(x0, x1), Cons(x2, Nil)) -> c1(ACK(Cons(x0, x1), Nil)) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) ACK(Cons(x0, Nil), Cons(x2, Cons(x3, x4))) -> c1(ACK(Cons(x0, Nil), Cons(x3, x4))) ACK(Cons(z0, Cons(z1, z2)), Cons(z3, Nil)) -> c1(ACK(Cons(z1, z2), ack(z2, ack(z2, Cons(Nil, Nil)))), ACK(Cons(z0, Cons(z1, z2)), Nil)) ACK(Cons(z0, Cons(y0, y1)), Nil) -> c(ACK(Cons(y0, y1), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y0, Nil)), Nil) -> c(ACK(Cons(y0, Nil), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y0, Cons(y1, y2))), Nil) -> c(ACK(Cons(y0, Cons(y1, y2)), Cons(Nil, Nil))) K tuples:none Defined Rule Symbols: ack_2 Defined Pair Symbols: ACK_2 Compound Symbols: c1_1, c1_2, c_1 ---------------------------------------- (61) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace ACK(Cons(x0, x1), Cons(x2, Nil)) -> c1(ACK(Cons(x0, x1), Nil)) by ACK(Cons(z0, Cons(y1, y2)), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, y2)), Nil)) ACK(Cons(z0, Cons(y1, Nil)), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Nil)), Nil)) ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Nil)) ---------------------------------------- (62) Obligation: Complexity Dependency Tuples Problem Rules: ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) Tuples: ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) ACK(Cons(x0, Nil), Cons(x2, Cons(x3, x4))) -> c1(ACK(Cons(x0, Nil), Cons(x3, x4))) ACK(Cons(z0, Cons(z1, z2)), Cons(z3, Nil)) -> c1(ACK(Cons(z1, z2), ack(z2, ack(z2, Cons(Nil, Nil)))), ACK(Cons(z0, Cons(z1, z2)), Nil)) ACK(Cons(z0, Cons(y0, y1)), Nil) -> c(ACK(Cons(y0, y1), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y0, Nil)), Nil) -> c(ACK(Cons(y0, Nil), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y0, Cons(y1, y2))), Nil) -> c(ACK(Cons(y0, Cons(y1, y2)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y1, y2)), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, y2)), Nil)) ACK(Cons(z0, Cons(y1, Nil)), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Nil)), Nil)) ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Nil)) S tuples: ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) ACK(Cons(x0, Nil), Cons(x2, Cons(x3, x4))) -> c1(ACK(Cons(x0, Nil), Cons(x3, x4))) ACK(Cons(z0, Cons(z1, z2)), Cons(z3, Nil)) -> c1(ACK(Cons(z1, z2), ack(z2, ack(z2, Cons(Nil, Nil)))), ACK(Cons(z0, Cons(z1, z2)), Nil)) ACK(Cons(z0, Cons(y0, y1)), Nil) -> c(ACK(Cons(y0, y1), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y0, Nil)), Nil) -> c(ACK(Cons(y0, Nil), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y0, Cons(y1, y2))), Nil) -> c(ACK(Cons(y0, Cons(y1, y2)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y1, y2)), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, y2)), Nil)) ACK(Cons(z0, Cons(y1, Nil)), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Nil)), Nil)) ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Nil)) K tuples:none Defined Rule Symbols: ack_2 Defined Pair Symbols: ACK_2 Compound Symbols: c1_2, c1_1, c_1 ---------------------------------------- (63) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: ACK(Cons(z0, Cons(y0, Nil)), Nil) -> c(ACK(Cons(y0, Nil), Cons(Nil, Nil))) ---------------------------------------- (64) Obligation: Complexity Dependency Tuples Problem Rules: ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) Tuples: ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) ACK(Cons(x0, Nil), Cons(x2, Cons(x3, x4))) -> c1(ACK(Cons(x0, Nil), Cons(x3, x4))) ACK(Cons(z0, Cons(z1, z2)), Cons(z3, Nil)) -> c1(ACK(Cons(z1, z2), ack(z2, ack(z2, Cons(Nil, Nil)))), ACK(Cons(z0, Cons(z1, z2)), Nil)) ACK(Cons(z0, Cons(y0, y1)), Nil) -> c(ACK(Cons(y0, y1), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y0, Cons(y1, y2))), Nil) -> c(ACK(Cons(y0, Cons(y1, y2)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y1, y2)), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, y2)), Nil)) ACK(Cons(z0, Cons(y1, Nil)), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Nil)), Nil)) ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Nil)) S tuples: ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) ACK(Cons(x0, Nil), Cons(x2, Cons(x3, x4))) -> c1(ACK(Cons(x0, Nil), Cons(x3, x4))) ACK(Cons(z0, Cons(z1, z2)), Cons(z3, Nil)) -> c1(ACK(Cons(z1, z2), ack(z2, ack(z2, Cons(Nil, Nil)))), ACK(Cons(z0, Cons(z1, z2)), Nil)) ACK(Cons(z0, Cons(y0, y1)), Nil) -> c(ACK(Cons(y0, y1), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y0, Cons(y1, y2))), Nil) -> c(ACK(Cons(y0, Cons(y1, y2)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y1, y2)), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, y2)), Nil)) ACK(Cons(z0, Cons(y1, Nil)), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Nil)), Nil)) ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Nil)) K tuples:none Defined Rule Symbols: ack_2 Defined Pair Symbols: ACK_2 Compound Symbols: c1_2, c1_1, c_1 ---------------------------------------- (65) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace ACK(Cons(x0, Nil), Cons(x2, Cons(x3, x4))) -> c1(ACK(Cons(x0, Nil), Cons(x3, x4))) by ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y3, Nil)))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y3, Nil)))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y3, Cons(y4, y5))))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y3, Cons(y4, y5))))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y2, y3)))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y2, y3)))) ---------------------------------------- (66) Obligation: Complexity Dependency Tuples Problem Rules: ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) Tuples: ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) ACK(Cons(z0, Cons(z1, z2)), Cons(z3, Nil)) -> c1(ACK(Cons(z1, z2), ack(z2, ack(z2, Cons(Nil, Nil)))), ACK(Cons(z0, Cons(z1, z2)), Nil)) ACK(Cons(z0, Cons(y0, y1)), Nil) -> c(ACK(Cons(y0, y1), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y0, Cons(y1, y2))), Nil) -> c(ACK(Cons(y0, Cons(y1, y2)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y1, y2)), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, y2)), Nil)) ACK(Cons(z0, Cons(y1, Nil)), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Nil)), Nil)) ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Nil)) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y3, Nil)))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y3, Nil)))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y3, Cons(y4, y5))))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y3, Cons(y4, y5))))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y2, y3)))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y2, y3)))) S tuples: ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) ACK(Cons(z0, Cons(z1, z2)), Cons(z3, Nil)) -> c1(ACK(Cons(z1, z2), ack(z2, ack(z2, Cons(Nil, Nil)))), ACK(Cons(z0, Cons(z1, z2)), Nil)) ACK(Cons(z0, Cons(y0, y1)), Nil) -> c(ACK(Cons(y0, y1), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y0, Cons(y1, y2))), Nil) -> c(ACK(Cons(y0, Cons(y1, y2)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y1, y2)), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, y2)), Nil)) ACK(Cons(z0, Cons(y1, Nil)), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Nil)), Nil)) ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Nil)) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y3, Nil)))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y3, Nil)))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y3, Cons(y4, y5))))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y3, Cons(y4, y5))))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y2, y3)))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y2, y3)))) K tuples:none Defined Rule Symbols: ack_2 Defined Pair Symbols: ACK_2 Compound Symbols: c1_2, c_1, c1_1 ---------------------------------------- (67) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace ACK(Cons(z0, Cons(y0, y1)), Nil) -> c(ACK(Cons(y0, y1), Cons(Nil, Nil))) by ACK(Cons(z0, Cons(z1, Cons(y1, y2))), Nil) -> c(ACK(Cons(z1, Cons(y1, y2)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(z1, Cons(y1, Nil))), Nil) -> c(ACK(Cons(z1, Cons(y1, Nil)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(z1, Cons(y1, Cons(y2, y3)))), Nil) -> c(ACK(Cons(z1, Cons(y1, Cons(y2, y3))), Cons(Nil, Nil))) ---------------------------------------- (68) Obligation: Complexity Dependency Tuples Problem Rules: ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) Tuples: ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) ACK(Cons(z0, Cons(z1, z2)), Cons(z3, Nil)) -> c1(ACK(Cons(z1, z2), ack(z2, ack(z2, Cons(Nil, Nil)))), ACK(Cons(z0, Cons(z1, z2)), Nil)) ACK(Cons(z0, Cons(y0, Cons(y1, y2))), Nil) -> c(ACK(Cons(y0, Cons(y1, y2)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y1, y2)), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, y2)), Nil)) ACK(Cons(z0, Cons(y1, Nil)), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Nil)), Nil)) ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Nil)) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y3, Nil)))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y3, Nil)))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y3, Cons(y4, y5))))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y3, Cons(y4, y5))))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y2, y3)))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y2, y3)))) ACK(Cons(z0, Cons(z1, Cons(y1, Nil))), Nil) -> c(ACK(Cons(z1, Cons(y1, Nil)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(z1, Cons(y1, Cons(y2, y3)))), Nil) -> c(ACK(Cons(z1, Cons(y1, Cons(y2, y3))), Cons(Nil, Nil))) S tuples: ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) ACK(Cons(z0, Cons(z1, z2)), Cons(z3, Nil)) -> c1(ACK(Cons(z1, z2), ack(z2, ack(z2, Cons(Nil, Nil)))), ACK(Cons(z0, Cons(z1, z2)), Nil)) ACK(Cons(z0, Cons(y0, Cons(y1, y2))), Nil) -> c(ACK(Cons(y0, Cons(y1, y2)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y1, y2)), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, y2)), Nil)) ACK(Cons(z0, Cons(y1, Nil)), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Nil)), Nil)) ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Nil)) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y3, Nil)))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y3, Nil)))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y3, Cons(y4, y5))))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y3, Cons(y4, y5))))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y2, y3)))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y2, y3)))) ACK(Cons(z0, Cons(z1, Cons(y1, Nil))), Nil) -> c(ACK(Cons(z1, Cons(y1, Nil)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(z1, Cons(y1, Cons(y2, y3)))), Nil) -> c(ACK(Cons(z1, Cons(y1, Cons(y2, y3))), Cons(Nil, Nil))) K tuples:none Defined Rule Symbols: ack_2 Defined Pair Symbols: ACK_2 Compound Symbols: c1_2, c_1, c1_1 ---------------------------------------- (69) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: ACK(Cons(z0, Cons(y1, Nil)), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Nil)), Nil)) ---------------------------------------- (70) Obligation: Complexity Dependency Tuples Problem Rules: ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) Tuples: ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) ACK(Cons(z0, Cons(z1, z2)), Cons(z3, Nil)) -> c1(ACK(Cons(z1, z2), ack(z2, ack(z2, Cons(Nil, Nil)))), ACK(Cons(z0, Cons(z1, z2)), Nil)) ACK(Cons(z0, Cons(y0, Cons(y1, y2))), Nil) -> c(ACK(Cons(y0, Cons(y1, y2)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y1, y2)), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, y2)), Nil)) ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Nil)) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y3, Nil)))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y3, Nil)))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y3, Cons(y4, y5))))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y3, Cons(y4, y5))))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y2, y3)))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y2, y3)))) ACK(Cons(z0, Cons(z1, Cons(y1, Nil))), Nil) -> c(ACK(Cons(z1, Cons(y1, Nil)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(z1, Cons(y1, Cons(y2, y3)))), Nil) -> c(ACK(Cons(z1, Cons(y1, Cons(y2, y3))), Cons(Nil, Nil))) S tuples: ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) ACK(Cons(z0, Cons(z1, z2)), Cons(z3, Nil)) -> c1(ACK(Cons(z1, z2), ack(z2, ack(z2, Cons(Nil, Nil)))), ACK(Cons(z0, Cons(z1, z2)), Nil)) ACK(Cons(z0, Cons(y0, Cons(y1, y2))), Nil) -> c(ACK(Cons(y0, Cons(y1, y2)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y1, y2)), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, y2)), Nil)) ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Nil)) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y3, Nil)))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y3, Nil)))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y3, Cons(y4, y5))))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y3, Cons(y4, y5))))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y2, y3)))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y2, y3)))) ACK(Cons(z0, Cons(z1, Cons(y1, Nil))), Nil) -> c(ACK(Cons(z1, Cons(y1, Nil)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(z1, Cons(y1, Cons(y2, y3)))), Nil) -> c(ACK(Cons(z1, Cons(y1, Cons(y2, y3))), Cons(Nil, Nil))) K tuples:none Defined Rule Symbols: ack_2 Defined Pair Symbols: ACK_2 Compound Symbols: c1_2, c_1, c1_1 ---------------------------------------- (71) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace ACK(Cons(z0, Cons(y1, y2)), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, y2)), Nil)) by ACK(Cons(z0, Cons(z1, Cons(y2, y3))), Cons(z3, Nil)) -> c1(ACK(Cons(z0, Cons(z1, Cons(y2, y3))), Nil)) ACK(Cons(z0, Cons(z1, Cons(y2, Nil))), Cons(z3, Nil)) -> c1(ACK(Cons(z0, Cons(z1, Cons(y2, Nil))), Nil)) ACK(Cons(z0, Cons(z1, Cons(y2, Cons(y3, y4)))), Cons(z3, Nil)) -> c1(ACK(Cons(z0, Cons(z1, Cons(y2, Cons(y3, y4)))), Nil)) ---------------------------------------- (72) Obligation: Complexity Dependency Tuples Problem Rules: ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) Tuples: ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) ACK(Cons(z0, Cons(z1, z2)), Cons(z3, Nil)) -> c1(ACK(Cons(z1, z2), ack(z2, ack(z2, Cons(Nil, Nil)))), ACK(Cons(z0, Cons(z1, z2)), Nil)) ACK(Cons(z0, Cons(y0, Cons(y1, y2))), Nil) -> c(ACK(Cons(y0, Cons(y1, y2)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Nil)) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y3, Nil)))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y3, Nil)))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y3, Cons(y4, y5))))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y3, Cons(y4, y5))))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y2, y3)))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y2, y3)))) ACK(Cons(z0, Cons(z1, Cons(y1, Nil))), Nil) -> c(ACK(Cons(z1, Cons(y1, Nil)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(z1, Cons(y1, Cons(y2, y3)))), Nil) -> c(ACK(Cons(z1, Cons(y1, Cons(y2, y3))), Cons(Nil, Nil))) ACK(Cons(z0, Cons(z1, Cons(y2, Nil))), Cons(z3, Nil)) -> c1(ACK(Cons(z0, Cons(z1, Cons(y2, Nil))), Nil)) ACK(Cons(z0, Cons(z1, Cons(y2, Cons(y3, y4)))), Cons(z3, Nil)) -> c1(ACK(Cons(z0, Cons(z1, Cons(y2, Cons(y3, y4)))), Nil)) S tuples: ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) ACK(Cons(z0, Cons(z1, z2)), Cons(z3, Nil)) -> c1(ACK(Cons(z1, z2), ack(z2, ack(z2, Cons(Nil, Nil)))), ACK(Cons(z0, Cons(z1, z2)), Nil)) ACK(Cons(z0, Cons(y0, Cons(y1, y2))), Nil) -> c(ACK(Cons(y0, Cons(y1, y2)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Nil)) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y3, Nil)))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y3, Nil)))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y3, Cons(y4, y5))))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y3, Cons(y4, y5))))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y2, y3)))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y2, y3)))) ACK(Cons(z0, Cons(z1, Cons(y1, Nil))), Nil) -> c(ACK(Cons(z1, Cons(y1, Nil)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(z1, Cons(y1, Cons(y2, y3)))), Nil) -> c(ACK(Cons(z1, Cons(y1, Cons(y2, y3))), Cons(Nil, Nil))) ACK(Cons(z0, Cons(z1, Cons(y2, Nil))), Cons(z3, Nil)) -> c1(ACK(Cons(z0, Cons(z1, Cons(y2, Nil))), Nil)) ACK(Cons(z0, Cons(z1, Cons(y2, Cons(y3, y4)))), Cons(z3, Nil)) -> c1(ACK(Cons(z0, Cons(z1, Cons(y2, Cons(y3, y4)))), Nil)) K tuples:none Defined Rule Symbols: ack_2 Defined Pair Symbols: ACK_2 Compound Symbols: c1_2, c_1, c1_1 ---------------------------------------- (73) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID)) Use forward instantiation to replace ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y2, y3)))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y2, y3)))) by ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(z3, Nil)))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(z3, Nil)))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(z3, Cons(y4, y5))))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(z3, Cons(y4, y5))))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(z3, Cons(y3, Nil))))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(z3, Cons(y3, Nil))))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(z3, Cons(y3, Cons(y4, y5)))))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(z3, Cons(y3, Cons(y4, y5)))))) ---------------------------------------- (74) Obligation: Complexity Dependency Tuples Problem Rules: ack(Cons(z0, z1), Nil) -> ack(z1, Cons(Nil, Nil)) ack(Cons(z0, z1), Cons(z2, z3)) -> ack(z1, ack(Cons(z0, z1), z3)) ack(Nil, z0) -> Cons(Cons(Nil, Nil), z0) Tuples: ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) ACK(Cons(z0, Cons(z1, z2)), Cons(z3, Nil)) -> c1(ACK(Cons(z1, z2), ack(z2, ack(z2, Cons(Nil, Nil)))), ACK(Cons(z0, Cons(z1, z2)), Nil)) ACK(Cons(z0, Cons(y0, Cons(y1, y2))), Nil) -> c(ACK(Cons(y0, Cons(y1, y2)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Nil)) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y3, Nil)))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y3, Nil)))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y3, Cons(y4, y5))))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y3, Cons(y4, y5))))) ACK(Cons(z0, Cons(z1, Cons(y1, Nil))), Nil) -> c(ACK(Cons(z1, Cons(y1, Nil)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(z1, Cons(y1, Cons(y2, y3)))), Nil) -> c(ACK(Cons(z1, Cons(y1, Cons(y2, y3))), Cons(Nil, Nil))) ACK(Cons(z0, Cons(z1, Cons(y2, Nil))), Cons(z3, Nil)) -> c1(ACK(Cons(z0, Cons(z1, Cons(y2, Nil))), Nil)) ACK(Cons(z0, Cons(z1, Cons(y2, Cons(y3, y4)))), Cons(z3, Nil)) -> c1(ACK(Cons(z0, Cons(z1, Cons(y2, Cons(y3, y4)))), Nil)) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(z3, Cons(y3, Nil))))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(z3, Cons(y3, Nil))))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(z3, Cons(y3, Cons(y4, y5)))))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(z3, Cons(y3, Cons(y4, y5)))))) S tuples: ACK(Cons(z0, z1), Cons(x2, Cons(x3, Nil))) -> c1(ACK(z1, ack(z1, ack(z1, Cons(Nil, Nil)))), ACK(Cons(z0, z1), Cons(x3, Nil))) ACK(Cons(z0, z1), Cons(x2, Cons(x3, Cons(z2, z3)))) -> c1(ACK(z1, ack(z1, ack(z1, ack(Cons(z0, z1), z3)))), ACK(Cons(z0, z1), Cons(x3, Cons(z2, z3)))) ACK(Cons(z0, Cons(z1, z2)), Cons(z3, Nil)) -> c1(ACK(Cons(z1, z2), ack(z2, ack(z2, Cons(Nil, Nil)))), ACK(Cons(z0, Cons(z1, z2)), Nil)) ACK(Cons(z0, Cons(y0, Cons(y1, y2))), Nil) -> c(ACK(Cons(y0, Cons(y1, y2)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Cons(z2, Nil)) -> c1(ACK(Cons(z0, Cons(y1, Cons(y2, y3))), Nil)) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y3, Nil)))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y3, Nil)))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(y3, Cons(y4, y5))))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(y3, Cons(y4, y5))))) ACK(Cons(z0, Cons(z1, Cons(y1, Nil))), Nil) -> c(ACK(Cons(z1, Cons(y1, Nil)), Cons(Nil, Nil))) ACK(Cons(z0, Cons(z1, Cons(y1, Cons(y2, y3)))), Nil) -> c(ACK(Cons(z1, Cons(y1, Cons(y2, y3))), Cons(Nil, Nil))) ACK(Cons(z0, Cons(z1, Cons(y2, Nil))), Cons(z3, Nil)) -> c1(ACK(Cons(z0, Cons(z1, Cons(y2, Nil))), Nil)) ACK(Cons(z0, Cons(z1, Cons(y2, Cons(y3, y4)))), Cons(z3, Nil)) -> c1(ACK(Cons(z0, Cons(z1, Cons(y2, Cons(y3, y4)))), Nil)) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(z3, Cons(y3, Nil))))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(z3, Cons(y3, Nil))))) ACK(Cons(z0, Nil), Cons(z1, Cons(z2, Cons(z3, Cons(y3, Cons(y4, y5)))))) -> c1(ACK(Cons(z0, Nil), Cons(z2, Cons(z3, Cons(y3, Cons(y4, y5)))))) K tuples:none Defined Rule Symbols: ack_2 Defined Pair Symbols: ACK_2 Compound Symbols: c1_2, c_1, c1_1 ---------------------------------------- (75) RelTrsToWeightedTrsProof (UPPER BOUND(ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (76) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, INF). The TRS R consists of the following rules: ack(Cons(x, xs), Nil) -> ack(xs, Cons(Nil, Nil)) [1] ack(Cons(x', xs'), Cons(x, xs)) -> ack(xs', ack(Cons(x', xs'), xs)) [1] ack(Nil, n) -> Cons(Cons(Nil, Nil), n) [1] goal(m, n) -> ack(m, n) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (77) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (78) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: ack(Cons(x, xs), Nil) -> ack(xs, Cons(Nil, Nil)) [1] ack(Cons(x', xs'), Cons(x, xs)) -> ack(xs', ack(Cons(x', xs'), xs)) [1] ack(Nil, n) -> Cons(Cons(Nil, Nil), n) [1] goal(m, n) -> ack(m, n) [1] The TRS has the following type information: ack :: Cons:Nil -> Cons:Nil -> Cons:Nil Cons :: Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil goal :: Cons:Nil -> Cons:Nil -> Cons:Nil Rewrite Strategy: INNERMOST ---------------------------------------- (79) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: goal_2 (c) The following functions are completely defined: ack_2 Due to the following rules being added: none And the following fresh constants: none ---------------------------------------- (80) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: ack(Cons(x, xs), Nil) -> ack(xs, Cons(Nil, Nil)) [1] ack(Cons(x', xs'), Cons(x, xs)) -> ack(xs', ack(Cons(x', xs'), xs)) [1] ack(Nil, n) -> Cons(Cons(Nil, Nil), n) [1] goal(m, n) -> ack(m, n) [1] The TRS has the following type information: ack :: Cons:Nil -> Cons:Nil -> Cons:Nil Cons :: Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil goal :: Cons:Nil -> Cons:Nil -> Cons:Nil Rewrite Strategy: INNERMOST ---------------------------------------- (81) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (82) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: ack(Cons(x, xs), Nil) -> ack(xs, Cons(Nil, Nil)) [1] ack(Cons(x', xs'), Cons(x, Nil)) -> ack(xs', ack(xs', Cons(Nil, Nil))) [2] ack(Cons(x', xs'), Cons(x, Cons(x1, xs1))) -> ack(xs', ack(xs', ack(Cons(x', xs'), xs1))) [2] ack(Nil, n) -> Cons(Cons(Nil, Nil), n) [1] goal(m, n) -> ack(m, n) [1] The TRS has the following type information: ack :: Cons:Nil -> Cons:Nil -> Cons:Nil Cons :: Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil goal :: Cons:Nil -> Cons:Nil -> Cons:Nil Rewrite Strategy: INNERMOST ---------------------------------------- (83) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: Nil => 0 ---------------------------------------- (84) Obligation: Complexity RNTS consisting of the following rules: ack(z, z') -{ 1 }-> ack(xs, 1 + 0 + 0) :|: z = 1 + x + xs, xs >= 0, x >= 0, z' = 0 ack(z, z') -{ 2 }-> ack(xs', ack(xs', ack(1 + x' + xs', xs1))) :|: x1 >= 0, x' >= 0, xs' >= 0, x >= 0, z' = 1 + x + (1 + x1 + xs1), xs1 >= 0, z = 1 + x' + xs' ack(z, z') -{ 2 }-> ack(xs', ack(xs', 1 + 0 + 0)) :|: x' >= 0, xs' >= 0, x >= 0, z' = 1 + x + 0, z = 1 + x' + xs' ack(z, z') -{ 1 }-> 1 + (1 + 0 + 0) + n :|: n >= 0, z' = n, z = 0 goal(z, z') -{ 1 }-> ack(m, n) :|: z = m, n >= 0, z' = n, m >= 0 ---------------------------------------- (85) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (86) Obligation: Complexity RNTS consisting of the following rules: ack(z, z') -{ 1 }-> ack(xs, 1 + 0 + 0) :|: z = 1 + x + xs, xs >= 0, x >= 0, z' = 0 ack(z, z') -{ 2 }-> ack(xs', ack(xs', ack(1 + x' + xs', xs1))) :|: x1 >= 0, x' >= 0, xs' >= 0, x >= 0, z' = 1 + x + (1 + x1 + xs1), xs1 >= 0, z = 1 + x' + xs' ack(z, z') -{ 2 }-> ack(xs', ack(xs', 1 + 0 + 0)) :|: x' >= 0, xs' >= 0, z' - 1 >= 0, z = 1 + x' + xs' ack(z, z') -{ 1 }-> 1 + (1 + 0 + 0) + z' :|: z' >= 0, z = 0 goal(z, z') -{ 1 }-> ack(z, z') :|: z' >= 0, z >= 0 ---------------------------------------- (87) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: none And the following fresh constants: none ---------------------------------------- (88) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: ack(Cons(x, xs), Nil) -> ack(xs, Cons(Nil, Nil)) [1] ack(Cons(x', xs'), Cons(x, xs)) -> ack(xs', ack(Cons(x', xs'), xs)) [1] ack(Nil, n) -> Cons(Cons(Nil, Nil), n) [1] goal(m, n) -> ack(m, n) [1] The TRS has the following type information: ack :: Cons:Nil -> Cons:Nil -> Cons:Nil Cons :: Cons:Nil -> Cons:Nil -> Cons:Nil Nil :: Cons:Nil goal :: Cons:Nil -> Cons:Nil -> Cons:Nil Rewrite Strategy: INNERMOST ---------------------------------------- (89) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: Nil => 0 ---------------------------------------- (90) Obligation: Complexity RNTS consisting of the following rules: ack(z, z') -{ 1 }-> ack(xs, 1 + 0 + 0) :|: z = 1 + x + xs, xs >= 0, x >= 0, z' = 0 ack(z, z') -{ 1 }-> ack(xs', ack(1 + x' + xs', xs)) :|: xs >= 0, z' = 1 + x + xs, x' >= 0, xs' >= 0, x >= 0, z = 1 + x' + xs' ack(z, z') -{ 1 }-> 1 + (1 + 0 + 0) + n :|: n >= 0, z' = n, z = 0 goal(z, z') -{ 1 }-> ack(m, n) :|: z = m, n >= 0, z' = n, m >= 0 Only complete derivations are relevant for the runtime complexity.