WORST_CASE(Omega(n^1),O(n^1)) proof of input_TecPEO8FB0.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsTAProof [FINISHED, 27 ms] (4) BOUNDS(1, n^1) (5) CpxTrsToCdtProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxRelTRS (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (12) typed CpxTrs (13) OrderProof [LOWER BOUND(ID), 0 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 193 ms] (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 1581 ms] (18) BEST (19) proven lower bound (20) LowerBoundPropagationProof [FINISHED, 0 ms] (21) BOUNDS(n^1, INF) (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 1462 ms] (24) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: odd(Cons(x, xs)) -> even(xs) odd(Nil) -> False even(Cons(x, xs)) -> odd(xs) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False even(Nil) -> True evenodd(x) -> even(x) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: odd(Cons(x, xs)) -> even(xs) odd(Nil) -> False even(Cons(x, xs)) -> odd(xs) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False even(Nil) -> True evenodd(x) -> even(x) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (3) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4] transitions: Cons0(0, 0) -> 0 Nil0() -> 0 False0() -> 0 True0() -> 0 odd0(0) -> 1 even0(0) -> 2 notEmpty0(0) -> 3 evenodd0(0) -> 4 even1(0) -> 1 False1() -> 1 odd1(0) -> 2 True1() -> 3 False1() -> 3 True1() -> 2 even1(0) -> 4 even1(0) -> 2 False1() -> 2 odd1(0) -> 1 odd1(0) -> 4 True1() -> 1 True1() -> 4 False1() -> 4 ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: odd(Cons(z0, z1)) -> even(z1) odd(Nil) -> False even(Cons(z0, z1)) -> odd(z1) even(Nil) -> True notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False evenodd(z0) -> even(z0) Tuples: ODD(Cons(z0, z1)) -> c(EVEN(z1)) ODD(Nil) -> c1 EVEN(Cons(z0, z1)) -> c2(ODD(z1)) EVEN(Nil) -> c3 NOTEMPTY(Cons(z0, z1)) -> c4 NOTEMPTY(Nil) -> c5 EVENODD(z0) -> c6(EVEN(z0)) S tuples: ODD(Cons(z0, z1)) -> c(EVEN(z1)) ODD(Nil) -> c1 EVEN(Cons(z0, z1)) -> c2(ODD(z1)) EVEN(Nil) -> c3 NOTEMPTY(Cons(z0, z1)) -> c4 NOTEMPTY(Nil) -> c5 EVENODD(z0) -> c6(EVEN(z0)) K tuples:none Defined Rule Symbols: odd_1, even_1, notEmpty_1, evenodd_1 Defined Pair Symbols: ODD_1, EVEN_1, NOTEMPTY_1, EVENODD_1 Compound Symbols: c_1, c1, c2_1, c3, c4, c5, c6_1 ---------------------------------------- (7) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ODD(Cons(z0, z1)) -> c(EVEN(z1)) ODD(Nil) -> c1 EVEN(Cons(z0, z1)) -> c2(ODD(z1)) EVEN(Nil) -> c3 NOTEMPTY(Cons(z0, z1)) -> c4 NOTEMPTY(Nil) -> c5 EVENODD(z0) -> c6(EVEN(z0)) The (relative) TRS S consists of the following rules: odd(Cons(z0, z1)) -> even(z1) odd(Nil) -> False even(Cons(z0, z1)) -> odd(z1) even(Nil) -> True notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False evenodd(z0) -> even(z0) Rewrite Strategy: INNERMOST ---------------------------------------- (9) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: ODD(Cons(z0, z1)) -> c(EVEN(z1)) ODD(Nil) -> c1 EVEN(Cons(z0, z1)) -> c2(ODD(z1)) EVEN(Nil) -> c3 NOTEMPTY(Cons(z0, z1)) -> c4 NOTEMPTY(Nil) -> c5 EVENODD(z0) -> c6(EVEN(z0)) The (relative) TRS S consists of the following rules: odd(Cons(z0, z1)) -> even(z1) odd(Nil) -> False even(Cons(z0, z1)) -> odd(z1) even(Nil) -> True notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False evenodd(z0) -> even(z0) Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Inferred types. ---------------------------------------- (12) Obligation: Innermost TRS: Rules: ODD(Cons(z0, z1)) -> c(EVEN(z1)) ODD(Nil) -> c1 EVEN(Cons(z0, z1)) -> c2(ODD(z1)) EVEN(Nil) -> c3 NOTEMPTY(Cons(z0, z1)) -> c4 NOTEMPTY(Nil) -> c5 EVENODD(z0) -> c6(EVEN(z0)) odd(Cons(z0, z1)) -> even(z1) odd(Nil) -> False even(Cons(z0, z1)) -> odd(z1) even(Nil) -> True notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False evenodd(z0) -> even(z0) Types: ODD :: Cons:Nil -> c:c1 Cons :: a -> Cons:Nil -> Cons:Nil c :: c2:c3 -> c:c1 EVEN :: Cons:Nil -> c2:c3 Nil :: Cons:Nil c1 :: c:c1 c2 :: c:c1 -> c2:c3 c3 :: c2:c3 NOTEMPTY :: Cons:Nil -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 EVENODD :: Cons:Nil -> c6 c6 :: c2:c3 -> c6 odd :: Cons:Nil -> False:True even :: Cons:Nil -> False:True False :: False:True True :: False:True notEmpty :: Cons:Nil -> False:True evenodd :: Cons:Nil -> False:True hole_c:c11_7 :: c:c1 hole_Cons:Nil2_7 :: Cons:Nil hole_a3_7 :: a hole_c2:c34_7 :: c2:c3 hole_c4:c55_7 :: c4:c5 hole_c66_7 :: c6 hole_False:True7_7 :: False:True gen_Cons:Nil8_7 :: Nat -> Cons:Nil ---------------------------------------- (13) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: ODD, EVEN, odd, even They will be analysed ascendingly in the following order: ODD = EVEN odd = even ---------------------------------------- (14) Obligation: Innermost TRS: Rules: ODD(Cons(z0, z1)) -> c(EVEN(z1)) ODD(Nil) -> c1 EVEN(Cons(z0, z1)) -> c2(ODD(z1)) EVEN(Nil) -> c3 NOTEMPTY(Cons(z0, z1)) -> c4 NOTEMPTY(Nil) -> c5 EVENODD(z0) -> c6(EVEN(z0)) odd(Cons(z0, z1)) -> even(z1) odd(Nil) -> False even(Cons(z0, z1)) -> odd(z1) even(Nil) -> True notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False evenodd(z0) -> even(z0) Types: ODD :: Cons:Nil -> c:c1 Cons :: a -> Cons:Nil -> Cons:Nil c :: c2:c3 -> c:c1 EVEN :: Cons:Nil -> c2:c3 Nil :: Cons:Nil c1 :: c:c1 c2 :: c:c1 -> c2:c3 c3 :: c2:c3 NOTEMPTY :: Cons:Nil -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 EVENODD :: Cons:Nil -> c6 c6 :: c2:c3 -> c6 odd :: Cons:Nil -> False:True even :: Cons:Nil -> False:True False :: False:True True :: False:True notEmpty :: Cons:Nil -> False:True evenodd :: Cons:Nil -> False:True hole_c:c11_7 :: c:c1 hole_Cons:Nil2_7 :: Cons:Nil hole_a3_7 :: a hole_c2:c34_7 :: c2:c3 hole_c4:c55_7 :: c4:c5 hole_c66_7 :: c6 hole_False:True7_7 :: False:True gen_Cons:Nil8_7 :: Nat -> Cons:Nil Generator Equations: gen_Cons:Nil8_7(0) <=> Nil gen_Cons:Nil8_7(+(x, 1)) <=> Cons(hole_a3_7, gen_Cons:Nil8_7(x)) The following defined symbols remain to be analysed: even, ODD, EVEN, odd They will be analysed ascendingly in the following order: ODD = EVEN odd = even ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: even(gen_Cons:Nil8_7(*(2, n10_7))) -> True, rt in Omega(0) Induction Base: even(gen_Cons:Nil8_7(*(2, 0))) ->_R^Omega(0) True Induction Step: even(gen_Cons:Nil8_7(*(2, +(n10_7, 1)))) ->_R^Omega(0) odd(gen_Cons:Nil8_7(+(1, *(2, n10_7)))) ->_R^Omega(0) even(gen_Cons:Nil8_7(*(2, n10_7))) ->_IH True We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (16) Obligation: Innermost TRS: Rules: ODD(Cons(z0, z1)) -> c(EVEN(z1)) ODD(Nil) -> c1 EVEN(Cons(z0, z1)) -> c2(ODD(z1)) EVEN(Nil) -> c3 NOTEMPTY(Cons(z0, z1)) -> c4 NOTEMPTY(Nil) -> c5 EVENODD(z0) -> c6(EVEN(z0)) odd(Cons(z0, z1)) -> even(z1) odd(Nil) -> False even(Cons(z0, z1)) -> odd(z1) even(Nil) -> True notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False evenodd(z0) -> even(z0) Types: ODD :: Cons:Nil -> c:c1 Cons :: a -> Cons:Nil -> Cons:Nil c :: c2:c3 -> c:c1 EVEN :: Cons:Nil -> c2:c3 Nil :: Cons:Nil c1 :: c:c1 c2 :: c:c1 -> c2:c3 c3 :: c2:c3 NOTEMPTY :: Cons:Nil -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 EVENODD :: Cons:Nil -> c6 c6 :: c2:c3 -> c6 odd :: Cons:Nil -> False:True even :: Cons:Nil -> False:True False :: False:True True :: False:True notEmpty :: Cons:Nil -> False:True evenodd :: Cons:Nil -> False:True hole_c:c11_7 :: c:c1 hole_Cons:Nil2_7 :: Cons:Nil hole_a3_7 :: a hole_c2:c34_7 :: c2:c3 hole_c4:c55_7 :: c4:c5 hole_c66_7 :: c6 hole_False:True7_7 :: False:True gen_Cons:Nil8_7 :: Nat -> Cons:Nil Lemmas: even(gen_Cons:Nil8_7(*(2, n10_7))) -> True, rt in Omega(0) Generator Equations: gen_Cons:Nil8_7(0) <=> Nil gen_Cons:Nil8_7(+(x, 1)) <=> Cons(hole_a3_7, gen_Cons:Nil8_7(x)) The following defined symbols remain to be analysed: odd, ODD, EVEN They will be analysed ascendingly in the following order: ODD = EVEN odd = even ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: EVEN(gen_Cons:Nil8_7(+(1, *(2, n132_7)))) -> *9_7, rt in Omega(n132_7) Induction Base: EVEN(gen_Cons:Nil8_7(+(1, *(2, 0)))) Induction Step: EVEN(gen_Cons:Nil8_7(+(1, *(2, +(n132_7, 1))))) ->_R^Omega(1) c2(ODD(gen_Cons:Nil8_7(+(2, *(2, n132_7))))) ->_R^Omega(1) c2(c(EVEN(gen_Cons:Nil8_7(+(1, *(2, n132_7)))))) ->_IH c2(c(*9_7)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Complex Obligation (BEST) ---------------------------------------- (19) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: ODD(Cons(z0, z1)) -> c(EVEN(z1)) ODD(Nil) -> c1 EVEN(Cons(z0, z1)) -> c2(ODD(z1)) EVEN(Nil) -> c3 NOTEMPTY(Cons(z0, z1)) -> c4 NOTEMPTY(Nil) -> c5 EVENODD(z0) -> c6(EVEN(z0)) odd(Cons(z0, z1)) -> even(z1) odd(Nil) -> False even(Cons(z0, z1)) -> odd(z1) even(Nil) -> True notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False evenodd(z0) -> even(z0) Types: ODD :: Cons:Nil -> c:c1 Cons :: a -> Cons:Nil -> Cons:Nil c :: c2:c3 -> c:c1 EVEN :: Cons:Nil -> c2:c3 Nil :: Cons:Nil c1 :: c:c1 c2 :: c:c1 -> c2:c3 c3 :: c2:c3 NOTEMPTY :: Cons:Nil -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 EVENODD :: Cons:Nil -> c6 c6 :: c2:c3 -> c6 odd :: Cons:Nil -> False:True even :: Cons:Nil -> False:True False :: False:True True :: False:True notEmpty :: Cons:Nil -> False:True evenodd :: Cons:Nil -> False:True hole_c:c11_7 :: c:c1 hole_Cons:Nil2_7 :: Cons:Nil hole_a3_7 :: a hole_c2:c34_7 :: c2:c3 hole_c4:c55_7 :: c4:c5 hole_c66_7 :: c6 hole_False:True7_7 :: False:True gen_Cons:Nil8_7 :: Nat -> Cons:Nil Lemmas: even(gen_Cons:Nil8_7(*(2, n10_7))) -> True, rt in Omega(0) Generator Equations: gen_Cons:Nil8_7(0) <=> Nil gen_Cons:Nil8_7(+(x, 1)) <=> Cons(hole_a3_7, gen_Cons:Nil8_7(x)) The following defined symbols remain to be analysed: EVEN, ODD They will be analysed ascendingly in the following order: ODD = EVEN ---------------------------------------- (20) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (21) BOUNDS(n^1, INF) ---------------------------------------- (22) Obligation: Innermost TRS: Rules: ODD(Cons(z0, z1)) -> c(EVEN(z1)) ODD(Nil) -> c1 EVEN(Cons(z0, z1)) -> c2(ODD(z1)) EVEN(Nil) -> c3 NOTEMPTY(Cons(z0, z1)) -> c4 NOTEMPTY(Nil) -> c5 EVENODD(z0) -> c6(EVEN(z0)) odd(Cons(z0, z1)) -> even(z1) odd(Nil) -> False even(Cons(z0, z1)) -> odd(z1) even(Nil) -> True notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False evenodd(z0) -> even(z0) Types: ODD :: Cons:Nil -> c:c1 Cons :: a -> Cons:Nil -> Cons:Nil c :: c2:c3 -> c:c1 EVEN :: Cons:Nil -> c2:c3 Nil :: Cons:Nil c1 :: c:c1 c2 :: c:c1 -> c2:c3 c3 :: c2:c3 NOTEMPTY :: Cons:Nil -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 EVENODD :: Cons:Nil -> c6 c6 :: c2:c3 -> c6 odd :: Cons:Nil -> False:True even :: Cons:Nil -> False:True False :: False:True True :: False:True notEmpty :: Cons:Nil -> False:True evenodd :: Cons:Nil -> False:True hole_c:c11_7 :: c:c1 hole_Cons:Nil2_7 :: Cons:Nil hole_a3_7 :: a hole_c2:c34_7 :: c2:c3 hole_c4:c55_7 :: c4:c5 hole_c66_7 :: c6 hole_False:True7_7 :: False:True gen_Cons:Nil8_7 :: Nat -> Cons:Nil Lemmas: even(gen_Cons:Nil8_7(*(2, n10_7))) -> True, rt in Omega(0) EVEN(gen_Cons:Nil8_7(+(1, *(2, n132_7)))) -> *9_7, rt in Omega(n132_7) Generator Equations: gen_Cons:Nil8_7(0) <=> Nil gen_Cons:Nil8_7(+(x, 1)) <=> Cons(hole_a3_7, gen_Cons:Nil8_7(x)) The following defined symbols remain to be analysed: ODD They will be analysed ascendingly in the following order: ODD = EVEN ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ODD(gen_Cons:Nil8_7(+(1, *(2, n428_7)))) -> *9_7, rt in Omega(n428_7) Induction Base: ODD(gen_Cons:Nil8_7(+(1, *(2, 0)))) Induction Step: ODD(gen_Cons:Nil8_7(+(1, *(2, +(n428_7, 1))))) ->_R^Omega(1) c(EVEN(gen_Cons:Nil8_7(+(2, *(2, n428_7))))) ->_R^Omega(1) c(c2(ODD(gen_Cons:Nil8_7(+(1, *(2, n428_7)))))) ->_IH c(c2(*9_7)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Obligation: Innermost TRS: Rules: ODD(Cons(z0, z1)) -> c(EVEN(z1)) ODD(Nil) -> c1 EVEN(Cons(z0, z1)) -> c2(ODD(z1)) EVEN(Nil) -> c3 NOTEMPTY(Cons(z0, z1)) -> c4 NOTEMPTY(Nil) -> c5 EVENODD(z0) -> c6(EVEN(z0)) odd(Cons(z0, z1)) -> even(z1) odd(Nil) -> False even(Cons(z0, z1)) -> odd(z1) even(Nil) -> True notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False evenodd(z0) -> even(z0) Types: ODD :: Cons:Nil -> c:c1 Cons :: a -> Cons:Nil -> Cons:Nil c :: c2:c3 -> c:c1 EVEN :: Cons:Nil -> c2:c3 Nil :: Cons:Nil c1 :: c:c1 c2 :: c:c1 -> c2:c3 c3 :: c2:c3 NOTEMPTY :: Cons:Nil -> c4:c5 c4 :: c4:c5 c5 :: c4:c5 EVENODD :: Cons:Nil -> c6 c6 :: c2:c3 -> c6 odd :: Cons:Nil -> False:True even :: Cons:Nil -> False:True False :: False:True True :: False:True notEmpty :: Cons:Nil -> False:True evenodd :: Cons:Nil -> False:True hole_c:c11_7 :: c:c1 hole_Cons:Nil2_7 :: Cons:Nil hole_a3_7 :: a hole_c2:c34_7 :: c2:c3 hole_c4:c55_7 :: c4:c5 hole_c66_7 :: c6 hole_False:True7_7 :: False:True gen_Cons:Nil8_7 :: Nat -> Cons:Nil Lemmas: even(gen_Cons:Nil8_7(*(2, n10_7))) -> True, rt in Omega(0) EVEN(gen_Cons:Nil8_7(+(1, *(2, n132_7)))) -> *9_7, rt in Omega(n132_7) ODD(gen_Cons:Nil8_7(+(1, *(2, n428_7)))) -> *9_7, rt in Omega(n428_7) Generator Equations: gen_Cons:Nil8_7(0) <=> Nil gen_Cons:Nil8_7(+(x, 1)) <=> Cons(hole_a3_7, gen_Cons:Nil8_7(x)) The following defined symbols remain to be analysed: EVEN They will be analysed ascendingly in the following order: ODD = EVEN