WORST_CASE(?,O(n^1)) proof of input_nwjOTeb2e9.trs # AProVE Commit ID: aff8ecad908e01718a4c36e68d2e55d5e0f16e15 fuhs 20220216 unpublished The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (2) CdtProblem (3) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (4) CdtProblem (5) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtToCpxRelTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTRS (11) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (12) CpxTRS (13) CpxTrsMatchBoundsTAProof [FINISHED, 11 ms] (14) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Runtime Complexity (parallel-innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: foldl(x, Cons(S(0), xs)) -> foldl(S(x), xs) foldl(S(0), Cons(x, xs)) -> foldl(S(x), xs) foldr(a, Cons(x, xs)) -> op(x, foldr(a, xs)) foldr(a, Nil) -> a foldl(a, Nil) -> a notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False op(x, S(0)) -> S(x) op(S(0), y) -> S(y) fold(a, xs) -> Cons(foldl(a, xs), Cons(foldr(a, xs), Nil)) S is empty. Rewrite Strategy: PARALLEL_INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS with rewrite strategy PARALLEL_INNERMOST to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: foldl(z0, Cons(S(0), z1)) -> foldl(S(z0), z1) foldl(S(0), Cons(z0, z1)) -> foldl(S(z0), z1) foldl(z0, Nil) -> z0 foldr(z0, Cons(z1, z2)) -> op(z1, foldr(z0, z2)) foldr(z0, Nil) -> z0 notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False op(z0, S(0)) -> S(z0) op(S(0), z0) -> S(z0) fold(z0, z1) -> Cons(foldl(z0, z1), Cons(foldr(z0, z1), Nil)) Tuples: FOLDL(z0, Cons(S(0), z1)) -> c(FOLDL(S(z0), z1)) FOLDL(S(0), Cons(z0, z1)) -> c1(FOLDL(S(z0), z1)) FOLDL(z0, Nil) -> c2 FOLDR(z0, Cons(z1, z2)) -> c3(OP(z1, foldr(z0, z2)), FOLDR(z0, z2)) FOLDR(z0, Nil) -> c4 NOTEMPTY(Cons(z0, z1)) -> c5 NOTEMPTY(Nil) -> c6 OP(z0, S(0)) -> c7 OP(S(0), z0) -> c8 FOLD(z0, z1) -> c9(FOLDL(z0, z1)) FOLD(z0, z1) -> c10(FOLDR(z0, z1)) S tuples: FOLDL(z0, Cons(S(0), z1)) -> c(FOLDL(S(z0), z1)) FOLDL(S(0), Cons(z0, z1)) -> c1(FOLDL(S(z0), z1)) FOLDL(z0, Nil) -> c2 FOLDR(z0, Cons(z1, z2)) -> c3(OP(z1, foldr(z0, z2)), FOLDR(z0, z2)) FOLDR(z0, Nil) -> c4 NOTEMPTY(Cons(z0, z1)) -> c5 NOTEMPTY(Nil) -> c6 OP(z0, S(0)) -> c7 OP(S(0), z0) -> c8 FOLD(z0, z1) -> c9(FOLDL(z0, z1)) FOLD(z0, z1) -> c10(FOLDR(z0, z1)) K tuples:none Defined Rule Symbols: foldl_2, foldr_2, notEmpty_1, op_2, fold_2 Defined Pair Symbols: FOLDL_2, FOLDR_2, NOTEMPTY_1, OP_2, FOLD_2 Compound Symbols: c_1, c1_1, c2, c3_2, c4, c5, c6, c7, c8, c9_1, c10_1 ---------------------------------------- (3) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: FOLD(z0, z1) -> c9(FOLDL(z0, z1)) FOLD(z0, z1) -> c10(FOLDR(z0, z1)) Removed 6 trailing nodes: NOTEMPTY(Cons(z0, z1)) -> c5 NOTEMPTY(Nil) -> c6 OP(z0, S(0)) -> c7 FOLDL(z0, Nil) -> c2 FOLDR(z0, Nil) -> c4 OP(S(0), z0) -> c8 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: foldl(z0, Cons(S(0), z1)) -> foldl(S(z0), z1) foldl(S(0), Cons(z0, z1)) -> foldl(S(z0), z1) foldl(z0, Nil) -> z0 foldr(z0, Cons(z1, z2)) -> op(z1, foldr(z0, z2)) foldr(z0, Nil) -> z0 notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False op(z0, S(0)) -> S(z0) op(S(0), z0) -> S(z0) fold(z0, z1) -> Cons(foldl(z0, z1), Cons(foldr(z0, z1), Nil)) Tuples: FOLDL(z0, Cons(S(0), z1)) -> c(FOLDL(S(z0), z1)) FOLDL(S(0), Cons(z0, z1)) -> c1(FOLDL(S(z0), z1)) FOLDR(z0, Cons(z1, z2)) -> c3(OP(z1, foldr(z0, z2)), FOLDR(z0, z2)) S tuples: FOLDL(z0, Cons(S(0), z1)) -> c(FOLDL(S(z0), z1)) FOLDL(S(0), Cons(z0, z1)) -> c1(FOLDL(S(z0), z1)) FOLDR(z0, Cons(z1, z2)) -> c3(OP(z1, foldr(z0, z2)), FOLDR(z0, z2)) K tuples:none Defined Rule Symbols: foldl_2, foldr_2, notEmpty_1, op_2, fold_2 Defined Pair Symbols: FOLDL_2, FOLDR_2 Compound Symbols: c_1, c1_1, c3_2 ---------------------------------------- (5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: foldl(z0, Cons(S(0), z1)) -> foldl(S(z0), z1) foldl(S(0), Cons(z0, z1)) -> foldl(S(z0), z1) foldl(z0, Nil) -> z0 foldr(z0, Cons(z1, z2)) -> op(z1, foldr(z0, z2)) foldr(z0, Nil) -> z0 notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False op(z0, S(0)) -> S(z0) op(S(0), z0) -> S(z0) fold(z0, z1) -> Cons(foldl(z0, z1), Cons(foldr(z0, z1), Nil)) Tuples: FOLDL(z0, Cons(S(0), z1)) -> c(FOLDL(S(z0), z1)) FOLDL(S(0), Cons(z0, z1)) -> c1(FOLDL(S(z0), z1)) FOLDR(z0, Cons(z1, z2)) -> c3(FOLDR(z0, z2)) S tuples: FOLDL(z0, Cons(S(0), z1)) -> c(FOLDL(S(z0), z1)) FOLDL(S(0), Cons(z0, z1)) -> c1(FOLDL(S(z0), z1)) FOLDR(z0, Cons(z1, z2)) -> c3(FOLDR(z0, z2)) K tuples:none Defined Rule Symbols: foldl_2, foldr_2, notEmpty_1, op_2, fold_2 Defined Pair Symbols: FOLDL_2, FOLDR_2 Compound Symbols: c_1, c1_1, c3_1 ---------------------------------------- (7) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: foldl(z0, Cons(S(0), z1)) -> foldl(S(z0), z1) foldl(S(0), Cons(z0, z1)) -> foldl(S(z0), z1) foldl(z0, Nil) -> z0 foldr(z0, Cons(z1, z2)) -> op(z1, foldr(z0, z2)) foldr(z0, Nil) -> z0 notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False op(z0, S(0)) -> S(z0) op(S(0), z0) -> S(z0) fold(z0, z1) -> Cons(foldl(z0, z1), Cons(foldr(z0, z1), Nil)) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: FOLDL(z0, Cons(S(0), z1)) -> c(FOLDL(S(z0), z1)) FOLDL(S(0), Cons(z0, z1)) -> c1(FOLDL(S(z0), z1)) FOLDR(z0, Cons(z1, z2)) -> c3(FOLDR(z0, z2)) S tuples: FOLDL(z0, Cons(S(0), z1)) -> c(FOLDL(S(z0), z1)) FOLDL(S(0), Cons(z0, z1)) -> c1(FOLDL(S(z0), z1)) FOLDR(z0, Cons(z1, z2)) -> c3(FOLDR(z0, z2)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: FOLDL_2, FOLDR_2 Compound Symbols: c_1, c1_1, c3_1 ---------------------------------------- (9) CdtToCpxRelTrsProof (BOTH BOUNDS(ID, ID)) Converted S to standard rules, and D \ S as well as R to relative rules. ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: FOLDL(z0, Cons(S(0), z1)) -> c(FOLDL(S(z0), z1)) FOLDL(S(0), Cons(z0, z1)) -> c1(FOLDL(S(z0), z1)) FOLDR(z0, Cons(z1, z2)) -> c3(FOLDR(z0, z2)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (11) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (12) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: FOLDL(z0, Cons(S(0), z1)) -> c(FOLDL(S(z0), z1)) FOLDL(S(0), Cons(z0, z1)) -> c1(FOLDL(S(z0), z1)) FOLDR(z0, Cons(z1, z2)) -> c3(FOLDR(z0, z2)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (13) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2] transitions: Cons0(0, 0) -> 0 S0(0) -> 0 00() -> 0 c0(0) -> 0 c10(0) -> 0 c30(0) -> 0 FOLDL0(0, 0) -> 1 FOLDR0(0, 0) -> 2 S1(0) -> 4 FOLDL1(4, 0) -> 3 c1(3) -> 1 FOLDL1(4, 0) -> 5 c11(5) -> 1 FOLDR1(0, 0) -> 6 c31(6) -> 2 S1(4) -> 4 c1(3) -> 3 c1(3) -> 5 c11(5) -> 3 c11(5) -> 5 c31(6) -> 6 ---------------------------------------- (14) BOUNDS(1, n^1)