Query Language for Structural Retrieval of
Deep Web Information

Stefan Miiller!, Ralf-Dieter Schimkat!, and Rudolf Miiller?

L University of Tiibingen, WSI for Computer Science, Sand 13, D-72076
Tubingen, Germany

2 University of Maastricht, Department of Quantitative Economics, P.O. Box 616,
6200 MD Maastricht, The Netherlands

Abstract. Information provided on the Web is often hidden in databases and dy-
namically extracted by script pages according to some user input. Web information
systems follow this concept when they must handle a huge amount of fast changing
data that is somehow related (e.g. shoppers, route planers, yellow pages). In con-
trast to static pages it is very hard for traditional search engines to properly index
pages with non-static content in a way that Web users can perform a precise search.
The information that is provided through dynamic script pages is often called the
Hidden or Deep Web. We present a retrieval approach that uses the structure of the
database schemas and further schema information to calculate a similarity between
a structured query and registered Deep Web information systems. Our retrieval
process is a combination of structured and keyword-based retrieval. This combi-
nation should overcome the drawback of a solely keyword-based indexing method
which is insufficient to exactly describe the content of the Deep Web. Dynamically
and individually adjustable retrieval behavior further improves the useability of our
approach.

1 Introduction

The World-Wide-Web (WWW) as a global repository for information is a big
improvement for the quality of life of people around the world: Organizing
a journey, buying or selling goods, or just searching detailed and up-to-date
information becomes cheaper, faster, and easier. The main problem is to find
suitable pages to perform the individual tasks. The research efforts taken to
solve this problem brought up a lot of different technologies, e.g. to better
describe the content of Web pages (RDF [15]), the Web services (UDDI [14]),
and elaborated index and search strategies (pagerank used by Google [13]).

The WWW contains a lot of pages that are not explicitly made persis-
tent in a Web-accessible manner. These pages are dynamically constructed
by scripts or servlets according to some user input, e.g. travel destinations,
or product lists of Web shops. The set of those pages is called the Deep
Web. Information providers use dynamic pages when they have to handle a
mass of related information that is rapidly changing over time. Describing
this information in a way that traditional search engines can present them to
an interested user is only possible, if the Uniform Resource Locator (URL)

is used to transmit user input to the Web site. Search engines feeded with
keywords like ”"flight”, "from”, ”Frankfurt”, "to”, "Hawaii” would probably
not deliver a link to a travel agency, because ”Frankfurt” and ”Hawaii” is
an information of the Deep Web and therefore not available for the index
generation of search engines. A keyword description of script pages (the en-
try points to the Deep Web) can only describe very vague the Deep Web
information and the real content of a Web site. Additionally the main part of
the information provided by keywords relies on the relations between them
and are not expressed. A search engine for Deep Web information should use
this structural information, too.

It is interesting to see that the structural information (lost when a user’s
question is transformed to a set of keywords) is actually used to manage the
information of the Deep Web: Most of the sites offering dynamic Web pages
store their data within relational databases for which Entity-Relationship
models (ER models [4]) accurately describe the content and relations. ER
models are abstract enough to deliver information about the stored data
without using the data itself. Imagine a search engine that indexes the inter-
nal ER models of Deep Web information systems and provides a front end
to formulate queries in a structural manner like ER modelling. This paper
presents a realization of this approach based on a framework for general model
retrieval [12]. The paper is structured as follows: We briefly describe the com-
ponents of the framework and their application in the domain of ER models
in the next section. Section 3 evaluates the structural retrieval approach in
a class room experiment. Section 4 shows how the structural query approach
can be combined with the necessary keyword-based retrieval. Dynamic con-
trol of retrieval behavior is explained in section 5. Before we summarize and
conclude this paper, section 6 gives an overview of other approaches to search
for Deep Web information.

2 Structural Retrieval of ER models

The management of complex models like ER models is a very popular scien-
tific field. Mapping, matching, or merging models is required in many situa-
tions, e.g. when companies want to share data contained in different kind of
databases or documents. There is a need of more abstract data descriptions
and operations to automatically perform the given tasks. Bernstein et al. de-
scribed in [1] an algebra on a generalized view of complex models. Matching
of models with respect to their inherent structure is one of the issues that
have to be tackled.

Firestorm [10] is a framework for the retrieval of models according to their
implicit graph structure. The details are presented in [11] and [12]. The core
of the framework is a representation of models through three-layer graphs
called Structured Service Models (SSM). This representation is based on the
concepts of Structured Modelling [6], which is used to formulate mathematical

models. Three-layer graphs allow the design of algorithms that compute the
graph similarity between different SSMs. After stating a query in a graphical
way the system returns an ordered list of the models that are most similar
to the query with respect to the graph structures.

ER Model SSM
Transaction Entity . Entity Entity
Transaction Account Customer

| S\

@ <:> (1,1) (O.N) (1,1) (O.N)
(O,N) / \

(1.1) (O.N) I S
Account has Customer Relationship! Relationship
performs has

Fig. 1. Mapping between ER model and SSM

We extended the framework to the field of ER models by the definition
of a one-to-one mapping between ER models and SSMs following the rules
of [12]: Different kind of entities become different kind of nodes of the first
layer. Relationships become nodes of the third layer and the relations between
entities and dependencies between entities and relationships become nodes
on the second layer with types derived from the cardinalities of the relations.
Figure 1 shows a simple ER model and its corresponding SSM. The mapping
rules enforce that SSMs always decompose into two bipartite graphs. Apart of
the mappings we implemented graphical user interfaces used to state queries
and to visualize the stored SSMs as natural ER models.

The server part of Firestorm remains merely unchanged. It stores SSMs
in a relational database and provides algorithms to specify the similarity be-
tween SSMs. This similarity exploits the adjacency structure of SSM graphs.
Given two graphs G = (V, E) and G' = (V', E'), we look at partial mappings
7 of the nodes from G onto the nodes of G’ which only map nodes onto
nodes of the same type. The number ¢ expresses the number of edges in G
that are implicitly mapped onto edges in G, i.e. edges (v,w) € E such that
(w(v), 7(w)) € E'. The matching quality realized by the mapping 7 is defined
as d(m) = 2q/(|E| + |E'|). The similarity between two graphs is then defined
by the maximum over all matching qualities of mappings from G onto G'.
Mappings are always one to one. The matching quality is a rational number
between 0 and 1 with a value of 1 indicating that there exists a mapping be-
tween the library graph and the query graph that matches exactly all edges.
As we can assume w.l.o.g. that there are no isolated nodes in a SSM, this is
the case if and only if both graphs are isomorphic.

The authors of [11] showed that finding a mapping of optimal quality
is N P-hard. But the three-layer structure of SSMs supports the design of
heuristic and exact retrieval algorithms as well as a fast filter. The exact al-
gorithm enumerates all feasible mappings of nodes from the second layer and
solves for each of them the matching problems on layers 1 and 3 to optimality
by using algorithms for weighted bipartite matching. The exact algorithm is
polynomial for a fixed number of nodes on layer 2, and a reasonable algorithm
for small numbers of nodes on layer 2. Filter and heuristic algorithms speed
up the retrieval time tremendously by reducing the set of graphs to which
the exact algorithm has to be applied. Further details of the algorithms are
explained in [11].

Warning: Applet Window

[FER Similarity Checkei

‘accidam—stal ‘ Detail

Person Car Accident

Drriver
Date
Amount

MNarne Mode|
Address Year
SoSecNr (K) Licgnse {K)

.1

[FJER: Nename * =

‘Znnm |n||Zuum Ou(”1:1||Delails‘ | Entity

Customer

2 | Account
MName
Gran 1D (K3) BRSS!
accident-stat Opt-Matcher: 1.0

banking Opt-Matcher: 0.675 Entity-Layg ©,N)
flugverwaltung Opt-Matcher 0625 Connectio
Bundesliga Opt-Matcher: 0.625
mparchiv Opt-Matcher: 0.0

Transaction
Relation-Ls Id

Minimal Fil

| Filter H Match Fast H Match Exact

) intormation

Fig. 2. Applet interface of Firestorm

As an example, figure 2 shows the search for a site that deals with in-
formation in the context of online banking. Customers have accounts and
perform transactions. There is actually no online banking system registered
in Firestorm and we get a top match for a system that logs car accidents
because the graph structure is identical. Obviously this is not an answer we
want to achieve. So there is a need to combine the structural retrieval with

context-related keyword search. Section 4 focuses on that task. Furthermore
we added new functionality to Firestorm to fine-tune the retrieval algorithms
with respect to the retrieval situation of a user. These functionalities are ex-
plained in section 5. But first of all, reporting experiences with a class room
exercise will indicate that structural similarity of ER models is a good mea-
sure for the closeness of corresponding real world situations (if the context is
predefined).

3 Evaluation of Structural Retrieval

This section will show how well the structures of SSMs capture the semantics
of corresponding ER. Modelling is an art and one may argue that e.g. the
same real world situation can be modelled in very different ways leading to
different SSMs. The structural retrieval approach reduces the detection of
similarity between different ER models to the graph similarity between their
SSMs but the retrieval quality depends on semantic similarity between ER
models. The restrictiveness in structure and available means to create ER
models somehow limits the modelling freedom but a mathematical quality
proof is out of sight.

As explained in the previous section Firestorm was extended to the do-
main of ER models. This means that the system can report the similarity
between two different ER models. The focus of our working group at the
University of Tiibingen (Germany) is on database and information systems.
Part of a database course is to learn how to create ER models that describe
an aspect of the real world to be managed with a database. In this course
Firestorm is used by students to create and manage their ER models.

The course contains three exercises that require students to design ER
models for three different real world cases. These cases are formulated as
natural language text. The text implies the naming of entities and relation-
ships so that we can concentrate only on the structure. Some staff members
evaluated the solutions of the students and assigned credit points according
to how well the ER models represent the real world cases. For each exercise a
staff member created a master model representing the expected solution. This
made it possible to evaluate whether high similarity on the SSMs (respectively
the corresponding ER models) reflects a certain similarity according to the
semantics of the modelled real world cases, expressed by a high grade. A
positive answer would promise to apply the structural retrieval approach for
the domain of ER models.

These master models were used as queries to the system with the cor-
responding student models building the library. The system computed the
(graph) similarity between each student model and the master model. The
similarities were converted into credit points by simply multiplying the sim-
ilarities with maximal credit points.

The results are encouraging. Figure 3 relates the credit points assigned by
the staff members to the credit points assigned by Firestorm. The differences
in credit point assignment are marginal so it seems that graph similarity
between SSMs can be used to determine semantic similarity between ER
models (as long as the context is clear).

Exercise 1 Exercise 2 Exercise 3

credit points
credit points
credit points

student student

Fig. 3. Credit point assignment (staff vs. Firestorm)

4 Combining Structural and Keyword-based Retrieval

The results of the previous section are very promising but as the example
usage of section 2 shows structural retrieval on its own cannot distinguish
between different contexts. The application of Firestorm on the Web with
thousands of sites offering heterogenous information needs a mechanism to
influence the structural retrieval by something describing the context.

A meaningful context description is given by the names of the elements
(e.g. Entities, Relationships) that compose an ER model. To calculate the
structural similarity the algorithms map nodes on nodes and count the num-
ber of implicitly overlapping edges. For all algorithms we can define weights
per edge without changing the algorithm structure. Structural retrieval can
then be combined with some kind of keyword-based retrieval in the following
way:

1. The system fills a matrix that keeps the closeness between node names
for each combination of nodes. If the system only allows the usage of
names of a controlled vocabulary or names with a given semantic (e.g.
by RDF [15]) the normalized string distances (e.g. edit distance) express
the closeness by a value between 0 and 1 with a value 1 indicating that
two names have an identical meaning.

2. The retrieval algorithms use the values of the matrix to identify the weight
of realized edge mapping which is the mean value of the corresponding
node mapping matrix values.

The similarity between structural identical graphs that have no node
names in common will get much lower.

5 Dynamic Recall/Precision Control

Like in any other retrieval system, the retrieval quality can be measured
in terms of Recall and Precision. Recall is the quotient of the number of
relevant ER models contained in the result set by the number of all relevant
ER models of the system with respect to a query. Precision is the quotient
of the number of relevant ER models contained in the result set and the
size of the result set with respect to a given query. Recall and precision are
no objective measures because each user has its own definition of relevance.
In the following we use recall and precision in a weaker sense defining that
all ER models are relevant with respect to a query if the similarity is more
than a certain threshold. The threshold can be defined by a user just before
starting a retrieval action. Additionally we implemented a functionality to
control the behavior of the structural retrieval algorithms.

Level 1 Level 2 Level 3 Level 4

(0,1)

(O.N)

| Generic |—>| Connection

(1.N)
(N,M)

Fig. 4. Node type tree of second layer

The control functionality relies on a type tree of SSM nodes. As we know
from section 2 the elements of ER models are mapped onto SSM nodes of
different types. We define a type tree that starts with a generic root type and
and specializes the types along the tree paths. Figure 4 shows the subtree of
the second layer SSM node types for the domain of ER models. Following the
root type the second level defines the types of all nodes on the second layer.
These nodes represent connections between entities and relationships. The
third level of the tree distinguishes between (*,N) connections and (*,1)
connections that represent two different kinds of connection cardinalities in
(min, max) notation. The fourth level of the tree captures the most specific
cardinality distinction ((0,1),(1,1),(0,N),(1,N) and (N,M)).

Assume that the SSM of the query model and the SSMs of all library
models only contain nodes of the most specific type tree levels. Before a user
triggers a retrieval action the user specifies for each layer which tree level
should be used by the algorithms for the similarity computation, in other
words which subtypes can be matched to each other. This means e.g. that if
a users chooses the third tree level for the second layer the algorithms can

map a node of type (0,N) on a node of type (1,N). This is impossible if the
user chooses the fourth tree level for the second layer.

The effect of this mechanism is that for a certain threshold choosing a
higher type level reduces the size of the result set. Some of the relevant
models may not appear in the result set but the precision of the remaining
models is higher. On the other hand setting a low type level leads to a large
result set with possibly a lot of irrelevant models. But irrelevant models can
contain a lot of hints that help to specify the type levels in a way that the
results meet a user’s expectations. With this functionality a user can adjust
the retrieval system towards the individual sense of relevance and quality.

6 Related Work

Searching for information that is hidden in the Deep Web is not a new
task. Sites providing information generated by scripts out of data stored
in databases exist nearly as long as the Web exists. There are a number of
search engines that index those sites and query them according to some user
input. We look at some of those engines and relate them to the structural
retrieval approach.

One of the most popular commercial Deep Web search engines is LexiBot
[3] from BrightPlanet. It searches among 2200 databases and provides a query
interface for simple text or boolean queries. The users can adjust the search
strategies and result presentation to its own preferences.

Also from BrightPlanet is the free search engine CompletePlanet [2]. It
contains the addresses of about 103000 databases organized in a directory
structure with categories and subcategories. The search interface allows sim-
ple text input.

The LII [9] is a free search engine with an annotated, searchable subject
directory of about 9000 Web resources. The resources are selected and evalu-
ated by librarians for their usefulness to users of public libraries. Simple text
and boolean operators are the means to state queries.

The search engines of IntelliSeek (ProFusion [8] and InvisibleWeb [7])
resemble much the other mentioned directory-based search engines.

Neither of the presented search engines use the database structure of
Deep Web information systems. They describe the content of those systems
with keywords and organize them (by hand or automated) within a directory.
Query interfaces require simple text and boolean queries. They are easier to
use than our query interface that is based on ER models. But especially the
structural dependencies between different information units captures much
more semantics and therefore allows a more precise search.

7 Summary and Conclusion

This paper describes a structural retrieval approach to search for Web sites
that provide information contained in the Deep Web. Therefore we extend
the general model retrieval framework Firestorm to the domain of ER models.
Influenced by the special requirements of the Web we describe a technique
to combine structural and keyword-based retrieval. A functionality for the
dynamic control of retrieval behavior based on type trees provides the users
with means to adjust the system with respect to the individual preferences
according to recall and precision.

Users have to state their queries to the system by specifying ER models
to describe the desired information in structural correlation. Many users are
unfamiliar with ER modelling but it is a standardized and powerful way
to express dependencies between information objects. The simple graphical
user interface should allow users with basic knowledge to specify their own
ER models.

Another drawback of the approach is the absence of ER models that Web
sites need to register with the system. Most of the target sites store their data
within relational databases. If they do not have ER models that describe their
databases a tool could probably create a model out of the database schema.

Apart of the sandbox evaluation presented in section 3 the structural
retrieval approach has yet to prove its applicability under the real world
conditions of the Web. Therefore we hope that many Web sites register to
our system to provide Web users a promising way to search for information
of the Deep Web.

Looking into the future the ongoing hype of the Semantic Web [5] brings
up many applications that require tools to handle semantic descriptions of
information. The semantic description is mostly done following the principles
of RDF [15]. RDF definitions resemble graphs that show the dependencies
among the individual elements. The management of RDF definitions can
benefit a lot by an RDF extension of Firestorm.

References

1. P. A. Bernstein, A. Y. Halevy, and R. Pottinger. A vision of management of
complex models. SIGMOD Record, 29(4):55-63, 2000.

2. BrightPlanet. CompletePlanet, 2000. http://www.completeplanet.com/.

3. BrightPlanet. LexiBot, 2001. http://www.lexibot.com/.

4. P. P. S. Chen. The entity-relationship model — toward a unified view of data.
Proceedings of the 1th Conference on Very Large Databases, Morgan Kaufman
pubs. (Los Altos CA), Kerr (ed), pp.173, 1975.

5. S. Decker. The Semantic Web Community Portal, 2001. http://-
www.semanticweb.org/.

6. A. M. Geoffrion. An introduction to structured modeling. Management Science,
33(5):547-588, 1987.

10.

11.

12.

13.

14.

15.

IntelliSeek. Invisible Web — The Search Engine of Search Engines, 2001. http://-
www.invisibleweb.com/.

IntelliSeek. ProFusion, 2001. http://www.profusion.com/.

Library of California. Librarians’ Index to the Internet, 2001. http://-
www.lii.org/.

S. Miiller. FIRESTORM - Flrst a REtrieval SysTem for Operations Research
Models, 2002. http://firestorm.informatik.uni-tuebingen.de/ermodeling.

S. Miiller and R. Miiller. Retrieval of service descriptions using structured
service models. In Proceedings of the 10th Annual Workshop on Information
Technologies and System, pages 55—60, 2000.

S. Miiller and R. Schimkat. A general, web-enabled model retrieval approach.
In Proceedings of the International Conference for Object-Oriented Information
Systems (OOILS 2001), 2001.

L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Cita-
tion Ranking: Bringing Order to the Web, 1998. http://citeseer.nj.nec.com/-
page98pagerank.html.

UDDI community. Universal Description, Discovery and Integration of Busi-
ness for the Web (UDDI), 2002. http://www.uddi.org/.

World Wide Web Consortium (W3C). Resource Description Framework, Feb.
1999. http://www.w3.org/TR/REC-rdf-syntax/.

