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Abstract

Power law distribution seems to be an important characteristic of web graphs. Sev-
eral existing web graph models [8, 21] generate power law graphs by adding new vertices
and non-uniform edge connectivities to existing graphs. Researchers [9, 10, 24] have
conjectured that preferential connectivity and incremental growth are both required
for the power law distribution. In this paper, we propose a different web graph model
with power law distribution that does not require incremental growth. We also provide
a comparison of our model with several others in their ability to predict web graph
clustering behavior.

1 Introduction

The growth of the World Wide Web (WWW) has been explosive and phenomenal. Google
[1] has more than 2 billion pages searched as of February 2002. The Internet Archive [2] has
10 billion pages archived as of March 2001. The existing growth-based models [6, 8, 21] are
adequate to explain the web’s current graph structure. It would be interesting to know if a
different model is needed as the growth rate slows down [3] while its link structure continues
to evolve.

1.1 Why Power Laws?

Barabdsi et al. [9, 10] and Medina et al. [24] stated that preferential connectivity and
incremental growth are both required for the power law distribution observed in the web.
The importance of the preferential connectivity has been shown by several researchers [8, 16].

Faloutsos et al. [15] observed that the internet topology exhibits power law distribution
in the form of y = z®. When studying web characteristics, the documents can be viewed
as vertices in a graph and the hyper-links as edges between them. Various researchers
[7, 8, 19, 22] have independently showed the power law distribution in the degree sequence
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of the web graphs. Huberman and Adamic [5, 16] showed a power law distribution in the
web site sizes. [See [20] for a summary of works on the web structure.]

Medina et al. [24] showed that topologies generated by two widely used generators the
Waxman model [32], and the GT-ITM tool [13] do not have power law distribution in their
degree sequences. Palmer and Steffan [27] proposed a power law degree generator that
recursively partitions the adjacency matrix into 80 — 20 distribution. However, it is unclear
if their generator actually emulates other web properties.

The power law distribution seems to be an ubiquitous property. The power law distri-
bution occurs in epidemics study [30], population study [28], genomes distribution [17, 29],
various social phenomena [11, 26], and massive graphs [4, 6]. For the power law graphs
in biological systems, the connectivity changes appear to be much more important than
growth in size.

1.2 Properties for Graph Model Comparison

Another important property that has been looked at is the diameters of web graphs. How-
ever, there are conflicting results in the published papers. Albert et al. [7] stated that the
web graphs have the small world phenomenon [25, 31], in which the diameter A is roughly
0.35 + 2.061g n, where n is the size of the web graph. For n = 8 x 10%, A ~ 19. Lu [23]
proved the diameters of random power law graphs are logarithmic function of n under the
model proposed by Aiello et al. [6]. However, Broder et al. [12] showed over 75% of time,
there is no directed path between two random vertices. If there is a path, the average
distance is roughly 16 when viewing web graph as directed graph or 6.83 in the undirected
case.

Currently, there are few theoretical graph models [6, 8, 21, 27] for generating power law
graphs. There are very few comparative studies that would allow us to determine which of
these theoretical models are more accurate models of the web. We only know that the model
proposed by Kumar et al. [21] generates more bipartite cliques than other models. They
believe clustering to be an important part of web graph structures that was insufficiently
represented in previous models [6, 8].

1.3 New Contributions

In this paper, we show power law graphs do not require incremental growth, by developing
a graph model which (empirically) results in power laws by evolving a graph according to
a Markov process while maintaining constant size and density. We also provide an easily
computable graph property that can be used to capture cluster information in a graph
without enumerating all possible subgraphs.



2 Steady State Model

Our SteadyState (SS) model is very simple in comparison with other web graph models
[6, 8, 21, 27]. It consists of repetitively removing and adding edges on a sparse random
graph G.

Let m be ©(n). To generate the initial sparse random graph G, we randomly add an
edge between vertices with probability % If the number of edges in G is still less than
m, then we start adding edges between vertices with probability of 0.5 until we have m
edges.

We reiterate the following steps r times on GG, where r is a parameter to our model.

1. Pick a vertex v at random. If there is no edge incidents upon v, we pick another one.
2. Pick an edge (u,v) € G at random.
3. Pick a vertex x at random.

4. Pick a vertex y with probability proportional to degree.

ot

. If (z,y) is not an edge in G and z is not equal to y, then remove edge (u,v) and add
edge (z,y).

One can view out model as an aperiodic Markov chain with some limiting distribution. If we
repeat the above steps long enough, we will get a random graph drawn from the distribution
no matter what the initial random sparse graph is. Note that unlike other models [6, 21],
the graphs generated by our model do not contain self-loops nor multiple edges between
two vertices.

Barabdsi et al. [9] also proposed a non-growth model, which failed to produce a power
law distribution. Both models have preferential connectivity features. However, there are
several differences between our model and theirs. First, our edge set is fixed and the
initial graph is generated via classical random graph model [14, 18]. Second, our model has
“rewiring” feature similar to one in the small world model [9, 25, 31].

2.1 Simulation Results

We simulated our model on graphs of different sizes, (500 < n < 5000), and densities 77,
(1 <2 <3) for 5 times. We performed r = 10000000 edge deletion/insertion operations on
each graph. The vertices’ degree distributions appear to converge to power law distributions
as the number of edge deletion/insertion operations increases. Some of our simulation results
are shown in Figures 1- 4. Figures 1 and 3 show degree distributions at various stage of
simulations. Figures 2 and 4 show degree distributions for graphs with different densities
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Figure 1: Initial G(500,1500), & G After 100K and 10M Steps

™. (For G(500,1500), the best lines that fit our log-log plots have slopes between —1.34 and
—1.37 and correlation coefficients between 0.808 and 0.877. For G(3000,9000), the slopes
are between —1.51 and —1.62 and correlation coefficients are between 0.76 and 0.81.)

3 Cluster Information

Given a subgraph S of G, dg(v) is the degree for vertex v in S. Here we examine the
maximum degree dmax in all subgraphs, which is defined as

dmax = maxg minyes dg(v).

We use d. _ to denote the value obtained under graph model M.
To compute dmax for a graph G, we perform the following steps until G becomes empty:

1. Select a minimum degree vertex v from G.
2. Set dmax to d(v) if d(v) > dmax-

3. Remove vertex v and its edges from G.
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Figure 2: G(500,500), G(500,1000), and G(500, 1500) After 100 Steps
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Figure 3: Initial G(3000,9000), & G After 100K and 10M Steps
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Figure 4: G(3000,3000), G(3000,6000), and G(3000,9000) After 10M Steps
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Figure 5: Minimal Degree Vertex Elimination

The above steps correctly compute dy,,x because we cannot remove any vertices of S until
the degree of the current subgraph reaches dmax. The minimal degree elimination sequence
for graph in Figure 5 will be B,C, A, D, and E. The degrees when those vertices got
eliminated are 1,1,2,1, and 1. dpax is 2 since max{1,1,2,1,1} =2.

Observation 1 For any model M that constructs a graph by adding a vertex at a time,
and for which each newly added vertex has the same degree d = 7+, dM =d.

Thus the Barabdsi and Albert’s model (BA) [8] or the linear growth copying model in

[21] has the same value for dmax for graphs of all sizes once d = T is fixed.

Observation 2 The web graph generated by the linear model has minimum vertex degree



ofd=12

n -

Hence, the linear model may not encapsulate all the crucial properties in a web graph

if there are significant number of vertices with degree less than .

3.1 Web Crawl and Simulation Data

We performed web crawl on various Computer Science sites. We then used the AC L model
[6] to generate new graphs from degree sequences in the actual web graphs. We also run
the SS model using n and m values from the actual web graphs with 10000000 edge inser-
tion/deletion steps. For each graph, we run both models 5 times. The following table shows
the means p and the standard deviations o for dpmax values using the AC'L model and the
SS model.

Site n m | dmax | paCL | 0ACL | HSs | 05s
arizona 5315 | 16892 | 15 10 0 8 0
berkeley 2826 | 22957 | 45 21.6 | 0.547 | 16 0
caltech 622 4830 7 5.8 0.447 | 12.8 | 0.447
cmu 2052 | 23821 | 57 37.2 | 0.447 | 20 | 0.707
cornell 7145 | 14919 17 19.4 | 0.547 6 0
harvard 915 9327 21 12.6 | 0.894 | 16.4 | 0.547
mit 4861 | 15360 31 24.4 | 0.547 7 0
nd 1913 | 16328 33 29.2 | 0.447 | 15.4 | 0.547
stanford 2553 | 25693 27 14.6 | 0.547 | 18.4 | 0.547
ucla, 2718 | 19755 22 16.6 | 0.547 | 14.2 | 0.447
ucsb 5236 | 10338 | 22 13.8 | 0.447 | 5 0
ucsd 553 3885 15 7.2 0.447 | 11.8 | 0.447
uiowa 1410 | 12258 8 8.8 0.447 | 15.2 | 0.447
uiuc 5623 | 28872 29 21 0 11.8 | 0.836
unc 1465 | 5446 17 9.8 0.447 8 0
washington | 7001 | 24901 | 17 12 0 9 0

Table 1: dpax from Actual Web Crawl and Models Simulation

In general, the AC'L model and the SS model are generating less clustered graphs than
what we see on actual web graphs. This implies that we need a more detailed model of web
graph clustering behavior.



4 Conclusion and Open Problems

Previously, researchers have conjectured that preferential connectivity and incremental
growth are necessary factors in creating power law graphs. In this paper, we provide a
model of graph evolution that produces power law without growth. Our SteadyState model
is very simple in comparison with other graph models [21]. It also does not require prior
degree sequences as in the AC'L model [6].

The difficulty in comparing various models [6, 8, 21] is that each model has different
parameters and inputs. Here we provide a simple graph property dp,.. that captures the
clustering behavior of graphs without complicated subgraph enumeration algorithm. It can
be useful in gauging the accuracy of various models.

From our web crawl data, we know that the linear models such as Barabdsi’s [8] are not
the best ones to use when considering dpax. Both ACL and SS models are not generating
dense-enough subgraphs when comparing against the actual web graphs. Thus, we need a
better web graph model that mimics actual web graph clustering behavior.

Here are some of our open problems:

1. Can one prove theoretically that the SS method actually has a power law distribution?

2. How long does it take for our model to reach a steady state? As time proceeds, the
“high” degree vertices will attract more edges whereas all other vertices will have fewer
edges connecting to them until we reach a state, after which the degree distribution
won’t fluctuate much.

3. What are other simple web graph properties that we can use to determine the accuracy
of various models?

4. Are there any technique such as graph product that we can use to generate massive
web graphs in relative short time?
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