Viewing the Semantic Web Through
RVL Lenses*

Aimilia Magkanaraki®, Val Tannen?, Vassilis Christophides!, and Dimitris
Plexousakis®

! Institute of Computer Science, FORTH, Vassilika Vouton, P.O.Box 1385,
GR 71110, Heraklion, Greece and
Department of Computer Science, University of Crete, GR 71409, Heraklion, Greece
{aimilia, christop, dp}@ics.forth.gr
2 Department of Computer and Information Science, University of Pennsylvania, 200
South 33rd Street Philadelphia, Pennsylvania 19104-6389
val@cis.upenn.edu

Abstract. Personalized access and content syndication involving di-
verse conceptual representations of information resources are two of the
key challenges of real-scale Semantic Web (SW) applications, such as
e-Commerce, e-Learning or e-Science portals. RDF/S represents nowa-
days the core SW language for creating and exchanging resource descrip-
tions worldwide. Unfortunately, full-fledged view definition languages for
the RDF/S data model addressing these challenges are still missing.
We propose RVL, a view definition language capable of creating not
only virtual resource descriptions, but also virtual RDF/S schemas from
(meta)classes, properties, as well as, resource descriptions available on
the Semantic Web. RVL exploits the functional nature and type system
of the RQL query language in order to navigate, filter and restructure
complex RDF/S schema and resource description graphs.

1 Introduction

The syndication and personalization of web resources, including semantic re-
conciliation and integration of heterogeneous metadata, are nowadays emerg-
ing as key challenges for Semantic Web [5] applications, such as e-Learning,
e-Commerce or e-Science portals. Metadata provide the means to describe re-
sources, thereby facilitating their manipulation both by applications and hu-
mans. The core Semantic Web (SW) language for creating and exchanging re-
source descriptions worldwide is the Resource Description Framework/Sche-
ma Language (RDF/S) [16,8], which provides i) a Standard Representation
Language [16] for metadata based on directed labelled graphs in which nodes are
called resources (or literals) and edges are called properties; ii) a Schema Def-
inition Language (RDFS) [8] for creating vocabularies of labels for these graph
nodes (called classes) and edges (called property types); and iii) an XML [7]
syntazx for expressing metadata and schemas.

* This work was partially supported by the EU project SeLeNe (IST-2001-39045).

The declarative access in the metadata repository of a SW application is
facilitated by RDF/S query languages, such as RQL [14], a typed, functional
query language for uniformly navigating/filtering on RDF/S graphs at all ab-
straction levels (metaschema, schema and data). However, a query language is
not enough. As with any query language, formulating queries on data with com-
plex organization may require schema knowledge beyond the needs of a given
application. This difficulty can be alleviated by the use of views, which create
virtual schemas and resource descriptions reflecting only the users’ conception of
a specific application domain. In relational databases, the standard query lan-
guage, SQL, serves also as a view definition language. However, for Semantic
Webs (SW) represented as RDF/S graphs, a view should not be restricted to a
query returning part of the SW, as RQL queries do. Instead, it should extend to
the restructuring of class and property hierarchies, allowing the creation of new
resources and property values, and even new classes and property types. To the
best of our knowledge, no language for defining such views has been proposed
before. In this paper we introduce RVL (RDF View Language), an expressive
view definition language designed to play this role. RVL provides users with the
ability to define a view in the same way in which they write normal RDF/S
schemas and resource descriptions, defining classes and “populating” them with
resources. By exploiting the RQL type system and the distinction of abstra-
ction layers in an RDF/S application, RVL captures the desired functionality
through the use of just two operators in essence treating schema creation as the
instantiation of appropriate metaclasses.

The organization of the paper is as follows: Section 2 motivates the use of
the RVL view definition language by means of an e-Learning portal example
and exhibits a first sample of the functionality it supports. Section 3 unfolds the
expressiveness of RVL by presenting the operators it specifies and their respe-
ctive functionality, while Section 4 complements the presentation of RVL by
presenting existing related approaches. Lastly, Section 5 concludes this paper by
presenting directions for future work.

2 A Motivating Example

Educational portals aggregate and classify in a semantically meaningful way va-
rious online resources for different educational audiences (e.g., instructors, lear-
ners, etc.). The main resources of information in such Portals are called learning
objects (LO) containing any kind of material (e.g., a web page, a ppt prese-
ntation, a book, a Java applet, etc.) which can be used or referenced (using,
for instance, URIs [4]) during technology supported learning. To enable effective
search in educational portals, LOs are described according to e-Learning meta-
data standards, such as IEEE/LOM, ARIADNE or IMS?. E-Learning schemas
and LO descriptions can be easily represented in RDF/S [16, 8].

We present in Figure 1 the RDF/S description schema and base of such a por-
tal. The upper part of the figure presents a simplified RDF/S schema for descri-

3 http://ltsc.ieee.org/wgl2/, http://ariadne.unil.ch/Metadata/, www.imsglobal.org/

ns1: httpftwwew sLearningPortal.arschema.rdf

related

r:http e oo woc op by 359

rkhttp: s icsd uoc op i~y 240

g I subject
g
i St earning Obje
= String
g organization i / Siring
= X
: LT T
A ¥
_.' 3| ™
[Database Managemnent’] [Web Data Management’] ;. titlo_pl Braduate Computer Science Studies
T z = [— - 7 it 7 1 A
University of C:ehe g Distributed Systems ubjBUbJ'9qF E t}ﬂe | par-‘.to r.l = Context
organization™,_ T s : —
- . created By ! B languag® ar
name “Eri-iagProrsauisite
& reated By Y ¢ S R T s e G
i & asP'rer'tlaquisite;l '3' BT “Programming Technigues®]
= 4 i 1 [Agta =" =]
T - partofi partof subje Distributed Svstems
3 subject . L hasPrerequisite
— [*Database Management” hasPrerequisite B ! o “Undergraduate Computer Science Studies”l
Bve e itle
2 . : ——» [Urgergedu
a . partaf partd ' ?
= - subject , subject
: “Object-Criented ngrammlng”l
leve ard path Er5 el
Wl W | g Sl
hldic il | SEmRE T e B typeGf (class instance)
218 ——P =ubClassOf [isA)
title subject evel ———— subPropertyof (isA)
—— Property
I“Introduction to Programming”| |“Programming Techniques”| |“1st year” — = Property Instance
_QE r:http: iAeanay c2d uoc ori~ by 561 & http sy csd woc o by 252 T http: iAnsnane csd Lo gri~Professor &
g Pl r2:hittp Mheaneey csod woc op i~ by 360 ri6:httpe s csd woc.ori~hy 150 r:httpc Mnensne csd Loc griundergraduste
—

ikttt ced woc grigradustes

Fig. 1. An example e-Learning Portal application

bing LOs using attributes with information about their content (title, subject,
language, format etc.), as well as their pedagogical value (educational context
and level, learning objectives and time, etc.). Specialization of learning material
at different granularity levels is represented by the rdfs:subClass-es (class sub-
sumption) Program, Course, Lesson or more specific components, such as notes,
assignments, exams, figures or simulation programs. Relationships between LOs
like hasPrerequisite capturing learning dependency graphs or partof capturing
learning material composition trees, are defined as rdfs:subProperty-’s (property
subsumption) of the abstract relationship related (according to e-Learning stan-
dards other specializations are also possible). Finally, LOs may be also related
to other classes of resources through relationships like createdBy ranging over
instances of the class Contributor, described in turn by attributes like name and
organization.

The lower part of Figure 1 illustrates the descriptions of some LOs provided
by the Web site of the Computer Science Department of the University of Crete
(CSD Uoc). For instance, the LO &rl is of rdfitype Course and has a title
attribute with value “Web Data Management” and two subject attributes with
values “Database Management” and “Distributed Systems”. In addition, &rl
is part of &r9 (i.e., the graduate studies Program of the CSD Uoc), has two
prerequisites courses &r2 (with title “Files and Database”) and &r3 (with title
“Web Programming”) and it has been createdBy the Contributor &r7 with

name “Professor A” and organization “University of Crete”. In a similar way
are described the other LOs of the CSD Uoc illustrated in Figure 1.

Searching L.Os in such Semantic Web portals relies on declarative query lan-
guages for RDF/S descriptions, such as RQL [14]. Although portals usually pro-
vide appropriate GUIs for assisting users during searching, the formulation of
effective queries depends heavily on the understanding of the portal’s description
“schema”. Such RDF/S schema graphs can be quite complex, especially when
multiple schema namespaces are employed in a more or less peer-to-peer fashion
to describe LOs available on the Web. Therefore, having a central access point
to the wealth of LOs is a mixed blessing, if the user must be aware of too much
detail in order to search the portal. To enhance the user’s experience, we need
the ability to personalize the way the portal can be seen, by providing simpler
virtual schemas that reflect a user’s perception (e.g., for instructors or learners)
of the application domain. RVL, the view definition language we describe in this
paper, provides this ability. For instance, consider a simple virtual schema (view)
for instructors, which shows only database course materials and their authors.
This schema can be specified with the RVL statements presented in the bottom-
right part of Figure 2 taking as input the RDF/S description base of Figure 1.
The output of these view statements is the RDF/S virtual schema and resource
descriptions presented at the top-right part of Figure 2 in an XML serialization.

In RDF/S the uniqueness of (meta)schema labels and the ability to describe
resources using labels from several schemas is ensured by the XML namespace
facility [6]. Thus, we use in our example the RVL statement:

CREATE NAMESPACE myview=&http://www.ics.forth.gr/LO.rdf#

Descriptive labels are prefixed by the namespace of the schema to which they
belong (e.g., nsl#Learning_Object), forming in this way unique URIs. This is
particularly important in the open and diverse Web world and even more so
when defining views, where virtual, but different, copies of old schema labels,
such as class and property names, are considered.
The second RVL statement in our example “creates” the virtual classes
Author and DBCourse and the virtual properties creates and name:
VIEW rdfs:Class("DBCourse"),rdfs:Class("Author"),
rdfs:Property("creates", Author, DBCourse),
rdfs:Property("name", Author, xsd:string);

where rdfs:Class and rdf:Property are two core metaclasses provided in the de-
fault RDF/S namespaces. The semantics of these namespaces along with the
XML Schema datatypes is built-in in RV L/RQL and the corresponding name-
space prefixes (e.g., rdf, rdfs,xsd) can thus be omitted, while we can use the
USING NAMESPACE clause to declare the namespaces used in view statements. As
we will see in the next section, RVL also provides the ability to create virtual
subsumption hierarchies or even to filter/restructure existing ones.

The third RVL statement “populates” the virtual classes and properties de-
fined in the view with appropriate instances copied from the source schema
illustrated in Figure 1:

VIEW DBCourse(Y),Author(X),creates(X,Y) ,name(X,W)
FROM {Y;ns1:Coursel}createdBy{X}.ns1:name{W},

<7zl wersion="1.0" encoding="UTF-&" 7>
=rdfFEDF zminsrdf="http/warw w3 org/1 999/02/22rdf
syntas-ns#' >
<rdfBag>
<rdfili=
<rdfiSeq=
=<rdfli rdftype="resource" rdfresource="&rl"/>
=rdfli rdfitype="resource" rdfresource="&r7"/>
=rdfli rdftype="string">Professor A<idfli=
=</rdf.Zeq>
<irdfli=
<rdfili=
=rdfiSeg>
<rdfli rdfitype="resource" rdfresource="&r2"/ >
<rdfli rdftype="resource" rdfresource="&r7"/ >
=rdfli rdfitype="string">Professor A<idfli=
<frdfiSeg>
<irdfili=
<irdf.Bag>
<irdf FDF >

=<7xml wersion="1.0" 7>
=rdfFDF zmllang="en"
slns rdf="httpfwranar w3 orgd 199970 272 2 -rdf-syntas-ns#"
hittp/fararar w3, org/ 200070 LA df-schernad#!
5 hitp: e w5 org/ 200 1/ZVIL Schema#' =
<rdfs:Class rdf ID="Author"/ >
<rdfs:Clazs rdfll DECourse"/>
=rdfPropetty rdf [D="creates">
<rdfsdomain rdfresource="#Author"/>
=rdfsirange rdfresource="#DE Course'/>
</rdfProperty>
<rdf:Property rdf: ID="name">
<rdfz:domain rdfresource="#Author"/>
<rdfsrange rdfresourc e="htip: /Ay w3 orng/ 200 L X ML Schema#string ' =
</rdfProperty=
<DB Course rdfabout="&rl"/>
<DB Course rdfabout="&r2"/>
<duthor rdfabout="dr7T"=
<creates rdfiresource="&rl"/ >
<creates rdfiresource="&r2"/ >
<name=Professor A</hame>
<iduthors
<{rdfFEDF =

SELECT ¥, X, W
FROM {¥:nsl:Courselnsl:createdBy{x]}.
nsl:name{&t, {¥insl:subject{=}
WHERE = like “Databasze Management”
USTNG NAMESPACE
nsl=&www.elLearningPortal .ar/schema. rdf#

CREATE NAMESFALCE

mywl ew=&http: /fwew. ics . Torth.gr/LO. rdf#

WIEW rdfs:Class("'DBCourse'],
rdfs:Class {"Author'l,

rdf:Property(''creates'',

Author, DECoursel,

rdf:Proper “"pame'!, Author, xsdiztrin 3
VIEW DECourea)E)f;g\ut or (XY, creatésCx, Yg,namg%)dw)
FROM {Vvinsl:Courseltnsl:createdBy{xt.nsl:name{&’,

{vinsl:subject{=}

WHERE = like “Database Management’;

USTNG NAMESPACE
nsl=&www.elearningPortal..gr/schema. rdf#,
wed=&http: /. w3 org/2001/>MLSchema#,
rdf=&http: /fwww. w3 . orgf1999/02 /22 -rdf-syntax-ns#,
rdfs=&http: /Swwow . w3 . org/2000/01L rdf-schema#

RQL

RVL

Fig. 2. Comparing RQL to RVL

{Y}ns1:subject{Z}

WHERE Z like "Database Management';

This statement works much like a query on the portal description base. In fact,
to emphasize the connection we present on the left side of Figure 2 an RQL
query that has the same FROM and WHERE clauses as the RVL statement. In the
top-left of the figure we give the XML serialization of the result of this RQL
query.

As we see, an RVL FROM clause consists of RQL [14] path expressions per-
mitting easy navigation through complex schemas and description bases and
to appropriately bind the introduced variables. Filtering conditions on these
variable bindings are stated in the WHERE clause. For instance, the RQL path
expression {Y;ns1:Course}nsl:createdBy{X}.ns1:name{W} will match all in-
stances of class Course and their associated createdBy properties, which link
them to some instance of Contributor and its name value. For each such match,
we get a binding that maps Y to the Course resource, X to the Contributor and
W to the name. In a similar way, the path expression {Y}ns1l:subject{Z} is
evaluated and the involved variable bindings are filtered according to the WHERE
clause as well as to the implicit join condition imposed by the presence of the
same variable, Y, in both path expressions. Notice however the difference be-
tween the result of the RQL query and the output of the RVL view definition
in Figure 2. Although their input is the same RDF/S graph, RVL is capable of
producing virtual schemas and resource descriptions instead of simple variable
bindings represented in some (nested) tabular form.

This functionality is ensured by the VIEW clause, where appropriate popula-
tion functions are used taking as parameters the variable bindings produced by
the FROM-WHERE filter. For instance, the virtual class DBCourse is populated with
instances (bound to variable Y) of the original class Course having a property
subject valued “Database Management”. The virtual class Author is populated
with instances (bound to variable X) of the base class Contributor, which are
the range values of the property createdBy applied to Course resources. In other
words, Author is populated with all the contributors who have created a database
course. Virtual properties are populated with pairs of resources (e.g., creates is
populated with authors having created database courses) or pairs of resources-
values (e.g., name is populated with the names of database course authors). One
of the most salient RVL features is its ability to create virtual schemas by sim-
ply populating the two core RDF/S metaclasses Class (e.g., with schema classes
Author and DBCourse) and Property (e.g., with schema properties creates and
name).

For somebody interested only in database learning material, this view is much
easier to understand. One can then easily formulate queries on the view such as
the following one in RQL:

SELECT Y

FROM {X}myview:creates{Y}, {X}myview:name{Z}

WHERE Z = "Professor A"

USING NAMESPACE myview=&http://www.ics.forth.gr/LO.rdf#
This query should retrieve the database courses created by the author named
“Professor A”.

3 RVL: A View Definition Language for RDF/S

Motivated by the previous example, a fundamental question one can naturally
pose, is “what is a good specification of views for the RDF/S data model?”. We
have designed RVL as a conceptually simple language enabling both humans and
applications to understand view specifications as normal RDF/S schemas and
resource descriptions. More precisely, an RVL view specifies a virtual descri-
ption schema graph (or virtual schema for brevity). Its extension corresponds
to a virtual description base graph (or virtual base for brevity), which is a
valid instance of the virtual view schema. Thus, RVL views produce new RDF/S
(meta)classes and properties which are virtual and their instances are computed
from the source base(s) or schema(s) using the RVL program specifying the
view. This program defines essentially the mapping (i.e., transformation) of the
input (i.e., source) to the output (i.e., virtual) RDF/S graph(s).

3.1 RVL Design Choices

In order to design an effective RDF/S view specification language we have ad-
dressed the following issues:
1. How are the virtual schema (meta)classes and properties of a view related
to the source description schema(s)?

2. How are the virtual base resources and property values of a view related to
source description base(s)?
3. What is the expressiveness of the input/output transformations supported
by the view specification language?
4. How can the output of view specifications be used in queries and other views?
In the sequel, we will present the main design choices for RVL in response to the
above fundamental issues.

Logical data independence is one of the most important properties that
a view definition language should respect (recall the ANSI-SPARC three-level
architecture [3]). It essentially requires that view specifications should be in-
dependent from those of the source schemas and bases, while the semantics of
existing virtual schemas should not be altered by the definition of new ones. For
this reason, the scope of virtual (meta)class and property definitions is deter-
mined in RVL by the namespace of the view. This is particularly useful since
RVL allows us not only to create new (meta)classes and properties (as in Fig-
ure 2), but also to import in a view existing ones from the source schemas given
as input. Imported (meta)classes and properties are simply replicated in the
virtual schema and do not interfere with the source ones. Moreover, as we will
see in Section 3.2, virtual subsumption hierarchies (for both classes and pro-
perties) could also be defined in a view, which are not necessarily present in the
source schemas. Instead of creating a global subsumption hierarchy mixing both
virtual and source (meta)classes and properties, an RVL virtual schema refers
only to the subsumption relationships explicitly established between the virtual
(meta)classes and properties. The separation of virtual from source (meta)classes
and properties in RVL leads to smaller virtual schemas easier to understand and
manage.

View instantiation capabilities. Besides the population of virtual (meta)clas-
ses and properties using, for instance, RQL queries (see Figure 2) over the original
description base (i.e., object-preserving views), an RVL virtual schema can
also be instantiated in the view (i.e., object-generating views) specification.
These instances exist only during the activation of the view and their identifiers
are generated by appropriate Skolem functions. As a matter of fact, the entire
virtual schema specified in a view is essentially a new instance of the default
RDF/S meta-schema (class and property names are used as unique identifiers)!
As we will see in Section 3.2, this functionality is also useful in cases where virtual
resource descriptions may have both a dynamic part populated with resources
from the original base and a static one populated exclusively at the view level.
RVL is powerful enough to support both kinds of view instantiation, while in-
stances of the source schemas are simply copied into the view extension, thereby
acquiring a virtual hypostasis.

Transformation expressiveness is the cornerstone of the RVL design in or-
der to cope with a wide range of heterogeneities found in real-scale Semantic
Web applications [15,12]. Therefore, a view specification language should pro-
vide the ability to both create (for personalization purposes) and reconciliate
(for mediation purposes) quite different conceptual representations of the same

application domain. For this reason, RQL is equipped with heavy data restru-
cturing facilities enabling users to change the abstraction level (i.e., metaschema,
schema, data) in which a particular view construct is defined. As we will detail
in Section 3.2, RVL is capable of “promoting” literals or resources of the original
description base to virtual classes as well as of “demoting” metaclasses of the
original description schema to virtual classes of the view. This ability is ensured
by the expressiveness of the RQL query language to query RDF/S information
at all abstraction levels and the polymorphic type system of the RVL population
functions (i.e., the VIEW clause).

Closure of view language. On the one hand, one should be able to query
RVL views, as in the case of source schemas and description bases. Since RVL
views introduce virtual schemas, one can use their namespace to formulate RQL
queries (see previous section) retrieving (part of) the RDF/S graph specified
by the view program. On the other hand, one should be able to create views
using both source and virtual schemas. We can distinguish between two levels
of view specification reuse: inside a virtual schema (intra) and across (inter)
virtual schemas. Intra view reuse is not supported by RVL, since it gives the
possibility to define the extension of a virtual (meta)class based on the extension
of another virtual construct of the same view. To ensure data independence and
avoid cyclic declarations of virtual classes which are hard to grasp, we impose
the following restriction: the FROM clause of RQL queries defining the population
of the view constructs cannot refer to information (schema and data) of the view
being defined. Only inter view reuse is supported by RVL for creating virtual
(meta)classes and properties by employing other virtual schemas. This process
results in a cascade of virtual schema specifications, which ensures that the
constructs of a virtual schema used in the definition of another virtual schema
have already been defined.

The above design decisions were taken with the objective of devising a clear
and expressive RDF/S view specification language required by a large spectrum
of Semantic Web applications. In the sequel, we will detail how RVL implements
this functionality.

3.2 RVL Operators

RVL reduces the creation of virtual schemas and description bases down to
the use of two operators, namely the instantiation and the subsumption
operators. In order to ensure the validity of their application and infer the type
of virtual constructs, the operands of the RVL operators must be of a specific
type, which is checked during compilation w.r.t the RQL/RVL type system using
the typing rules presented at Table 1 in Appendix. In addition, the presence of
this type system, facilitates a more compact declaration of view statements in
the sense that the type of one entity in the source schema or base can be reused
as such in the view. This ability does not prohibit users to alter the type of
one element using the instantiation operator, as we will subsequently see in this
section.

rdfs:Class o _rdf:Property
Zw o 3

context, -

= : *

Yirtual base |virtual schema|Metaschema

“Web Data Managernent” ||

,,,,, B typeOf (class instance)

——P subClassOf (isa)

title T R ;

i ST b o partyOF (isa)
" | — g subPrope s
*Semantic Web” title hitle "web Programming” 3 e
—— P Proparty
EZrio Er3 g Property Instance

Fig. 3. A more complex RVL view

In the following, we will sketch out the functionality supported by each ope-
rator by using the more complex view illustrated in Figure 3. This virtual schema
is defined as a view on the schema of the motivating example in Figure 1 and
refers to computer science courses —especially database and programming lan-
guages courses— and their authors. In each case, we cite the typing rule of
Table 1 applicable for the specific operator.

The instantiation operator, denoted “()”, exploits the existence of abstra-
ction layers in an RDF/S graph to support: (a) the creation/import of virtual
(meta)classes and properties and (b) the population of virtual (meta)classes
and properties. The instantiation of a virtual construct should be performed
only with resources at the immediate lower abstraction level (see rules 9-12 in
Table 1). Changing the type of an RDF/S entity in an RVL view compared to
a source schema or base (e.g., a literal to class, or a metaclass to a class) is also
supported using more complex RVL expressions.

Let us examine the functionality of the instantiation operator by means of
the example view illustrated in Figure 3. In the simplest case, we are interested
in creating new virtual classes as follows (see rule 3):

VIEW Class("Author"),Class("CSCourse"),Class("DBCourse"),Class("PLCourse");

The first operand of “()” is the (meta)class (e.g., Class) one wants to popu-
late with a new instance identified by the string value of the second operand
(e.g., Author). Virtual metaclasses of classes and properties can be also cre-
ated by instantiating the RVL built-in (meta)metaclasses rvl:MetaClass and
rvl:MetaProperty (see rules 1 and 2 respectively).

In order to import a part (i.e., a set) of the classes defined in a source schema,
we need first to use an RQL filter in order to identify which classes (or properties)
are going to be imported into the virtual schema and then, use the instantiation
operator in the VIEW clause as depicted by the following example (see rule 3):

VIEW Class(X)
FROM Class{X}
WHERE namespace(X) = nsl and X < nsl:Learning_Object;

The RQL path expression Class{X} in the FROM clause introduces a variable
X ranging over all classes, while the WHERE clause filters X bindings only to
the subclasses (direct or transitive) of Learning_Object defined in the schema

namespace nsl. The instantiation operator “()” in the VIEW clause simply cre-
ates new instances of Class for each successful binding of class variable X. Since
in this case we are importing in the virtual schema classes as provided by the
source schema, we can omit the explicit call to the instantiation operator by just
writing VIEW X.

This abbreviation cannot be used when we transform (“promote” or “de-
mote”) the abstraction level (i.e., metaschema, schema, data) of constructs spe-
cified in the view w.r.t. their level in the source schema and base. Assuming, for
instance, that the values of the property subject are not simple strings but terms
from a structured vocabulary (e.g., ACM Computing Classification System?),
one can easily create virtual classes from these values using the following RVL
statement (see rule 3):

VIEW Class(X)
FROM ns1l:subject{X};

In this example, string values will be used as unique names of the so created vir-
tual classes. For this purpose, the instantiation operator uses appropriate Skolem
functions: for two equal subject values, only one virtual class is created. This
ability offers a great flexibility in view specification, especially in environments
with high diverse modelling of resource descriptions.

As far as properties are concerned, RVL follows the RDF/S approach to
consider properties as first-class citizens. Thereby, their definition is independent
of the definition of the class they are attributed to, while they can be special-
ized forming subsumption hierarchies. The restriction posed by the RQL/RVL
data model is that the domain and range of a property must always be defined
and be unique, thus the creation of a (virtual) property is accompanied with
the definition of its domain and range classes (or metaclasses or literal types).
To accommodate for this peculiarity, the instantiation operator has a slightly
different syntax. The first operand of the instantiation operator corresponds to
the name of the core metaclass of properties (Property), the second to the name
of the virtual property, the third to its domain and the fourth to its range. In
the simplest case, we are interested in creating new virtual properties as follows
(see rule 4):

VIEW Property("creates", Author, CSCourse),

Property("name", Author, xsd:string),

Property("context", CSCourse, xsd:string),

Property("title", CSCourse, xsd:string);
This view statement creates four new instances of the metaclass Property uniquely
identified by their names: the virtual property creates emanating from the vir-
tual class Author and ranging over the virtual class CSCourse as well as the
virtual attributes name, context and title of type string having as domain
respectively the virtual class Author and CSCourse.

Due to the functional nature of RVL, the operands of the instantiation oper-
ators could be not only atoms (constants or variables) but also other RVL/RQL
expressions of an appropriate type. For instance, we could define inverse pro-
perties using the following RVL statement (see rule 4):

VIEW Property("creator",domain(nsl:createdBy) ,range(nsl:createdBy));

4 http://www.acm.org/class/1998/

In this example, the virtual property creator is created with domain and range
the virtual classes Contributor and Learning Object respectively returned by
the employed RQL functions. This is an example of another possible RVL ab-
breviated expression: the domain and range virtual classes Contributor and
Learning Object are defined in the view at the same time as the property
creator. The complete syntax of the VIEW clause comprises the expressions:
Class(domain(nsl:createdBy)) and Class(range(nsl:createdBy)).

As in the case of classes, we can import in the view a part (i.e., a set) of the
properties defined in a source schema as follows (rule 4):

VIEW Property(P, CSCourse, range(P))
FROM Property{P}
WHERE domain(P)=nsl:Learning Object and P < nsl:related;

According to our example of Figure 1, this RVL statement creates two instances
of the metaclass Property with names partof and hasPrerequisite with do-
main the already defined virtual class CSCourse and with the same ranges as in
the source schema identified by the namespace ns1.

Besides creating virtual schemas we also need to populate the virtual classes
and properties specified in the view. The same instantiation operator is used
for this purpose taking this time operands of different types. The additional
restriction imposed in the case of properties is that the resources at the data level
to which a property is attributed are instances of the domain and range classes
of the property at schema level. The following two RVL statements populate the
virtual classes and properties we defined above for the example of Figure 3 (see
rules 11 and 12 respectively):

VIEW DBCourse(Y),creates(X,Y),Author (X),name(X,W),context(Y,Z),title(Y,K)

FROM {Y;ns1:Course}nsl:createdBy{X}.nsl:name{W}, {Y}nsl:context{Z},
{YIns1:title{K}, {Y}nsl:subject{L}

WHERE L like "Database Management';

VIEW PLCourse(Y),creates(X,Y),Author (X),name(X,W),context(Y,Z),title(Y,K)

FROM {Y;ns1:Course}nsl:createdBy{X}.nsl:name{W}, {Y}nsl:context{Z},
{YIns1:title{K}, {Y}nsl:subject{L}

WHERE L like "*Programming*";

The virtual class DBCourse (PLCourse) is populated with instances of the source
class Course having a property subject valued “Database Management” (“Pro-
gramming Techniques” or “Object-Oriented Programming”). The virtual class
Author is populated in both cases by Contributor instances having created
(property createdBy) Course instances on the desired subject. Virtual prop-
erties are populated in a similar way (DBCourse and PLCourse are defined as
subclasses of CSCourse in the next section).

As a last example we illustrate how virtual classes (or properties) can be
populated with virtual resources residing exclusively at the view. Assuming that
an instructor wants also to include within the virtual base CSCourses published
by himself, he/she can issue the following RVL statement (rules 11 and 12):

VIEW CSCourse(&http://www.mycourses.net/~SemWeb),
title(&http://www.mycourses.net/~SemWeb, "Semantic Web");

As we will see in the next subsection, by defining DBCourse and PLCourse as
subclasses of CSCourse, the final population of CSCourse will contain its proper
instances, as well as, those of its subclasses.

In more complex situations, an instructor may want to populate the DBCourse
virtual class with resources from a source base, while complete their description
manually, by adding, for instance, a learning objective property:

VIEW DBCourse(X),objective(X,"research tutorial")
FROM {X;ns1:Courselnsil:subject{Y},
WHERE Y like "Database Management";

The above RVL statement will create for each LO instance of DBCourse an
objective property with value “research tutorial” (the property is assumed to
be already defined in the view).

The subsumption operator, denoted “< >”, is mainly used for defining vir-
tual sub-(meta)classes or subproperties. Some restrictions are imposed on the
use of this operator by the RQL/RV L data model. First, cycles in virtual class
(or property) subsumption hierarchies are not allowed. Second, the domain and
range of a property must be subsumed by the domain and range of its super
properties. In addition, the subsumption operator is applicable on operands of
the same type ((meta)/class and property types), since the formulation of hierar-
chies between entities of different type is meaningless (see rules 5-8 in Table 1).

In the simplest case one wants to explicitly define the subsumption rela-
tionship between two virtual (meta)classes or properties, as for instance in the
following RVL statements:

VIEW CSCourse<DBCourse>;

VIEW CSCourse<PLCourse>;

The second operand (e.g., DBCourse) of “< >” is declared to be a subclass (or
a subproperty) of the first one (e.g., CSCourse). Both operands in this example
are of type class (see rule 7).

As we have seen in the previous subsection, RVL give us the ability to import
a part of the source schema into the view. Using the subsumption operator in
conjunction with RQL filters, we are able to import not only the source classes
(or property) names but entire subsumption hierarchies from a source schema
as depicted in the following example:

VIEW $X<$Y>

FROM $X{;$Y}

WHERE namespace ($X)=&www.eLearningPortal.gr/schema.rdf# and
namespace ($Y) =&www.eLearningPortal.gr/schema.rdf#;

The RQL path expression in the FROM clause essentially traverse the class sub-
sumption hierarchy of the source schema identified by the namespace www.eLear-
ningPortal.gr/schema.rdf. Then, for each binding of the class variable $X (e.g.,
to Learning_Object), the variable $Y is bind to the corresponding (direct of
transitive) subclasses (e.g., to Course). The result of the original RQL query
produces essentially a Cartesian product of each class with its subclasses. The
use of the subsumption operator in the VIEW clause with operands the variables
$X and $Y results in the reconstruction in the view of the original subsumption

hierarchy of the source schema. It should be stressed that the above RQL path
expression considers a complete transitive closure of the subsumption hierar-
chy (i.e., there are all the paths from a node to its ancestors up to the root).
This is extremely useful when filtering conditions on class (or property) names
are also used in the WHERE clause. For instance, the exclusion from the view of
some source classes (e.g., Program) results into a “connected” hierarchy relating
through subsumption subclasses (e.g., figures, exams, etc) to their ancestors(s)
(e.g., Learning_Object). Since the use of appropriate labelling schemes for class
(or property) DAGS [9] alleviates the need for actually computing the transitive
closure, the subsumption operator can easily produce a minimal form in which
redundant relationships are removed.

The RVL examples presented in this section were just indicative of RVL’s
expressiveness. Consider the spectrum of possible views which can be defined
by changing the operands of the subsumption and instantiation operators and
by exploiting the querying capabilities of RQL. This expressiveness allows us to
think of RVL as a powerful transformation mechanism for RDF/S schema and
resource description graphs. In addition, RVL allows to capture in a view several
modelling constructs recently proposed in OWL [10] such as inverse properties,
synonyms of classes and properties or complex class definitions using boolean
expressions and existential /universal quantifiers (supported by RQL filters).

4 Related Work

Several view specification languages have been proposed in the database lite-
rature. The most relevant to RVL is work conducted in the context of ODMG-
compliant object-oriented DBMS, such as O3 [1, 18], MultiView [17], Chimera [13]
and K2 [19]. These view specification languages extend the relational approach
for defining views as “named queries” with features for creating virtual object
schemas. Apart from the differences between the ODMG and RDF/S data mod-
els (e.g., sub-properties, multiple classification of objects, etc.) or between the
underlying design choices (e.g., in transformation expressiveness), the main no-
velty of RVL compared to these languages lies in its flexibility to create virtual
classes (or properties) using RQL queries. This functionality is particularly useful
for Semantic Web applications managing large schemas in a peer-to-peer way.
Some view specification languages have also been proposed for the RDF/S
data model. In [20] set-based operations have been introduced in order to define
object-preserving views using an untyped version of RQL. Opposite to RVL, the
logical data independence of views is violated by this language, since virtual and
source classes are merged into one global schema, while restructuring constructs
for subsumption hierarchies are not supported. An alternative approach has been
proposed in [11], which relies on F-logic rules to define only virtual description
bases. Unlike RVL, this language does not provide the means to define virtual
RDF/S schema graphs using, for instance, meta-schema instantiation capabi-
lities. In the same spirit, [2] proposes a variation of RQL in order to produce
as a query result an output RDF resource description graph instead of variable

bindings in some tabular form. To the best of our knowledge RVL is the first
language offering a full-fledged view specification for the RDF/S model.

5 Summary and Future Work

We have presented RVL, a language that brings a new kind of capability to the
management of RDF/S metadata: users can create virtual schemas and resource
descriptions customized to the needs of specific applications. By distinguishing
the abstraction layers in an RDF/S application and by exploiting the RQL type
system, RVL realizes the virtual schema creation as the instantiation of appro-
priate metaclasses and achieves its target functionality through the use of only
two operators: the instantiation and the subsumption operators.

There remain several open issues to deal with in order to fully support a view
definition mechanism for RDF/S. One of them is the composition of queries for-
mulated against a view with the definition of the view in order to produce queries
against the original RDF/S data that can be actually evaluated (thus avoiding
the computation of the view data in its entirety). In relational databases compos-
ing SQL queries with SQL view definitions is fairly straightforward. Composing
RQL queries with RVL views is more challenging and is a research target for
us. Another important issue is checking the consistency of view definitions, i.e.,
checking whether the graph they produce satisfies the constraints of our model.
Again, we wish to develop methods for consistency checking that avoid the naive
approach in which the entire view data is constructed and then validated. Lastly,
although we have argued for the benefits of defining virtual views, it is possible
to implement an RVL engine that would actually compute and materialize the
views. Such a capability would be of interest in metadata transformation ap-
plications where, for example, subsidiary but independently functioning portals
are created from a given central one. This raises the classical problem of mainte-
nance/update of materialized views, a complex problem long pondered upon by
the database community. In the context of RDF/S, this problem is even more
interesting, due to the peculiarities of the data model.

References

1. Abiteboul, S., Bonner, A.: Objects and Views. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, Denver, Colorado (1991) 238-247

2. Aidministrator Nederland bv: SeRQL wuser manual, Version:0.4 (2003),
http://sesame.aidministrator.nl/publications/SeRQL

3. ANSI/X3/SPARC Study Group on Database Management Systems. Interim Re-
port. ACM SIGMOD Bulletin 7, N2 (1975)

4. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifiers (URI):
Generic Syntax. RFC 2396, http://www.ietf.org/rfc/rfc2396.txt

5. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. In: Scientific American
(May, 2001), http://www.sciam.com/2001/0501issue/0501berners-lee.html

6. Bray, T., Hollander, D., Layman, A.: Namespaces in XML. W3C Recommendation
(1999)

7. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E.: Extensible Markup Lan-
guage (XML) 1.0 (Second Edition). W3C Recommendation (2000)

8. Brickley, D., Guha, R.V.: Resource Description Framework Schema (RDF/S) Spec-
ification 1.0. W3C Candidate Recommendation (2000)

9. Christophides, V., Plexousakis, D., Scholl, M., Tourtounis, S.: On Labeling Schemes
for the Semantic Web. In: Proceedings of the 12th International World Wide Web
Conference (WWW’03), Budapest, Hungary (2003)

10. Dean, M., Connolly, D., Van Harmelen, F., Hendler, J., Horrocks, 1., McGuin-
ness, D., Patel-Schneider, P., Stein, L.A.: OWL Web Ontology Language 1.0 Refer-
ence. W3C Working Draft (2002)

11. Decker, S., Sintek, M., Nejdl, W.: TRIPLE: A Logic for Reasoning with
Parameterized Views over Semi-Structured Data. Technical Report (2002),
http://www.kbs.uni-hannover.de/Arbeiten/Publikationen /2002 /triple_views.pdf

12. Durand, D., Saton, P.: Semantic Heterogeneity Among Document Encoding
Schemes. Final Report for NIST Federal Assistance Contract 60NANBO0DO0115
(2002), http://www.stg.brown.edu/projects/semantic/semantic_stg.pdf

13. Guerrini, G., Bertino, E., Catania, B., Garcia-Molina, J.: A Formal Model of Views
for Object-Oriented Database Systems. Theory and Practice of Object Systems, 3(3)
(1997) 157-183

14. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.:
RQL: A Declarative Query Language for RDF. In: Proceedings of the Eleventh
International World Wide Web Conference 2002, Honolulu, Hawaii, USA (2002)

15. Klein, M.: Combining and Relating Ontologies: An Analysis of Problems and So-
lutions. In: Proceedings of the IJCAI’01 Workshop on Ontologies and Information
Sharing, Seattle, USA (2001)

16. Lassila, O., Swick, R.: Resource Description Framework (RDF) Model and Syntax
Specification. W3C Recommendation (1999)

17. Rundensteiner, E.: MultiView: A Methodology for Supporting Multiple View
Schemata in Object-Oriented Databases. In: Proceedings of the 18th International
Conference on Very Large Data Bases, Vancouver, Canada (1992) 187-198

18. Souza dos Santos, C., Abiteboul, S., Delobel, C.: Virtual Schemas and Bases. In: M.
Jarke, J. Bubenko and K. Jeffery (editors): Proceedings of the Fourth International
Conference on Extending Database Technology, St John’s College, Cambridge, UK.
Lecture Notes in Computer Science No. 779 (1994) 81-94

19. Tannen, V., Davidson, S.: The Information Integration System K2. In preparation.

20. Volz, R., Oberle, D., Studer, R.: Views for light-weight web ontologies. In: Pro-
ceedings of the ACM Symposium on Applied Computing SAC 2003, Melbourne,
Florida, USA (2003)

Appendix: RVL Typing Rules

The type system foreseen by RQL [14] specifies a set of types, namely the
metaclass of classes (MC) (7ar), metaclass of properties (MP) (7ar,),
class (7¢), property (7p[r, 7]), resource URIs (7y), literal (71) (XML Sche-
ma data types), bag ({.}), sequence ([.]) and alternative ((.)) types. The nota-
tion 7p |7, 7] for property types indicates the exact type of its domain (metaclass
and class types) and range (metaclass, class and literal types) (first and second
position in the sequence). For brevity, we use the notation 7p for property types.

RVL extends this type system by specifying two more metaschema types, wc
and wp, used by the instantiation operator to created user-defined metaclasses
of classes and properties respectively. The restrictions and inferences specified by
RVL are captured by the typing rules presented in Table 1. Each rule represents
the drawing of a conclusion (the part below the horizontal line) on the basis
of a premise (the part above the horizontal line). For instance, rule 12 states
that: “If e is an expression of property type and ey and ey are expressions of
types 71 (resource, class or property) and o (resource, class, property or literal)
respectively, then e(ey,ea2) is a valid expression of type sequence of types 71 and
T9. Otherwise, a type error is returned”.

Table 1. RVL Typing rules

Operation Typing Rule

MC creation

e1:we, ex: T, T E{string,Tm,,TMm,,TC,TP,TU } (1)
ei(e2) : T,

e1:wp,e2:T,TE {StTing,TMC,TMP,Tc,TP,TU} (2)
e1(e2) : T,

MP creation

Class creation

e1:7m,, e2: T, T E{string, ., Tm, , TC,TP,TU } (3)
ei(e2) : ¢
€:Tum,,e1:T1, T1 €{string, T, ,T;, , TC,TP }
Property Creation ey:7m, 7€ {rar,,7m,,7c}, €3:73, 73 € {rar. 7, 7o} (4)
e(e1, ez, e3) : Tp[T2, T3]

MC subsumption

e1:TM,.,€e2:TM, (5)
e1 < ez >: [T, T™,|

€1:TM,,€2:TM, (6)

MP subsumption
e1 < ez > [Ta,, Tad,]

Class subsumption

e1:7c,e2:7C (7)
e1 < ez >: [tc, 7C]

e1:Tp,€2:Tp (8)

Property Subsumption
e1 < ez >: [Tp, 7P|

MC population £1:TM., €2:TC)
ei(e2) : ¢

MP population £1:TMy, €2:TP (10)
ei(e2) : 7p

Class population £f1:70,€2: 7 (11)
ei(e2) : U

e:Tp,e1:71, 1 €{TU,7C,TP},€2:T2, T2 € {TU,TC,TP,TL} (12)

Property population
e(e1,e2) : [11,T2]

