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RCC-8

(Egenhofer & Franzosa, 91): 9-intersections

 A ∩B A ∩ δB A ∩B′

δA ∩B δA ∩ δB δA ∩B′

A′ ∩B A′ ∩ δB A′ ∩B′


“The binary topological relation between two objects, A and B, in R2 is based
upon the intersection of A’s interior, boundary and exterior with

B’s interior, boundary and exterior.”

regions = ‘homogenously 2-dimensional objects with connected boundaries’

8 relations are possible between a pair of regions (out of 29)

(Randell, Cui & Cohn, 92): first-order theory of connection C(x, y)

(Whitehead, 1929)
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DC(r, s) EC(r, s) PO(r, s) EQ(r, s) TPP(r, s) NTPP(r, s)

“. . . in terms of content, it seems odd that two regions can be
distinct, but that each occupies the same amount of space. . . ”
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Regular closed sets

X ⊆ T is regular closed if X = X◦−

(i.e., the set coincides with the closure of its interior)

RC(T ) = sets of the form X◦− , for X ⊆ T
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(Bennett 94): RCC-8 is a fragment of S4u:

regions = variables, which are interpreted by regular closed sets
2u(p↔ 32p)

DC(r, s) = 2u(r ∧ s→ ⊥)
TPP(r, s) = 2u(r → s) ∧ ¬2u(s→ r) ∧ 3u(r ∧ ¬s)
. . .

(Renz 98): Satisfiability ofRCC-8-formulas in the class of all topological spaces
is NP-complete

Every consistentRCC-8-formula is satisfied in a model over Rn, n ≥ 3,
where all variables are interpreted as internally-connected closed polyhedra
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Topological logics

RC(T ) is a Boolean algebra (RC(T ),+, ·,−, ∅, T ),
where X + Y = X ∪ Y , X · Y = (X ∩ Y )◦− and −X = (X)−

terms:
τ ::= ri | τ1 + τ2 | τ1 · τ2 | − τ | 000 | 111

formulas:
ϕ ::= τ1 ⊆ τ2 | C(τ1, τ2) | c(τ ) | c◦(τ ) | ¬ϕ | ϕ1∧ϕ2 | . . .

regular closed subsets of T

true or false

M |= τ1 ⊆ τ2 iff τM
1 ⊆ τM

2

M |= C(τ1, τ2) iff τM
1 ∩ τM

2 6= ∅
M |= c(τ ) iff τM is connected
M |= c◦(τ ) iff (τ ◦)M is connected

topological model M = (T, ·M)
T a topological space
·M a valuation

NB. RCC-8 is a topological logic: DC(r, s) = ¬C(r, s)
TPP(r, s) = (r ⊆ s) ∧ ¬(s ⊆ r) ∧ C(r,−s)
. . .
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Bc◦ over arbitrary topological spaces

Bc◦ is the language with predicates ⊆ and c◦ and full Boolean terms

Theorem. Satisfiability of Bc◦-formulas in the class of all topological spaces
is NP-complete

Proof. Normal form:

ϕ = (ρ = 000) ∧
∧

1≤j≤m

(σj 6= 000) ∧
∧

1≤i≤n

(
c◦(πi) ∧ (πi 6= 000)

)
∧

∧
1≤k≤p

¬c◦(τk)

Step 1. If ϕ is satisfiable then it is satisfiable in a saturated Aleksandrov model:

π π π π

all points consistent with ρ a copy of all points consistent with ρπ

Step 2. Select m+ 2p+ 2n points and,

for each 1 ≤ k ≤ p, select ≤ n points yτk,πi
∈ πA

i ∩ (−τk)A (if the set is not empty)

polynomial finite model property
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Bc over arbitrary topological spaces

Bc is the language with predicates ⊆ and c and full Boolean terms

Theorem. Satisfiability of Bc-formulas in the class of all topological spaces
is EXPTIME-complete

Proof. (lower bound) Every satisfiable f-la is satisfied in a finite Aleskandrov space

connectedness in an Aleksandrov space (W,R) =
graph-theoretic connectedness of (W,R ∪R−1)

encoding of binary trees

r0 r1 r2 r3 r4 r5 r6

(r0 6= 000) ∧ (r6 6= 000) ∧ c
(∑6

i=0 ri
)
∧

∧
|i−j|>1

¬c(ri + rj)

r0 r1 r2, r
′
0

r3 r4 r5 r6 = r′6

r′1

r′2

r′3

r′4 r′5

(r2 ⊆ r′0)
(r4 ⊆ r′0)
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Euclidean spaces

Theorem. Satisfiability of Bc- and Cc◦-formulas in RC(Rn), n ≥ 2,
is EXPTIME-hard

Proof. a) finite trees are enough to encode alternating TM with polynomial tape
b) ¬c(τ1 + τ2) = ¬C(τ1, τ2), for internally-connected τ1, τ2

NB. This proof does not work for Bc◦ (¬c◦(τ1 + τ2) is too weak)

Polygons v Regular Closed Sets

3∧
i=1

c◦(ri) ∧ c◦(r1 + r2 + r3) →
3∨
i=2

c◦(r1 + ri)
r1

r2

r3

sin
1
/
x

However, this Bc◦-formula is valid if the ri are semi-linear sets (i.e., polygons)

RCP(Rn) is the class of models over Rn
with valuations assigning n-dimensional polyhedra to variables
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Bc◦ over RCP(Rn)

A graph model G = (G, ·G):
G = (V,E) is a (finite undirected simple) graph

rGi ⊆ V
+, · and − are the union, intersection

and complement
G |= c(τ ) iff τG is connected

A neighbourhood graph of
an internally-connected partition X1, . . . , Xn is

G = (V,E), where G = {1, . . . , n}
E = {(i, j) | (Xi +Xj)

◦ connected}

A Bc◦-formula is satisfiable over RCP(Rn), n ≥ 3, iff it has a graph model

is satisfiable over RCP(R2) iff it has a planar graph model

EXPTIME-complete

EXPTIME-hard

NB. Upper complexity bound for RCP(R2) is not known
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Summary of results

lang. R R2 R3 RC
RCP(R) RC(R) RCP(R2) RC(R2) RCP(R3) RC(R3)

RCC-8c◦ NP 6= NP NP NP
RCC-8c NP
Bc◦ NP ≥ EXP 6= ? EXP 6= ? ? NP
Bc ≥ EXP 6= ≥ EXP ≥ EXP ? ≥ EXP ? EXP

Cc◦ PSPACE 6= PSPACE ≥ EXP 6= ≥ EXP ≥ EXP 6= ≥ EXP 6= EXP
Cc ≥ EXP 6= ≥ EXP ≥ EXP ? ≥ EXP ? EXP
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