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Abstract. We investigate the computational complexity of spatial log-
ics extended with the means to represent topological connectedness and
restrict the number of connected components. In particular, we show
that the connectedness constraints can increase complexity from NP to
PSpace, ExpTime and, if component counting is allowed, to NExpTime.

1 Introduction

A subset of a topological space T is connected if it cannot be covered by the
union of two disjoint non-empty open sets in T . Connectedness is known to be
one of the most fundamental concepts of topology, and any textbook in the field
contains a substantial chapter on connectedness. In spatial representation and
reasoning in AI, the distinction between connected and disconnected regions is
recognized as indispensable for various modelling and representation tasks; see,
e.g., [1, 4]. (After all, a disconnected plot is usually only worth half the value of
a connected plot.) In spite of this, so far only sporadic attempts have been made
to investigate the computational complexity of spatial logics with connectedness
constraints [3, 21, 23, 15].

In this paper, we consider extensions of standard spatial logics designed for
qualitative spatial representation and reasoning (see, e.g., [18, 4] for recent sur-
veys) with connectedness constraints such as ‘region r is connected’ (or c(r), in
symbols) and ‘region r contains at most k connected components’ (or c≤k(r)).
Our main aim is to provide a systematic study of the impact of these constraints
on the computational complexity of the satisfiability problem. We focus only on
quantifier-free spatial logics because first-order qualitative theories of topologi-
cal spaces are generally undecidable or non-recursively enumerable even without
connectedness constraints [10, 7, 5, 12].

The weakest spatial formalisms for which the addition of connectedness con-
straints is of interest appear to be ‘9-intersections’ and RCC-8 [8, 16], where one
can relate regions (regular closed sets) using binary predicates such as mereologi-
cal O(r, s) (‘regions r and s overlap’) or mereotopological EC(r, s) (‘regions r and
s are externally connected’). However, as far as satisfiability is concerned, these
logics cannot distinguish between arbitrary regions, connected regions, or regions
with k connected components [17], primarily because no Boolean operators on
regions are available in their languages. That is why the weakest spatial formal-
ism, B, considered in this paper consists of only Boolean region terms denoting



Boolean combinations of regions. B itself is also rather weak (in fact, reasoning
in B coincides with Boolean reasoning about sets), but we show that its exten-
sions Bc and Bcc with constraints c(r) and c≤k(r), respectively, are full-fledged
topological logics with considerably more expressive power. Moreover—and this
was quite an unexpected result for the authors—the computational complexity
jumps from NP for B to ExpTime for Bc and NExpTime for Bcc.

Another spatial logic we deal with in this paper is BRCC-8 [23] which extends
RCC-8 with Boolean region terms. An equivalent formalism was also considered
in the framework of Boolean contact algebras by extending the Boolean algebra
of regular closed (or open) sets with Whitehead’s ‘extensive connection’ predi-
cate C(r, s); see [22, 6]. Here we denote this logic by C (in order to unify the two
lines of research). As shown in [23], C is still NP-complete. We prove, however,
that its extensions Cc and Ccc with constraints of the form c(r) and c≤k(r) are
also ExpTime-complete and NExpTime-complete, respectively. Our maximal
spatial logic has its roots in the seminal paper by McKinsey and Tarski [13]. Fol-
lowing the modal logic tradition, we call it S4u (S4 with the universal modality).
In contrast to B and C, S4u is PSpace-complete. Its extensions S4uc and S4ucc,
however, turn out to be ExpTime-complete and NExpTime-complete again.

Thus, the addition of connectedness constraints to standard spatial logics
with Boolean region terms leads to considerably more expressive languages of
higher computational complexity. However, this increase in complexity is ‘sta-
ble:’ the extensions Bc and S4uc of such different formalisms as B and S4u are
of the same complexity. Another interesting result is that by restricting these
languages to formulas with just one connectedness constraint of the form c(r),
we obtain logics that are still in PSpace, but two such constraints lead to Exp-
Time-hardness. In fact, if the connectedness predicate is applied only to regions
r1, . . . , rn that are known to be pairwise disjoint, then it does not matter how
many times this predicate occurs in the formula: satisfiability is still in PSpace.

The first main ingredient of our proofs is representation theorems allow-
ing us to work with Aleksandrov topological spaces rather than arbitrary ones.
Such spaces can be represented by Kripke frames with quasi-ordered accessibility
relations. Topological connectedness in these frames corresponds to the graph-
theoretic connectedness in the (non-directed) graphs induced by the accessibility
relations. Based on this observation, one can prove the upper bounds in a more or
less standard way using known techniques from modal and description logic. The
lower bounds are much more involved and unexpected. They can be regarded
as the main contribution of this paper. We give extended sketches of proofs of
these results in Section 4 below; detailed proofs can be found in the full version
of the paper at www.dcs.bbk.ac.uk/~roman. In Section 5 we discuss, among
other things, the computational behaviour of our spatial logics interpreted over
Euclidean spaces Rn, although here we do not have tight complexity bounds yet.

2 Topological logics

All our spatial logics are interpreted over topological spaces. Given such a space
T and a set X ⊆ T , we denote by X◦ the interior of X in T and by X− its



closure. As usual in spatial KR&R, by a region of T we understand any regular
closed subset of T , i.e., any X ⊆ T with X = X◦−. Denote by RC(T ) the set
of all regular closed subsets of T . It is known that RC(T ) is a Boolean algebra
with top and bottom elements given by T and ∅, Boolean operations ·,− given
by X · Y = (X ∩ Y )◦− and −X = (X)◦

−
, and Boolean order ≤ by the relation

⊆. Let R = {ri | i < ω} be a set of region variables. A regular topological model
over T is a pair M = (T, ·M), where ·M is a map from R to RC(T ). Our minimal
spatial logic, called B, is defined as follows. The set of B-terms is given by:

τ ::= ri | − τ | τ1 · τ2.

We abbreviate −((−τ1) · (−τ2)) by τ1 + τ2, r0 · (−r0) by 0, and −0 by 1. The
set of B-formulas is defined by:

ϕ ::= τ1 = τ2 | ¬ϕ | ϕ1 ∧ ϕ2.

Given a model M, the extension τM of a B-term τ in M is defined inductively
by the equations (−τ)M = (τM)◦

−
and (τ1 · τ2)M = (τM

1 ∩ τM
2 )◦− , where

X = T \X. The truth-relation for B-formulas is defined by setting M |= τ1 = τ2
iff τM

1 = τM
2 , and interpreting the Boolean connectives ¬ and ∧ in the standard

way. We say that a formula ϕ is satisfiable (over a topological space T ) if M |= ϕ,
for some model M = (T, ·M). Topologically, the logic B is quite poor: every
satisfiable B-formula ϕ is satisfied in a discrete topological space. In fact, it as
expressive as the modal logic S5, with τ = 1 playing the role of the S5-box.

The logic C extends B with the binary contact relation C due to White-
head [22]. Specifically, C-formulas are defined in the same way as the B-formulas,
except that we have the additional clause

ϕ ::= . . . | C(τ1, τ2) | . . . ,

where τ1 and τ2 are B-terms. The intended meaning of C(τ1, τ2) is as expected:
M |= C(τ1, τ2) iff τM

2 ∩ τM
2 6= ∅, that is τ1 is in contact with τ2 in M. (It is to

be noted that we may have M |=
(
τ1 · τ2 = 0

)
∧ C(τ1, τ2).) Unlike B, the logic

C can express a number of important topological relationships between regions,
e.g., all the RCC-8 relations.

Finally, we define the well-known modal logic S4u which can be regarded as
a spatial logic in view of the topological interpretation of S4 due to McKinsey
and Tarski [13]. As S4u is expressive enough to define the property of being
regular closed, we take a new set V = {vi | i < ω} of set variables and interpret
them by arbitrary sets of topological spaces. The S4u-terms are given by

τ ::= vi | τ | τ1 ∩ τ2 | τ◦ .

We abbreviate (τ◦) by τ− , (τ1 ∩ τ2) by τ1 ∪ τ2, v0 ∩ v0 by 0, and 0 by 1. The
S4u-formulas are defined in the same way as B-formulas.

In a topological model M = (T, ·M) for S4u, ·M is a map from V to 2T . The
extension τM of a term τ in M is defined inductively by the equations:

(τ)M = (τM), (τ1 ∩ τ2)M = τM
1 ∩ τM

2 , (τ◦)M = (τM)◦ .



And the truth-relation for S4u-formulas is defined in the same way as for B-
formulas. Note that both B and C can be regarded as proper fragments of S4u.

3 Topological logics with connectedness

Recall that a topological space T is connected just in case it is not the union
of two non-empty, disjoint, open sets; a subset X ⊆ T is connected in T just in
case either it is empty, or the topological space X (with the subspace topology)
is connected. If X ⊆ T , a maximal connected subset of X is called a (connected)
component of X. Every set X has at least one component, and a set is connected
just in case it has at most one component. The S4u-formula

(v1 6= 0) ∧ (v2 6= 0) ∧ (v1 ∪ v2 = 1) ∧ (v−1 ∩ v2 = 0) ∧ (v1 ∩ v−2 = 0)

is satisfiable in a topological space T iff T is not connected; it was used in [21]
to axiomatize the logic (in the standard language of S4u) of connected spaces.

We now extend the logics B, C and S4u with the connectedness predicate
c(·) and denote the resulting languages by Bc, Cc and S4uc, respectively. Their
formulas are defined as before, except that we now have the additional clause:

ϕ ::= . . . | c(τ) | . . . .

The meaning of c(τ) in a model M = (T, ·M) is as follows: M |= c(τ) iff τM

is connected in T . For example, most textbooks on general topology prove the
following facts: (i) the union of two intersecting, connected sets is connected; (ii)
any set sandwiched between a connected set and its closure is itself connected.
These facts are expressible as the following S4uc-validities:

c(v1) ∧ c(v2) ∧ (v1 ∩ v2 6= 0) → c(v1 ∪ v2),

c(v1) ∧ (v1 ⊆ v2) ∧ (v2 ⊆ v−1 ) → c(v2)

One can increase the expressive power of the connectedness predicate c(τ)
by generalizing it to the ‘counting’ predicates c≤k(τ), 1 ≤ k < ω, which state
that τ has at most k connected components. We denote the languages with such
predicates by Bcc, Ccc and S4ucc. Their formulas are defined in the same way
as before, except that we have the additional clause, where 1 ≤ k < ω:

ϕ ::= . . . | c≤k(τ) | . . . .

The meaning of c≤k(τ) is as follows: M |= c≤k(τ) iff τM has at most k compo-
nents in T . We write ¬c≤k(τ) as c≥k+1(τ) and abbreviate c≤1(τ) by c(τ). Thus,
we may regard S4uc as a sub-language of S4ucc. The numerical superscripts k
in c≤k are assumed to be coded in binary.

Note that for each S4ucc-formula ϕ one can construct an equi-satisfiable
S4uc-formula ϕ′ using the observation that c≤k(τ) can be replaced by (1) if it
occurs positively in ϕ and by (2) if the occurrence is negative, where(

τ =
⋃

1≤i≤k

vi
)
∧

∧
1≤i≤k

c(vi), (1)



(
τ =

⋃
1≤i≤k+1

vi
)
∧

∧
1≤i≤k+1

(
vi 6= 0

)
∧

∧
1≤i<j≤k+1

(
τ ∩ v−i ∩ v

−
j = 0

)
(2)

with fresh v1, . . . , vk. Note, however, that these S4uc-formulas are exponentially
larger than the literals they replace.

4 Computational complexity

There are two known complexity results for the spatial logics with connectedness
constraints introduced above. According to [15], satisfiability of S4ucc-formulas
is NExpTime-complete, which gives the NExpTime upper bound for all of these
logics. On the other hand, it follows from [23] that Cc is PSpace-hard (more
precisely, satisfiability of C-formulas in connected spaces is PSpace-complete).

We begin by showing that, as far as satisfiability is concerned, we can restrict
attention to topological spaces of a special kind. Recall that a topological space
is called an Aleksandrov space if arbitrary (not only finite) intersections of open
sets are open. Aleksandrov spaces can be characterized in terms of Kripke frames
F = (W,R), where W 6= ∅ and R is a transitive and reflexive relation (i.e., a
quasi-order) on W . Every such F induces the interior operator ·◦F on W :

X◦F = {x ∈ X | ∀y ∈W (xRy → y ∈ X)}, for every X ⊆W.

It is well-known [2] that the resulting topological space is Aleksandrov and,
conversely, every Aleksandrov space is induced by a quasi-order. Topological
models over Aleksandrov spaces will be called Aleksandrov models. Note that
the Aleksandrov space induced by F = (W,R) is connected iff F is connected as
a non-directed graph, that is, between any two points x, y ∈ W there is a path
along the relation R ∪ R−1, where R−1 is the inverse of R. This observation is
used implicitly throughout this paper. It is shown in [15] that S4ucc is complete
w.r.t. finite Aleksandrov models; this is a consequence of the following lemma.
Lemma 1 ([13, 15]). (i) For every S4ucc-formula ϕ and every M = (T, ·M)
there exist an Aleksandrov model A = (TA, ·A) with |TA| ≤ 2|ϕ| and a continuous
function f : T → TA such that, for every sub-term τ of ϕ, τA = f(τM).

(ii) Every S4ucc-formula ϕ can be transformed (in LogSpace) into an S4ucc-
formula ϕ′ such that it has no negative occurrences of c≤k(τ), |ϕ′| is polynomial
in |ϕ|, and both ϕ and ϕ′ are satisfiable over the same topological spaces.

According to the next lemma, satisfiable Ccc-formulas can be satisfied in
Aleksandrov models based on partial orders (W,R) of depth 1, i.e., R is the
reflexive closure of a subset of W1×W0, where Wi is the set of points of depth i;
see Fig. 1. Such frames and models are called quasi-saws and quasi-saw models.

Lemma 2. For every finite Aleksandrov model A = (TA, ·A), with TA induced
by (W,RA), there is a quasi-saw model B = (TB , ·B) such that TB is induced by
(W,RB) with RB ⊆ RA and, for every B-term τ , (i) τB = τA, and (ii) τ has
the same number of components in A and B.

Proof. Let W0 be the set of points from final clusters in (W,RA), i.e., W0 =
{v ∈ W | vRAu implies uRAv, for all u ∈ W}. In every final cluster C ⊆ W0
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Fig. 1. Quasi-saw.

with |C| ≥ 2 we select a point and denote by U the set of all selected points.
Then we set V0 = W0 \ U and V1 = W \ V0, and define RB to be the reflexive
closure of RA ∩ (V1×V0). Clearly, (W,RB) is a quasi-saw, with V0 and V1 being
the sets of points of depth 0 and 1, respectively. For each variable ri, let rB

i = rA
i .

Claims (i) and (ii) are proved by induction on the construction of τ . q

4.1 Upper complexity bounds

We first prove the ExpTime-upper bound for S4uc and a PSpace-upper bound
for certain fragments of S4uc. To start with, we transform a given S4uc-formula ϕ
into negation normal form (NNF+) in the following way. First, we push negation
¬ inward to atoms τ1 = τ2 and c(τ), then use (2), for k = 1, to get rid of negative
occurrences of c(τ), and finally replace each c(τ) with (c(τ)∧ (τ 6= 0))∨ (τ = 0),
and each (τ1 = τ2) with (τ1 ∩ τ2 = 0) ∧ (τ1 ∩ τ2 = 0).

Every S4uc-formula ϕ in NNF+ is clearly equivalent to a disjunction
∨
Ψϕ,

where each ψ ∈ Ψϕ is a conjunction of the form

ψ =
l∧
i=1

(
ρi = 0

)
∧

m∧
i=1

(
τi 6= 0

)
∧

k∧
i=1

(
c(σi) ∧ (σi 6= 0)

)
(3)

such that each atom of ϕ occurs either positively or negatively in ψ. For any
such conjunction, it is decidable in polynomial time (in |ϕ|) whether it is in Ψϕ.

Theorem 1. Satisfiability of S4uc-formulas is in ExpTime.
Proof. The proof is by reduction to the satisfiability problem for propositional
dynamic logic (PDL) with converse and nominals, which is known to be Exp-
Time-complete [9, Section 7.3]. Let ψ be as in (3). Take two atomic programs α
and β and, for each σi, a nominal `i. For a term τ , denote by τ † the PDL-formula
obtained by replacing in τ , recursively, each sub-term ϑ◦ with [α∗]ϑ. Thus α∗

simulates the S4-accessibility relation, and the universal box will be simulated
by [γ], where γ = (β ∪ β− ∪ α ∪ α−)∗. Consider now the formula ψ′

l∧
i=1

[γ]¬ρ†i ∧
m∧
i=1

〈γ〉τ †i ∧
k∧
i=1

(
〈γ〉(`i ∧ σ†i ) ∧ [γ](σ†i → 〈(α ∪ α

−;σ†i ?)∗〉`i)
)
.

It is not hard to see that ψ′ is satisfiable iff ψ is satisfiable: the first conjunct of
ψ′ states that all ρi are empty, the second that all τi are non-empty, the third
states that each σi holds at a point where `i holds and that from each σi-point
there is a path (along α ∪ α−) to `i which lies entirely within σi. q

Denote by S4uc1 the set of S4uc-formulas in NNF+ with at most one occur-
rence of an atom of the form c(τ).



Theorem 2. Satisfiability of S4uc1-formulas is in PSpace.
Proof. We sketch a nondeterministic PSpace algorithm. Let ϕ be in NNF+.
Guess a ψ of the form (3) and check whether it is in Ψϕ. Now check whether ψ
is satisfiable: if ψ does not contain a conjunct of the form c(σ) ∧ (σ 6= 0), then
a standard satisfiability checking algorithm for S4u is applied. If it contains
c(σ) ∧ (σ 6= 0), then the algorithm proceeds as follows. Let τ0 =

⋂l
i=1 ρi. Set

B = {τ0◦}∪ {τ, τ | τ ∈ term(ψ)}, where term(ϕ) is the set of all sub-terms of ψ.
A subset t of B is called a type for ψ if τ0◦ ∈ t and τ ∈ t iff τ /∈ t, for all τ ∈ B.

Now, guess a type tσ containing σ and start m + 1 S4-tableau procedures
with inputs τ1 ∩ τ0◦ , τ2 ∩ τ0◦ , . . . , τm ∩ τ0◦ , and

⋂
tσ ∩ τ0◦ in the usual way

expanding branch-by-branch, recovering the space once branches are checked.
We may as well assume that the nodes of these tableaux are types. Suppose t
is a type occurring in one of them. If σ ∈ t, it suffices to check that t can be
connected by a path of ≤ 2|ψ| points in σ to tσ. To complete the proof we present
a subroutine which, given types t0, t1 3 σ and d ≥ 0, checks, in PSpace, whether
t0 and t1 can be connected by a path of ≤ 2d points in σ to tσ.
Subroutine: If d = 0, we check that t0 and t1 can be made accessible one di-
rection or the other. If d > 0, we guess a type t with σ ∈ t that represents
the half-way point between t0 and t1. First we check that t is an allowable type
by constructing an S4-tableau with root t. The tableau can be discarded after
completion: although it may contain types t′ with σ ∈ t′, these type can never
threaten the connectedness of σ, since they are all accessible from the root t of
the tableau (the S4 accessibility relation is transitive!), and so are connected to
both t0 and t1 anyway. Then the subroutine calls itself recursively with param-
eters (t0, t, d− 1) and (t, t1, d− 1). Completing this recursive procedure requires
at most d items to be placed on the stack. q

Observe that the argument above shows that satisfiability of formulas ϕ in
NNF+ with conjuncts

∧k
i=1 c(τi) such that (τ−i ∩ τ

−
j = 0), i 6= j, are conjuncts

of ϕ, is decidable in PSpace as well.

4.2 Lower complexity bounds

We first prove the matching lower bound for Cc. Observe that when constructing
a model for an S4uc1-formula with one positive occurrence of c(τ), we can check
‘connectivity’ of two τ -points by an (exponentially long) path using a PSpace-
algorithm because it is not necessary to keep in memory all the points on the
path. However, if two statements c(τ1) and c(τ2) have to be satisfied, then, while
connecting two τ1-points using a path, one has to check whether the τ2-points
on that path can be connected by a path, which, in turn, can contain another
τ1-point, and so on. The crucial idea in the proof below is simulating infinite
binary (non-transitive) trees using quasi-saws. Roughly, the construction is as
follows. We start by representing the root v0 of the tree as a point also denoted
by v0 (see Fig. 2), which is forced to be connected to an auxiliary point z by
means of some c(τ0). On the connecting path from v0 to z we represent the
two successors v1 and v2 of the root, which are forced to be connected in their
turn to z by some other c(τ1). On each of the two connecting paths, we again
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Fig. 2. First 4 steps of encoding the full binary tree using 7-saws.

take two points representing the successors of v1 and v2, respectively. We treat
these four points in the same way as v0, reusing c(τ0), and proceed ad infinitum
alternating between τ0 and τ1 when forcing the paths which generate the required
successors. Of course, we also have to pass certain information from a node to its
two successors (say, if 3ψ holds in the node, then ψ holds in one of its successors).
Such information can be propagated along connected regions. Note now that all
points are connected to z. To distinguish between the information we have to
pass from distinct nodes of even (respectively, odd) level to their successors, we
have to use two connectedness formulas of the form c(fi + a), i = 0, 1, in such
a way that the fi points form initial segments of the paths to z and a contains
z. The fi-segments are then used locally to pass information from a node to its
successors without conflict. We now present the reduction in more detail.

Theorem 3. Satisfiability of Cc-formulas is ExpTime-hard.

Proof. The proof is by reduction of the following problem. Denote by Df2 the
bimodal logic (with 21 and 22) determined by Kripke models based on the full
infinite binary tree G = (V,R1, R2) with functional accessibility relations R1

and R2. Consider the global consequence relation |=f
2 defined as follows: χ |=f

2

ψ iff K |= χ implies K |= ψ, for every Kripke model K based on G. Using
standard modal logic technique one can show ExpTime-hardness of this global
consequence relation. We construct a Cc-formula Φ(χ, ψ), for any Df2 -formulas χ,
ψ, such that (i) |Φ(χ, ψ)| is polynomial in |χ|+ |ψ| and (ii) Φ(χ, ψ) is satisfiable
iff χ 6|=f

2 ψ. While constructing Φ(χ, ψ), we will assume that A is a quasi-saw
model induced by (W,R) and W0 is the set of points of depth 0 in (W,R).



Let sub(χ, ψ) be the closure under single negation of the set of subformulas of
χ, ψ. For each ϕ ∈ sub(χ, ψ) we take a fresh variable qϕ, and for 2iϕ ∈ sub(χ, ψ)
and j = 0, 1, we fix fresh variables mi,j

ϕ and mi,j
¬ϕ. We also need fresh variables

sij , for j = 0, 1 and 0 ≤ i ≤ 6. Let d = s00 +s01. Intuitively, d simulates the domain
of the binary tree, where s00 and s01 stand for nodes with even and, respectively,
odd distance from the root. Suppose that the following Cc-formulas hold in A(

s60 = s61
)
∧

(
s60 6= 0

)
∧ c(f0 + s60) ∧ c(f1 + s61), (4)∧

0≤k<k′≤6

(skj · sk
′

j = 0) ∧
∧

0≤k<k′≤6
|k−k′|>1

¬C(skj , s
k′

j ), (5)

where fj = s0j + s1j + s2j + s3j + s4j + s5j , for j = 0, 1. (Note that s60 and s61 play
the role of a in the explanation above; see Fig. 2.) It follows that, for j = 0, 1, if
there is a point x0 ∈ (s0j )

A∩W0 then there is a (not necessarily unique) sequence
of points x1, x2, x3, x4, x5 from the same connected component of fA

j such that
xi ∈ (sij)

A ∩W0, 1 ≤ i ≤ 5. Points x2 and x4 will be used to construct similar
sequences for the two successors of the node represented by x0: if (4)–(5) and

s2i0 ≤ s01 and s2i1 ≤ s00, for i = 1, 2, (6)

hold in A and x0 ∈ (s0j )
A ∩W0, then one can recover from A the infinite binary

tree with the root at x0. The formula

(q¬ψ · s00 6= 0) ∧ (d ≤ qχ) (7)

ensures then that there is x0 ∈ (s0j )
A∩W0, the root of the tree, in which ψ holds,

and χ holds everywhere in the tree, while the formulas

d · q¬ϕ = d · (−qϕ), d · qϕ1∧ϕ2 = d · (qϕ1 · qϕ2), (8)

for all ¬ϕ,ϕ1 ∧ ϕ2 ∈ sub(χ, ψ), capture the meaning of the Boolean connectives
from sub(χ, ψ) relativized to d. The formulas

¬C(fj ·mi,j
ϕ , fj ·mi,j

¬ϕ), (9)

(s0j · q2iϕ ≤ mi,j
ϕ ) ∧ (mi,j

ϕ · s2ij ≤ qϕ), (10)

(s0j · q¬2iϕ ≤ mi,j
¬ϕ) ∧ (mi,j

¬ϕ · s2ij ≤ q¬ϕ, ), (11)

for all 2iϕ ∈ sub(χ, ψ) and j = 0, 1, are used to propagate information regarding
2iϕ along the connected components of fj using the markers mi,j

ϕ and mi,j
¬ϕ.

We define Φ(χ, ψ) to be the conjunction of all the above formulas. Clearly,
|Φ(χ, ψ)| is polynomial in |χ| + |ψ| and contains only two occurrences of the
connectedness predicate in (4).

Conversely, suppose that K is a model for Df2 based on the full infinite binary
tree G = (V,R1, R2) with root v0 and such that K |= χ and K, v0 6|= ψ. We
construct a quasi-saw model A satisfying Φ(χ, ψ) by induction (as in Fig. 2)



using infinitely many copies of the 7-saw shown in Fig. 3. For each node v of
G, we take a fresh 7-saw Sv = (Sv, Rv), where Sv = {yvi , zvi , uv | 0 ≤ i ≤ 5},
zvi R

vyvi , zvi R
vyvi+1, for 0 ≤ i ≤ 5, and zv5R

vuv, and identify the following points:
yv2 = yv10 , yv4 = yv20 , uv1 = uv2 = uv, if v1 and v2 are the R1- and R2-
successors of v. The assignment is left to the reader.
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Fig. 3. A 7-saw for v.

Note that yv1 and yv3 are required to make the set of points in fA
j representing

a node v of G disconnected from the subset of fA
j representing another node v′

of G and thus satisfy (9); yv5 are required to satisfy the last conjunct of (5). q

We now consider the lower complexity bound for C with constraints on the
number of connected components.

Theorem 4. Satisfiability of Ccc-formulas is NExpTime-hard.

Proof. The proof is by reduction of the NExpTime-complete 2d × 2d tiling
problem: Given d < ω, a finite set T of tile types—i.e., 4-tuples of colours T =
(left(T ), right(T ), up(T ), down(T ))—and a T0 ∈ T , decide whether T can tile
the 2d × 2d grid in such a way that T0 is placed onto (0, 0). In other words,
the problem is to decide whether there is a function f from {(i, j) | i, j < 2d}
to T such that up(f(i, j)) = down(f(i, j + 1)), for all i < 2d, j < 2d − 1,
right(f(i, j)) = left(f(i + 1, j)), for all i < 2d − 1, j < 2d, f(0, 0) = T0. We
construct a Ccc-formula ϕT ,d such that (i) |ϕT ,d| is polynomial in |T | and d and
(ii) ϕT ,d is satisfiable iff T tiles the 2d×2d grid, with T0 being placed onto (0, 0).
While constructing ϕT ,d, we will assume that A is a quasi-saw model induced
by (W,R) and W0 is the set of points of depth 0 in (W,R).

We partition all points of W0 with the help of a pair of variable triples
B0
X , B

1
X , B

2
X and B0

Y , B
1
Y , B

2
Y . Suppose that the formulas, for 0 ≤ ` < 3,

B0
X +B1

X +B2
X = 1, B`X ·B

`⊕31
X = 0 (12)

and their Y -counterparts hold in A, where ⊕3 denotes addition modulo 3. Then
every point in W0 is in exactly one of the (B`X)A and exactly one of the (B`Y )A.

To encode coordinates of the tiles in binary, we take a pair of variables Xj and
Yj , for each d ≥ j ≥ 1. For 0 ≤ n < 2d, let nX be the B-term X ′d ·X ′d−1 · · · · ·X ′1,
whereX ′j = Xj if the jth bit in the binary representation of n is 1, andX ′j = −Xj

otherwise. For a point u ∈ W0, we denote by X(u) the binary d-bit number n,
called the X-value of u, such that u ∈ nA

X ; the jth bit of X(u) is denoted by
Xj(u). The term nY , the Y -value Y (u) of u and its jth bit Yj(u) are defined
analogously. For a point u of depth 0 we write coor(u) for (X(u), Y (u)). We will



use the variables Xi and Yj to generate the 2d × 2d grid, which consists of pairs
(iX , jY ), for 0 ≤ i, j < 2d. Consider the following formulas, for 0 ≤ ` < 3,

¬C(Xk ·B`X , (−Xk) ·B`X), d ≥ k ≥ 1, (13)

¬C(Xj · (−Xk) ·B`X , (−Xj) ·B`⊕31
X ), d ≥ j > k ≥ 1, (14)

¬C((−Xj) · (−Xk) ·B`X , Xj ·B`⊕31
X ), d ≥ j > k ≥ 1, (15)

¬C((−Xk) ·Xk−1 · · · · ·X1 ·B`X , (−Xk) ·B`⊕31
X ), d ≥ k > 1, (16)

¬C((−Xk) ·Xk−1 · · · · ·X1 ·B`X , Xi ·B`⊕31
X ), d ≥ k > i ≥ 1, (17)

¬C(Xd · · · · ·X1, (−Xd) · · · · · (−X1)), (18)

the Y -counterparts of (13)–(18), and the following, for d ≥ j, k ≥ 1,

¬C(Xj · Yk, (−Xj) · (−Yk)), ¬C((−Xj) · Yk, Xj · (−Yk)). (19)

Given a point v ∈ W0, denote by 4-nb(v) the set which consists of coor(v) and
its (at most four) neighbours in the 2d × 2d grid. Suppose that A satisfies all
the formulas above. If u, v ∈ W0 and zRu and zRv, for some z ∈ W , then
coor(u) ∈ 4-nb(v). Moreover, (i) X(v) = X(u) = n iff u and v are in the same
component of nA

X , and (ii) for each m = −1, 0, 1, X(v) = X(u)+m iff u ∈ (B`X)A

and v ∈ (B`⊕3m
X )A, for ` = 0, 1, 2 (in particular, X(u) = X(v) iff u and v are in

the same connected component of (B`X)A). Likewise for Y in place of X.
Suppose now that the following formulas are true in A as well:

0X ·0Y 6= 0, (2d−1)X ·(2d−1)Y 6= 0, c(0X+(2d−1)Y ), c((2d−1)X+0Y ). (20)

These constraints guarantee that in the connected set (0X + (2d − 1)Y )A there
are points u(0,i) and u(i,2d−1), 0 ≤ i < 2d, such that coor(u(0,i)) = (0, i) and
coor(u(i,2d−1)) = (i, 2d − 1). Similarly for the connected set ((2d − 1)X + 0Y )A.
This gives us the border of the 2d × 2d grid we are after. And the constraints

c((−X1) + 0Y ), c(X1 + 0Y ), c(0X + (−Y1)), c(0X + Y1) (21)

ensure that we can find inner points of the grid. It is to be noted, however, that
in general u 6= v even if coor(u) = coor(v). In other words, the constructed points
do not necessarily form a proper 2d × 2d grid. Let

b =
(
X1 · (−Y1)

)
+
(
(−X1) · Y1

)
and w =

(
(−X1) · (−Y1)

)
+
(
X1 · Y1

)
.

Points in bA and wA can be thought of as black and white squares of a chess-
board. Observe that if u, v ∈ bA∩W0 and coor(u) 6= coor(v) then u and v cannot
belong to the same component of bA. Thus, there are at least 2d−1 components
in both bA and wA. Our next constraints

c≤2d−1
(b), c≤2d−1

(w) (22)

say that bA and wA have precisely 2d−1 components. In particular, if u, v ∈W0

belong to the same component of bA then coor(u) = coor(v). This gives a proper
2d × 2d grid on which we encode the tiling conditions. The formulas∑

T∈T T = 1 and T · T ′ = 0, for T 6= T ′, (23)



¬C(B`X ·B`
′

Y · T, B`X ·B`
′

Y · T ′), for `, `′ = 0, 1, 2 and T 6= T ′, (24)

say that every point in W0 is covered by precisely one tile and that all points
in the same component of (B`X · B`

′

Y )A are covered by the same tile. That the
colours of adjacent tiles match is ensured by

¬C(B`X · T, B
`⊕31
X · T ′), for T, T ′ ∈ T with right(T ) 6= left(T ′), (25)

¬C(B`Y · T, B
`⊕31
Y · T ′), for T, T ′ ∈ T with top(T ) 6= bot(T ′). (26)

Finally, we have to say that (0, 0) is covered with T0:

0X · 0Y ≤ T0. (27)

One can check that the conjunction ϕT ,d of these Ccc-formulas is as required. q

The ExpTime and NExpTime lower bounds for Bc and Bcc will be proved
by reduction of satisfiability for Cc and Ccc, respectively; that is, by eliminating
occurrences of the predicate C in Cc- and Ccc-formulas. Clearly, two connected
closed sets are in contact iff their union is connected; in other words, the formula
c(τ1)∧ c(τ2)→

(
C(τ1, τ2) ↔ c(τ1 + τ2)

)
is a Ccc-validity. However, this ‘reduc-

tion’ of C to c cannot be directly applied to our formulas since the arguments
of the contact predicates in them are not necessarily connected. The next three
lemmas show how to overcome this problem.

We write ϕ[ψ]+ (or ϕ[ψ]−) to indicate that ϕ contains a positive (respectively,
negative) occurrence of ψ; then ϕ[χ]+ (or ϕ[χ]−) denotes the result of replacing
this occurrence of ψ in ϕ by χ.

Lemma 3. Let ϕ[C(τ1, τ2)]+ be a Ccc-formula, and t, t1, t2 fresh variables. Then
ϕ is equisatisfiable with the formula

ϕ∗ = ϕ[t = 0]+ ∧
(
(t = 0) → c(t1 + t2) ∧

∧
i=1,2

(ti ≤ τi) ∧ c(ti)
)
.

Proof. It is easy to see that |= ϕ∗ → ϕ. On the other hand, every model of ϕ
can be turned into a model of ϕ∗ by changing the extensions of t, t1, t2. q

Suppose X is a topological space, and S a regular closed subset of X. Then
S is itself a topological space (with the subspace topology), which has its own
regular closed algebra: RC(S) = {S · R | R ∈ RC(X)}. Denoting the Boolean
operations in RC(S) by ·S and −S , etc., we have, for any R1, R2 ∈ RC(S): (i)
R1 ·S R2 = R1 · R2; (ii) −S(R1) = S · (−R1), (iii) 1S = S and 0S = 0. For a
formula ϕ and a variable s, define ϕ|s to be the result of replacing every maximal
term τ occurring in ϕ by the term s · τ . For any model M = (T, ·M), define M|s
to be the model over the topological space sM (with the subspace topology)
obtained by setting rM|s = (r · s)M for all variables r.

Lemma 4. For any Ccc-formula, M |= ϕ|s iff M|s |= ϕ.

Proof. One can show by induction that (s · τ)M = τM|s , for any B-term τ . q



Lemma 5. Let ϕ[C(τ1, τ2)]− be a Ccc-formula, and s, t, t1, t2 fresh variables.
Then ϕ is equisatisfiable with the formula

ϕ∗ =
(
ϕ[t 6= 0]−

)
|s ∧

(
(t · s = 0) → ¬c(t1 + t2) ∧

∧
i=1,2

c(ti) ∧ (τi · s ≤ ti)
)
.

Proof. Evidently,
∧
i=1,2 (c(ti) ∧ (τi · s ≤ ti)) ∧ ¬c(t1 + t2) → ¬C(τ1 · s, τ2 · s)

is a Ccc-validity. So any model A of ϕ∗ is a model of (ϕ[C(τ1, τ2)]−)|s, whence,
by Lemma 4, A|s |= ϕ[C(τ1, τ2)]−. Conversely, suppose A |= ϕ[C(τ1, τ2)]−, for a
quasi-saw model A induced by (W,R). Let Wi, (i = 0, 1) be the set of points of
depth i in (W,R). Without loss of generality, we may assume that every point
in W0 has an R-predecessor in W1. If A |= C(τ1, τ2), let A∗ be exactly like A
except that sA∗ and tA

∗
are both the whole space. Then A∗ |= ϕ∗. On the other

hand, if A 6|= C(τ1, τ2), we add, for i = 1, 2, an extra point ui to W to connect
up the points in τA

i . Formally, let W ∗ = W ∪ {u1, u2}, where u1, u2 6∈ W , and
let R∗ be the reflexive closure of the union of R and {(z, ui) | z ∈ τA

i ∩W1}, for
i = 1, 2. Clearly, W is a regular closed subset of the topological space (W ∗, R∗).
Now define the interpretation A∗ over (W ∗, R∗) by setting sA∗ = W , tA

∗
= ∅,

tA
∗

i = τA
i ∪{ui} (i = 1, 2), and rA∗ = rA for all other variables r. Thus, A = A∗|s,

whence, by Lemma 4, A∗ |= (ϕ[C(τ1, τ2)]−)|s, and so A∗ |= (ϕ[t 6= 0]−)|s. By
construction, A∗ |=

∧
i=1,2 (c(ti) ∧ (τi · s ≤ ti)) ∧ ¬c(t1 + t2). Thus, A∗ |= ϕ∗. q

It follows from these lemmas that the satisfiability problem for Cc (and Ccc) is
reducible to the satisfiability problem for Bc (Bcc, respectively). For, by repeated
application of Lemmas 3 and 5, successive occurrences of C in a Cc- or Ccc-
formula may be equisatisfiably eliminated, using only logarithmic space.

As a consequence, by Theorems 3 and 4, we obtain:

Theorem 5. Satisfiability of Bc- and Bcc-formulas is, respectively, ExpTime-
and NExpTime-complete.

We remark in passing that the full reduction is not required for Theorem 5.
For the proofs of Theorems 3 and 4 in fact rely on formulas in which conjuncts
C(τ1, τ2) occur only in negative contexts (and thus Lemma 5 is enough).

5 Discussion and further work

In this paper, we have reported on the computational complexity of the satisfia-
bility problems for the spatial logics B, C and S4u extended with connectedness
constraints. All these logics feature variables which range over subsets of topolog-
ical spaces: regular subsets in the case of logics based on B and C, and arbitrary
subsets in the case of S4u. However, topological spaces form an extremely general
category: and it is natural to ask what happens when we restrict consideration
to particular classes of topological spaces. Most saliently of all: what happens
when these logics are interpreted over the specific topological spaces R2 or R3?

Without the ability to express connectedness, topological spatial logics are
almost completely insensitive to the underlying topology. Thus, a B-formula



is satisfiable over Rn, for any fixed n, iff it is satisfiable (over some space);
a C-formula is satisfiable over Rn, for any fixed n, iff it is satisfiable over a
connected space [23]; and an S4u-formula is satisfiable over Rn, for any fixed n,
iff it is satisfiable over a connected, dense-in-itself, separable metric space [21].
Adding connectedness constraints to these logics changes the situation radically,
however. As a simple illustration, consider the Bc formula∧

1≤i≤3

c(ri) ∧
∧

1≤i<j≤3

(
ri · rj 6= 0

)
∧

(
r1 · r2 · r3 = 0

)
,

which states that there are three pairwise overlapping, connected regions whose
common part has an empty interior. Since connected subsets of R are intervals,
this formula is not satisfiable over R; yet it is satisfiable over Rn, for any n > 1.
Or again, it can be shown (see [14], p. 137) that the S4uc-formula

(v1 ∩ v2 = 0) ∧
∧
i=1,2

((v−i ⊆ vi) ∧ c(vi)) ∧ ¬c(v1 ∩ v2)

is not satisfiable over Rn (for any n); yet it is easily seen to be satisfiable over
other manifolds (even of dimension 1!).

What can we say about the complexity of determining satisfiability over these
spaces? In the one-dimensional case, matching complexity bounds are available.
Theorem 6. Satisfiability of S4ucc-formulas in topological models based on R
is PSpace-complete.
Proof. The proof is by reduction to the propositional temporal logic of the real
line, for which satisfiability is known to be PSpace-complete [19]. Since, for
C-formulas, satisfiability over connected spaces implies satisfiability over R, it
follows from [23] that this bound is tight. q

For n > 1, the work reported here yields lower-bound information for satis-
fiability over Rn:
Theorem 7. Satisfiability of Cc- and Ccc-formulas in topological models based
on Rn, for each n > 1, is ExpTime- and NExpTime-hard, respectively.
Proof. The proof is based on the fact that the models constructed in the proofs
of Theorem 3 and 4 can be turned into models over R2, and so over any Rn, for
n ≥ 2. q

It follows that the ExpTime and NExpTime lower bounds hold for satisfi-
ability of S4uc- and S4ucc-formulas over Rn, respectively.

We mention that, when variables are restricted to range over closed disc-
homeomorphs in R2, then the problem of determining the satisfiability ofRCC-8-
constraints is known to be in NP [20]—a very surprising result, since the smallest
satisfying drawings may involve exponentially many intersection points [11]. At
present, no upper complexity bounds for the logics Bc, Bcc, Cc, Ccc, S4uc, in-
terpreted over Euclidean spaces of fixed dimension greater than 1 are known.
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