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• Most theories of space take points as the primitive entities.

• This postulation has always troubled some philosophers.

• What happens if we take regions rather than points as the

primitive spatial entities, and qualitative relations involving

regions as the primitive spatial relations?
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• Whitehead (1920, 1929) proposed a system of postulates

governing a primitive relation of ‘contact’.

• This notion, being primitive, cannot be defined, but it can be

illustrated by the following diagrams:
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• A generally similar theory was proposed by De Laguna (1922).
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• An alternative (and independent) approach to developing a

region-based theory of space is illustrated by Tarski (1929):

– begin with the familiar model of space as R
3;

– define a formal language with variables ranging over the set

of spheres in this space, and the part-whole relation as the

only primitive relation;

– axiomatize the theory (in higher-order logic);

– prove a categoricity result.

• Then the subject went very quiet, until, . . .
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• . . . the revival of region-based theories of space in Artificial

Intelligence in the 1990s.

• The primary objective of this work is to devise ‘spatial

representation languages’, enabling quantification over regions

while remaining within first-order logic.

• Issues of particular concern

– computational complexity,

– efficient practical automation,

– expressive power.

• Note the shift in underlying motivation: computational

inefficiency rather than epistemological hygiene.
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• Whatever the motivation, this talk addresses the questions

– What might region-based theories of space look like?

– How should we go about developing them?

– Which mathematical methods can we use to analyse them?

– Are these theories technically interesting?

• For historical continuity (and simplicity!) we shall focus on

topology.

• Remark: proximity spaces (Naimpally and Warrack).
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• Two methodologies present themselves:

1. the ‘postulation-based’ methodology of Whitehead and de

Laguna (and much of the early AI work);

2. the ‘model-theoretic’ strategy of Tarski.

• We opt for the latter. In more detail:

– start with a familiar, point-based model of space;

– select a collection of ‘regions’, understood as sets of points;

– select a collection of non-logical constants representing

primitive geometrical relations between regions, interpreted

over the space in the standard way;

– investigate the logical theory of these geometrical primitives.
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• To fix ideas, let us

– take our (point-based) model of space to be R
2;

– take Whitehead’s contact relation C to be our only

geometrical primitive, where this predicate is given the

interpretation:

〈r, s〉 satisfies C iff r− ∩ s− 6= ∅;

– take regions to be certain subsets of R
2.

• We need to be clear about which subsets of R
2 qualify as

regions.
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• Allowing arbitrary sets of points as regions is unlikely to yield

an attractive spatial ontology: we want our regions to be

‘region-like’.

• A subset x of a topological space X is regular open if it is equal

to the interior of its closure:

x = x−
0

• We propose (provisionally) that regions be simply the regular

open subsets of R
2.
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• If X is any topological space, we denote the collection of

regular open subsets of X by RO(X).

• The elements of RO(R2) are nice: they are the open sets with

no internal cracks or point-holes
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• Theorem: Let X be a topological space. Then RO(X) forms

a Boolean algebra with top and bottom defined by 1 = X and

0 = ∅, and Boolean operations defined by x.y = x ∩ y,

x+ y = (x ∪ y)−
0

and −x = (X \ x)0.
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• Here, we have selected

– our domain of regions to be RO(R2),

– our set of geometrical primitives to be C.

• Notation:

– denote the first-order language with the single non-logical

primitive C by LC ;

– denote the first-order theory of the structure (RO(R2), C)

by ThC(RO(R2)).

• Question:

What can we say about ThC(RO(R2))?
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• Of course, other sets of geometrical primitives are possible:

c(x) x is connected

x ≤ y “x is a part of y”

conv(x) “x is convex”

b(x) x is bounded (has a compact closure)

. . . . . .

• Given any collection Σ of such primitives, we can ask:

What can we say about ThΣ(RO(R2))?

• In fact, given any collection Σ of such primitives and any

domain D of regions over some space (for which the primitives

Σ are defined), we can ask:

What can we say about ThΣ(D)?
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• It is worth considering a further example. Suppose we select

the primitives to be

Σ = {c,≤},

and our domain of regions to be the regular opens of the

one-point compactification of the Euclidean plane, i.e.

D = RO(Ṙ2).

What can be say about Thc,≤(RO(Ṙ2))?

• Let ψno-wiggle be the Lc,≤-sentence:

∀x1∀x2∀x3

(

(
∧

1≤i≤3

c(xi) ∧ c(x1 + x2 + x3)) →

(c(x1 + x2) ∨ c(x1 + x3))
)

.

• In fact, RO(Ṙ2) 6|= ψno-wiggle, because . . .
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• . . . RO(Ṙ2) contains very wiggly regions:

a3

a1 a2

a1 = {(x, y)| − 1 < x < 0 ; −1 − x < y < 1 + x}

a2 = {(x, y)|0 < x < 1 ; −1 − x < y < sin(1/x)}

a3 = {(x, y)|0 < x < 1 ; sin(1/x) < y < 1 + x}

• Do we want our spatial ontology to include these regions?
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• Define a half-plane (in Ṙ
2) to be one of the residual domains of

a straight line; all half-planes are regular open.

• Define a polygon (in Ṙ
2) to be a finite Boolean combination of

half-planes in RO(Ṙ2).

• Denote by ROP(Ṙ2) the set of polygons in the closed plane.

• Obviously, ROP(Ṙ2) is a Boolean subalgebra of RO(R2).
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• Remark: we might alternatively call the regular open polygons

the regular open semi-linear sets in R
2.

• It can be shown that ROP(Ṙ2) |= ψno-wiggle. That is:

RO(Ṙ2) 6≡c,≤ ROP(Ṙ2).

• Moral: it matters what counts as a ‘region’.
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• Here is a further difference between RO(Ṙ2) and ROP(Ṙ2).

• Let Σ = (C, c,≤), and let ψinf be the LΣ-sentence

∀x∀y(C(x, y) → ∃z(c(z) ∧ z ≤ y ∧ C(x, z))).

• Again, we have RO(Ṙ2) 6|= φ, because of the configuration:

r
s

• By contrast, ROP(Ṙ2) |= φ.
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• The regions in ROP(Ṙ2) are all tame, in the following sense:

– They exhibit curve-selection: if r is a region, and q ∈ F(r),

then there exists a Jordan arc have end q as one of its

endpoints, lying in r ∪ {q}.

– They are all finitely decomposable: each region is the sum

of finitely many connected regions.

• These properties make ROP(Ṙ2) much easier to work with

than RO(Ṙ2)—so let us do that.
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• Having (provisionally) chosen our collection of regions, let us

revisit the choice of topological primitives.

• The language LC has at least as much expressive power over

ROP(Ṙ2) as does Lc,≤:

– The LC -formula φ≤(x, y) := ∀z(C(x, z) → C(y, z)) is

satisfied in ROP(Ṙ2) by a pair (a, b) iff a ≤ b.

– There exists a (more complicated) LC -formula φc(x), such

that φc(x) is satisfied in ROP(Ṙ2) by a iff a is connected.

• These results are robust—they work for almost any sensible

collection of regions (over almost any topological space).

• In particular, over the polygons in the open plane (defined

analogously), LC has at least as much expressive power as Lc,≤.
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• Conversely, the language Lc,≤ has at least as much expressive

power over ROP(Ṙ2) as does LC :

– There exists a (complicated) Lc,≤-formula ψC(x, y), such

that ψC(x, y) is satisfied in ROP(Ṙ2) by a pair (a, b) iff

a− ∩ b− 6= ∅.

• This result is fragile: it relies on global topological features of

the space Ṙ
2.

– In particular, over the polygons in the open plane, Lc,≤ is

strictly less expressive than LC . For example, LC can define

the property of being bounded, but Lc,≤ cannot.

• Nevertheless, we have enough motivatation for studying

Thc,≤(ROP(Ṙ2)).
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• Now we have a question which we can answer:

What can we say about Thc,≤(ROP(Ṙ2))?

• As an aside:

– Considered as {c,≤}-strcutures, ROP(Ṙ2) and ROP(R2)

are isomorphic:

ROP(Ṙ2) 'c,≤ ROP(R2);

– however, as {C}-structures, they are not even elementarily

equivalent:

ROP(Ṙ2) 6≡C ROP(R2).
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• We can characterize Thc,≤(ROP(Ṙ2)) axiomatically as follows:

1. the usual axioms of non-trivial Boolean algebra;

2. two axioms concerning the interaction between c and ≤, e.g.

the axiom

∀x∀y(c(x) ∧ c(y) ∧ x · y 6= 0 → c(x+ y));

3. two planarity axioms, e.g.

¬∃x1 . . .∃x5

(

∧

1≤i≤5

(c(xi) ∧ xi 6= 0)∧

∧

1≤i<j≤5

(c(xi + xj) ∧ xi · xj = 0)
)

;
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4. two axioms to do with partitioning up regions, e.g.

∀x∀y
(

x · y = 0∧

x, y and −(x+ y) are non-empty and connected →

∃u∃v
(

u1 and u2 partition x

∧c(u1 + y) ∧ ¬c(u1 + −(x+ y))

∧c(u2 + −(x+ y)) ∧ ¬c(u2 + y)
))

;
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5. the infinitary rule of inference

{∀x(ψn
c (x) → φ(x)) | n ≥ 1}

∀xφ(x)
,

where ψn
c (x) stands for the formula

∃z1 . . .∃zn

(

∧

1≤i≤n

c(zi) ∧ (x = z1 + · · · + zn)
)

(“If a property holds of all n-component regions, for all n, then

it holds of all regions”).
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• Let Tc,≤ denote the set of sentences which are consequences of

the above axioms and the infinitary proof rule.

Theorem: Tc,≤ = Thc,≤(RO(Ṙ2)).

Proof: Take a model of Tc,≤ in which every element is the

sum of finitely many elements (using the infinitary rule of

inference and the omitting types theorem); embed it in

ROP(R2) (using the planarity axioms), and show that the

embedding is elementary (using the splitting axioms).
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• This gives us a very quick method of checking whether

alternative choices of the domain of regions yield the same

first-order theory. In particular, we consider

– The regular open rational polygons, ROQ(Ṙ2).

– The regular open semialgebraic sets, ROS(Ṙ2).

• Note that ROQ(Ṙ2) ⊂ ROP(Ṙ2) ⊂ ROS(Ṙ2).

• These collections of regions also satisfy curve selection and

finite decomposability.

• It is also easy to check that they make the above axioms true

and validate the infinitary rule of inference. Hence

ROQ(Ṙ2) ≡c,≤ ROP(Ṙ2) ≡c,≤ ROS(Ṙ2).
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• We can generalize this observation:

Definition: Let X be a topological space. A mereotopology

over X is a Boolean sub-algebra M of RO(X) such that

M forms a basis for the topology on X .

• Thus, ROQ(Ṙ2), ROP(Ṙ2) and ROS(Ṙ2) are all

mereotopologies over Ṙ
2.

• Where M is clear from context, we refer its elements as regions.
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• A word on etymology:

– Mereology (Leśniewski): the logic of the part-whole

relationship (≤).

– Mereotopology is simply the study of topological spaces

with regions functioning as the primary objects.

• I am not sure where the term ‘mereotopology’ first appeared in

print.
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• Now for the generalization:

Theorem: All finitely decomposable mereotopologies over Ṙ
2

having curve-selection, and satisfying the above ‘splitting

axiom’ have the same Lc,≤-theory (and hence the same

LC -theory).

• Actually, the following can be shown:

Theorem: All splittable, finitely decomposable

mereotopologies over Ṙ
2 with curve-selection have the same

LΣ-theory for any topological signature Σ.
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• Let us return to the issue of expressive power of Lc,≤ over

ROP(Ṙ2):

• Note that any tuple r̄ from ROP(Ṙ2) can be ‘triangulated’

with finitely many ‘triangles’.

• These triangles can be combinatorially described in Lc,≤.

• This (almost) immediately yields the following result.

Theorem: For every tuple r̄ of ROP(Ṙ2), there exists an

Lc,≤-formula φr̄(x̄) such that, for every tuple s̄ of ROP(Ṙ2),

s̄ satisfies φr̄(x̄) iff r̄ and s̄ are similarly situated.
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• Actually, this observation, combined with some elementary

model theory, yields a much more interesting result.

• Recall that a structure A is said to be prime if it is

elementarily embeddable in every other model of its theory.

• Prime models (where they exist) are unique up to

isomorphism, and are considered ‘simplest’ models of their

respective theories.

• We have:

Theorem: The {c,≤}-structure ROQ(Ṙ2) is a

prime model of Tc,≤.
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• Yet more follows from the same line of argument.

• We can generalize the notion of finite decomposability to

general structures interpreting Lc,≤ in the obvious way. Doing

so, we obtain:

Theorem: All countable, finitely decomposable models of

Tc,≤ are isomorphic.

• Thus, we can get very close to characterizing the rational

polygons in the closed Euclidean plane axiomatically, using

either the language Lc,≤ or the language LC .
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• The last theorem states that any countable, finitely

decomposable model A of Tc,≤ is, up to isomorphism, the same

as the mereotopology ROQ(Ṙ2).

• In fact, switching to the language LC (which we may do), it

turns out that ROQ(Ṙ2) is almost the only mereotopology A is

the same as:

Theorem: Let M be a countable, finitely decomposable

mereotopology over a locally connected, compact, Hausdorff

space X , such that ThC(M) = ThC(ROQ(Ṙ2)). Then there

is a homeomorphism h : X ↔ Ṙ
2 taking M to ROQ(Ṙ2).
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• We can link this last result back to a completely separate

development in topology originating in the study of “proximity

spaces”.

Definition: A contact algebra is a structure interpreting the

signature (C,≤,+, ·,−, 0, 1) satisfying the usual axioms of

Boolean algebra together with

(C0) ∀x¬C(x, 0)

(C1) ∀x(x > 0 → C(x, x))

(C2) ∀x∀y(C(x, y) → C(y, x))

(C3) ∀x∀y(C(x, y) ∧ y ≤ z → C(x, z))

(C4) ∀x∀y(C(x, y + z) → C(x, y) ∨ C(x, z))

• We consider also the following additional axioms:

(Ext) ∀x∀y(∀z(C(x, z) → C(y, z)) → x ≤ y)

(Int) ∀x∀y(¬C(x, y) → ∃z(¬C(x,−z) ∧ ¬C(y, z)))

(Con)∀x∀y(x+ y = 1 ∧ x > 0 ∧ y > 0 → C(x, y)).
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• A topological space is semi-regular if it has a basis of regular

open sets; a topological space is weakly regular if it is

semi-regular and, for any non-empty open set u, there exists a

non-empty open set v with v− ⊆ u.

• X is regular ⇒ X is weakly regular ⇒ X is semi-regular.

Theorem: Let X be a topological space, and let M be a

mereotopology over X , regarded as a structure interpreting

the signature (C,≤,+, ·,−, 0, 1). Then M |= (C0)–(C4). In

addition:

1. If X is weakly regular, then M |= (Ext).

2. If X is compact and Hausdorff, then M |= (Int).

3. If X is connected, then M |= (Con).

Proof: Routine.
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Theorem: (Dimov and Vakarelov, 2006) Let A be a structure

interpreting (C,≤,+, ·,−, 0, 1), whose reduct to (≤,+, ·,−, 0, 1)

is a Boolean algebra. If A |= (C0)–(C4), then A is isomorphic

to a mereotopology over some topological space X . Moreover:

1. if A |= (Ext), then X can be chosen to be weakly regular

(Düntsch and Winter, 2004);

2. if A |= (Int) and (Ext), then X can be chosen to be compact

and Hausdorff (Roeper, 1997); and

3. if M |= (Con), then X can be chosen to be connected.

Proof sketch: Define the points of X to be ultrafilter-like

subsets of A; define a mapping g : A→ P(X) by

g(a) = {x ∈ X | a ∈ X};

use these sets as the basis of a topology.
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• Thus, the classes of mereotopologies over

– all topological spaces

– weakly regular topological spaces

– compact, Hausdorff topological spaces

can be axiomatically characterized

• Cf. our earlier result that the rational polygons can be almost

axiomatically characterized.
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• Returning to region based theories of familiar spaces, of

obvious interest are tame mereotopologies over R
3 (or Ṙ

3).

• Here, the language Lc,≤ is too inexpressive to be of much

interest. However, LC is again maximally expressive, in the

same sense as it is for ROP(R2):

Theorem: For every tuple r̄ of ROP(R3), there exists an

LC -formula φ(x̄) such that, for every tuple b̄ of ROP(R3),

b̄ satisfies φ(x̄) iff ā and b̄ are similarly situated.

Proof: Show that ‘triangulations’ can be combinatorially

described by LC -formulas.

• This means that Th(ROP(Ṙ3)) must display similar

model-theoretic characteristics to Th(ROP(Ṙ2)). In particular

Theorem: The {C}-structure ROQ(Ṙ3) is a

prime model of its theory.

• As for axiomatization, . . .
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• We have concentrated on topology, but that is largely for

historical reasons.

• Consider the langauge L(conv,≤) (Pratt 1999, Davis, Gotts

and Cohn, 1999).

• It is simple to show that:

– ROQ(R2), ROP(R2), ROS(R2) and RO(R2) all have

different L(conv,≤)-theories;

– every tuple r̄ of regions from ROQ(R2), satisfies a formula

which fixes r̄ up to an affine transformation;

– every tuple r̄ of regions from ROP(R2), satisfies a set of

formulas which fix r̄ up to an affine transformation.

• This (and more expressive) region-based theories remain,

however, largely unexplored.
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• Time to summarize:

– We recalled early interest in region-based theories of space,

which were motivated by concerns about the distance

between theories of space and empirical data.

– We translated this interest into questions of the form

What can we say about ThΣ(D)?

for a signature of geometrical primitives Σ and domain of

regions D.

– We gave a reasonably full answer to this question for

topological signatures of primitives.
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• Many of the results reported here can be found in

Ian Pratt-Hartmann: “First-

Order Mereotopology”, in Aiello,

Pratt-Hartmann and van Ben-

them (eds.), Handbook of Spatial

Logics, Springer, 2007.
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