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e Most theories of space take points as the primitive entities.
e This postulation has always troubled some philosophers.

e What happens if we take regions rather than points as the

primitive spatial entities, and qualitative relations involving

regions as the primitive spatial relations?




e Whitehead (1920, 1929) proposed a system of postulates

governing a primitive relation of ‘contact’.

e This notion, being primitive, cannot be defined, but it can be

illustrated by the following diagrams:

b)

e A generally similar theory was proposed by De Laguna (1922).




e An alternative (and independent) approach to developing a

region-based theory of space is illustrated by Tarski (1929):

— begin with the familiar model of space as R?;

define a formal language with variables ranging over the set
of spheres in this space, and the part-whole relation as the

only primitive relation;
axiomatize the theory (in higher-order logic);

— prove a categoricity result.

e Then the subject went very quiet, until, ...




... the revival of region-based theories of space in Artificial
Intelligence in the 1990s.

The primary objective of this work is to devise ‘spatial
representation languages’, enabling quantification over regions
while remaining within first-order logic.

Issues of particular concern

— computational complexity,

— efficient practical automation,

— expressive power.

Note the shift in underlying motivation: computational

inefficiency rather than epistemological hygiene.




e Whatever the motivation, this talk addresses the questions
— What might region-based theories of space look like?
— How should we go about developing them?
— Which mathematical methods can we use to analyse them?
— Are these theories technically interesting?

e For historical continuity (and simplicity!) we shall focus on

topology.

e Remark: prorimity spaces (Naimpally and Warrack).




e Two methodologies present themselves:

1. the ‘postulation-based’” methodology of Whitehead and de
Laguna (and much of the early Al work);

2. the ‘model-theoretic’ strategy of Tarski.

e We opt for the latter. In more detail:
start with a familiar, point-based model of space;
select a collection of ‘regions’, understood as sets of points;

select a collection of non-logical constants representing
primitive geometrical relations between regions, interpreted

over the space in the standard way;

investigate the logical theory of these geometrical primitives.




e To fix ideas, let us

— take our (point-based) model of space to be R?;

— take Whitehead’s contact relation C' to be our only
geometrical primitive, where this predicate is given the

interpretation:
(r,s) satisfies C' iff r~ Ns™ #£ (;

— take regions to be certain subsets of R?.

e We need to be clear about which subsets of R? qualify as

regions.




e Allowing arbitrary sets of points as regions is unlikely to yield
an attractive spatial ontology: we want our regions to be
‘region-like’.

e A subset z of a topological space X is regular open if it is equal
to the interior of its closure:

r =T

e We propose (provisionally) that regions be simply the regular

open subsets of R?.




e If X is any topological space, we denote the collection of
regular open subsets of X by RO(X).

e The elements of RO(R?) are nice: they are the open sets with

no internal cracks or point-holes

o T A %




e Theorem: Let X be a topological space. Then RO(X) forms
a Boolean algebra with top and bottom defined by 1 = X and

0 = ), and Boolean operations defined by z.y = x Ny,
r+y= (:CUy)_O and —z = (X \ 2)°.
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e Here, we have selected
— our domain of regions to be RO(R?),

— our set of geometrical primitives to be C.

e Notation:

— denote the first-order language with the single non-logical

primitive C by L¢;

— denote the first-order theory of the structure (RO(R?), C)
by Thc (RO(RQ))

e (Question:

What can we say about The(RO(R?))?




e Of course, other sets of geometrical primitives are possible:

c(x) x is connected
xr <y “r is a part of y”
conv(x) | “x is convex”

b(x) x is bounded (has a compact closure)

e Given any collection X of such primitives, we can ask:

What can we say about Thy(RO(R?))?

e In fact, given any collection X of such primitives and any
domain D of regions over some space (for which the primitives

Y, are defined), we can ask:

What can we say about Thy(D)?




e It is worth considering a further example. Suppose we select

the primitives to be
Y ={c, <},

and our domain of regions to be the regular opens of the

one-point compactification of the Euclidean plane, i.e.
D = RO(R?).
What can be say about Th, <(RO(R?))?

o Let 1,0 wigme be the L. <-sentence:

Vo VaooVes ((/\ clai) Aclzy + za + 23)) —
1<i<3

(c(x1 + x2) V e(z1 + 23))).

o In fact, RO(R?) F 1), winae, because . ..




..RO(R?) contains very wiggly regions:

ai —1l<z<0; -1l—-z<y<l+z}
a2 O<ax<l; —1—z<y<sin(l/z)}

as O<z<1l;sin(l/z)<y<l+x}

e Do we want our spatial ontology to include these regions?




e Define a half-plane (in R?) to be one of the residual domains of

a straight line; all half-planes are regular open.

e Define a polygon (in R?) to be a finite Boolean combination of
half-planes in RO(R?).
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e Denote by ROP(R?) the set of polygons in the closed plane.

e Obviously, ROP(R?) is a Boolean subalgebra of RO(R?).




e Remark: we might alternatively call the regular open polygons

the regular open semi-linear sets in R2.

e It can be shown that ROP(RQ) = Vo wigsle- L hat is:

RO(R?) #..< ROP(R?).

e Moral: it matters what counts as a ‘region’.




Here is a further difference between RO(R?) and ROP(R?).

Let ¥ = (C, ¢, <), and let 9;,¢ be the Ly-sentence
VaVy(Clz,y) — Jz(c(z) Az <y AN C(x, 2))).

Again, we have RO(R?) } ¢, because of the configuration:

S

T |

By contrast, ROP(R?) k= ¢.




e The regions in ROP(R?) are all tame, in the following sense:

— They exhibit curve-selection: if r is a region, and q € F(r),
then there exists a Jordan arc have end ¢ as one of its
endpoints, lying in r U {q¢}.

— They are all finitely decomposable: each region is the sum

of finitely many connected regions.

e These properties make ROP(R?) much easier to work with
than RO(R?)—so let us do that.




Having (provisionally) chosen our collection of regions, let us

revisit the choice of topological primitives.

The language Lo has at least as much expressive power over
ROP(R?) as does L, <:

— The Lo-formula ¢<(x,y) :=Vz(C(x,2) — C(y, 2)) is
satisfied in ROP(R?) by a pair (a,b) iff a < b.

— There exists a (more complicated) Lo-formula ¢.(x), such
that ¢.(z) is satisfied in ROP(R?) by a iff a is connected.

These results are robust—they work for almost any sensible

collection of regions (over almost any topological space).

In particular, over the polygons in the open plane (defined

analogously), Lo has at least as much expressive power as L. <.




e Conversely, the language L. < has at least as much expressive
power over ROP(R?) as does L¢:

— There exists a (complicated) L. <-formula ¢ (z,y), such
that e (z,y) is satisfied in ROP(IR?) by a pair (a,b) iff
a” Nb- # 0.

e This result is fragile: it relies on global topological features of

the space R2.

— In particular, over the polygons in the open plane, L. < is
strictly less expressive than L. For example, L~ can define
the property of being bounded, but L. < cannot.

e Nevertheless, we have enough motivatation for studying
Th. < (ROP(R?)).




e Now we have a question which we can answer:

What can we say about Th, <(ROP(R?))?

e As an aside:

— Considered as {c, <}-strcutures, ROP(R?) and ROP(R?)

are isomorphic:

ROP(R?) ~. < ROP(R?);

— however, as {C'}-structures, they are not even elementarily

equivalent:

ROP(R?) #¢ ROP(R?).




e We can characterize Th, < (ROP(R?)) axiomatically as follows:
1. the usual axioms of non-trivial Boolean algebra;

2. two axioms concerning the interaction between c and <, e.g.

the axiom
Vavy(e(z) Ne(y) Nz -y #0 — c(x + y));

3. two planarity axioms, e.g.

—3zy .. 3ws (0 \ (e(@i) A mp # 0)A

1<i<5

/\ (c(@i+ zj) Ny - x; =0));

1<i<j<5
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5. the infinitary rule of inference

{Ve(Pe (z) — ¢(x)) | n > 1}
Vip(x) |

where 97 (x) stands for the formula

Elzl...ﬂzn( /\ c(zi)/\(xzzl+---+zn))

1<i<n

(“If a property holds of all n-component regions, for all n, then

it holds of all regions”).




o Let T, < denote the set of sentences which are consequences of

the above axioms and the infinitary proof rule.

Theorem: T, = Th.<(RO(R?)).

Proof: Take a model of T, < in which every element is the
sum of finitely many elements (using the infinitary rule of
inference and the omitting types theorem); embed it in
ROP(R?) (using the planarity axioms), and show that the

embedding is elementary (using the splitting axioms).




This gives us a very quick method of checking whether
alternative choices of the domain of regions yield the same

first-order theory. In particular, we consider
— The regular open rational polygons, ROQ(RZ).
— The regular open semialgebraic sets, ROS(R?).

Note that ROQ(R?) ¢ ROP(R?) ¢ ROS(R?).

These collections of regions also satisfy curve selection and

finite decomposability.

It is also easy to check that they make the above axioms true

and validate the infinitary rule of inference. Hence

ROQ(R?) =. < ROP(R?) =, < ROS(R?).




e We can generalize this observation:

Definition: Let X be a topological space. A mereotopology
over X is a Boolean sub-algebra M of RO(X) such that
M forms a basis for the topology on X.

e Thus, ROQ(R?), ROP(R?) and ROS(R?) are all
mereotopologies over R2.

e Where M is clear from context, we refer its elements as regions.




e A word on etymology:

— Mereology (Lesniewski): the logic of the part-whole

relationship (<).
— Mereotopology is simply the study of topological spaces

with regions functioning as the primary objects.

e | am not sure where the term ‘mereotopology’ first appeared in
print.




e Now for the generalization:

Theorem: All finitely decomposable mereotopologies over R2
having curve-selection, and satisfying the above ‘splitting
axiom’ have the same L. <-theory (and hence the same
Lo-theory).

e Actually, the following can be shown:

Theorem: All splittable, finitely decomposable

mereotopologies over R? with curve-selection have the same

Ly-theory for any topological signature ..




Let us return to the issue of expressive power of L. < over
ROP(R?):

Note that any tuple 7 from ROP(R?) can be ‘triangulated’

with finitely many ‘triangles’.
These triangles can be combinatorially described in L. <.

This (almost) immediately yields the following result.

Theorem: For every tuple 7 of ROP(R?), there exists an
L. <-formula ¢7(Z) such that, for every tuple 5 of ROP(R?),

s satisfies ¢(Z) iff 7 and § are similarly situated.




Actually, this observation, combined with some elementary
model theory, yields a much more interesting result.

Recall that a structure 2 is said to be prime if it is

elementarily embeddable in every other model of its theory.

Prime models (where they exist) are unique up to

isomorphism, and are considered ‘simplest’ models of their
respective theories.

We have:

Theorem: The {¢, <}-structure ROQ(R?) is a
prime model of T, <.




e Yet more follows from the same line of argument.

e We can generalize the notion of finite decomposability to
general structures interpreting £. < in the obvious way. Doing
so, we obtain:

Theorem: All countable, finitely decomposable models of

T, < are isomorphic.

e Thus, we can get very close to characterizing the rational

polygons in the closed Euclidean plane axiomatically, using

either the language L. < or the language L¢.




e The last theorem states that any countable, finitely

decomposable model 2l of T, < is, up to isomorphism, the same
as the mereotopology ROQ(IR?).

e In fact, switching to the language Lo (which we may do), it
turns out that ROQ(RQ) is almost the only mereotopology 2 is

the same as:

Theorem: Let M be a countable, finitely decomposable

mereotopology over a locally connected, compact, Hausdorft
space X, such that The (M) = The (ROQ(R?)). Then there
is a homeomorphism h : X « R? taking M to ROQ(R2).




e We can link this last result back to a completely separate

development in topology originating in the study of “proximity
spaces’” .

Definition: A contact algebra is a structure interpreting the
signature (C, <, 4, -, —, 0, 1) satisfying the usual axioms of
Boolean algebra together with

C0) Vx—-C(z,0)
Cl) Vz(z > 0 — C(x,x))

C3) Vavy(C(z,y) Ny < z — C(z, 2))
C4) Vavy(Clz,y + z) — C(z,y) vV C(z, 2))
e We consider also the following additional axioms:
(Ext) VaVy(vVz(C(z,2) — C(y,2)) — = < y)
(Int) Vavy(=C(z,y) — Iz(=C(z, —2) A =C(y, 2)))
(Con)VaVy(x+y=1Axz>0Ay>0— C(z,y)).

(
(
(C2) Vavy(C(z,y) — Cly, x))
(
(




e A topological space is semi-regular if it has a basis of regular
open sets; a topological space is weakly regular if it is
semi-regular and, for any non-empty open set u, there exists a

non-empty open set v with v— C u.

e X isregular = X is weakly regular = X is semi-regular.

Theorem: Let X be a topological space, and let M be a

mereotopology over X, regarded as a structure interpreting

the signature (C, <,+,-,—,0,1). Then M = (C0)—(C4). In
addition:

1. If X is weakly regular, then M = (Ext).

2. If X is compact and Hausdorff, then M = (Int).

3. If X is connected, then M = (Con).

Proof: Routine.




Theorem: (Dimov and Vakarelov, 2006) Let 2 be a structure
interpreting (C, <,+, -, —,0, 1), whose reduct to (<, +,-,—,0,1)
is a Boolean algebra. If 2 = (C0)—(C4), then 2 is isomorphic

to a mereotopology over some topological space X. Moreover:

1. if A = (Ext), then X can be chosen to be weakly regular
(Diintsch and Winter, 2004 );

. if A = (Int) and (Ext), then X can be chosen to be compact
and Hausdorff (Roeper, 1997); and

3. if M = (Con), then X can be chosen to be connected.

Proof sketch: Define the points of X to be ultrafilter-like
subsets of A; define a mapping g : A — P(X) by

gla) ={r € X |ae X};

use these sets as the basis of a topology.




e Thus, the classes of mereotopologies over
— all topological spaces
— weakly regular topological spaces
— compact, Hausdorff topological spaces

can be axiomatically characterized

e Cf. our earlier result that the rational polygons can be almost

axiomatically characterized.




e Returning to region based theories of familiar spaces, of

obvious interest are tame mereotopologies over R3 (or R?).

Here, the language L. < is too inexpressive to be of much
interest. However, L is again maximally expressive, in the
same sense as it is for ROP(IR?):

Theorem: For every tuple 7 of ROP(RR?), there exists an
Lc-formula ¢(z) such that, for every tuple b of ROP(R3),
b satisfies ¢(Z) iff @ and b are similarly situated.

Proof: Show that ‘triangulations’ can be combinatorially
described by Lo-formulas.

This means that Th(ROP(R?)) must display similar
model-theoretic characteristics to Th(ROP(R?)). In particular
Theorem: The {C}-structure ROQ(R?) is a

prime model of its theory.

e As for axiomatization, ...




e We have concentrated on topology, but that is largely for

historical reasons.

e Consider the langauge L(conv, <) (Pratt 1999, Davis, Gotts
and Cohn, 1999).

e It is simple to show that:

— ROQ(R?), ROP(R?), ROS(R?) and RO(IR?) all have
different £(conv, <)-theories;

— every tuple 7 of regions from ROQ(RR?), satisfies a formula

which fixes 7 up to an affine transformation;

— every tuple 7 of regions from ROP(R?), satisfies a set of

formulas which fix 7 up to an affine transformation.

e This (and more expressive) region-based theories remain,
however, largely unexplored.




e Time to summarize:

— We recalled early interest in region-based theories of space,
which were motivated by concerns about the distance
between theories of space and empirical data.

— We translated this interest into questions of the form

What can we say about Thy(D)?

for a signature of geometrical primitives > and domain of

regions D.

— We gave a reasonably full answer to this question for
topological signatures of primitives.




Many of the results reported here can be found in

Handbook
of Spatial Logics

Ian Pratt-Hartmann: “First-

Order Mereotopology”, in Aiello,

Pratt-Hartmann and van Ben-
them (eds.), Handbook of Spatial
Logics, Springer, 2007.




