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A topological space is a pair (X, O) where O is a collection of
subsets of X s.t. ....

Let X be a topological space and p a subset of X. Then
— A€|0vo|v Up~ = X.
Changing notation slightly, we obtain the modal logic formula
—OoOopVOop

which happens to be an S4-theorem.

More generally, McKinsey and Tarski, 1944, showed:

Theorem: Let ¢ be a formula of modal logic. TFAE:

1. ¢ is an S4-theorem:;
2. ¢ is valid in the class of topological spaces;

3. ¢ is valid in X, where X is any dense-in-itself, separable

metric space.




Consider the formal language 7 :

— Terms: 7 x| 01| -7 |mnUn|nnnNm|r|7°
— Statements: ¢ 2 T =To | ¢1 N ¢2 | 1.

An interpretation for 7 is simply a topological space X

(belonging to some class), with variables ranging over P(X).

Using the obvious semantics for the above primitives, we obtain

the notion of a 7-validity. For example:

= (@) )up =1

The McKinsey-Tarski theorem tells us that the logic of 7, over
the class of all topological spaces, or indeed over any single
dense-in-itself, separable metric space X, is (in effect) the logic

S4. In particular, the corresponding satisfiability problems are
PSPACE-complete.




e If X is a topological space, a subset u C X is regular open if u
is equal to the interior of its closure: u = (u™)°.

e the set of regular open subsets of X is denoted RO(X).

e (RO(X),C) is always a (complete) Boolean algebra under the

interpretation:

X rT-y=xMNy
0 r+y=(zUy)""
—r = (X \x)"

1
0

It is called the regular open algebra of X.

e The valid formula in the previous example states (in effect)

that the regular open sets are exactly those of the form @|o




e This leads to the following fragment of 7 :

— take variables to range only over regular open sets

— take atomic formulas to be only those of the forms

DC(x,y) =z~ Ny~ =0
EC(z,y) =xzNy=0Az" Ny~ #0

OO oe

et

NTPP TPP

e Call this language RCC8 (Egenhofer and Franzosa, Bennett

e For example,

= EC(z,y) ANTPP(y, z) — (O(z,2) VTPP(z,2) VNTPP(x, 2))




e We can extend RCCS8 by adding function symbols 4+, - and —
denoting the obvious operations in RO(X).

e Call this language BRCCS8 (Wolter and Zakharyaschev, 2000)

e For example, we have the validity

= EC(z,y + 2) — (EC(x,y) V EC(z, 2)).

Theorem: Sat-RCCS is NP-hard. Sat-BRCCS is in NP.




e Returning to the language 7, one can extend to obtain a

language 7 C' by adding an additional unary predicate c:

— Terms: .

— Statements: ¢ = ... | c(T)

with the interpretation: X |= ¢|s] iff s C X is connected.
e Let X be a topological space and r, s subsets of X:

— if r is connected and r C s C r—, then s is connected;

— if r and s are connected and r N's # (), then r U s is

connected.

e We can express these (textbook) results as the 7 C-validities:

clx)N—zUy=1AN—yUz™ =1— c(y)
clx)Ne(y) NeNy #0 — c(xUy).
e The problem Sat-7 (' is in NEXPTIME.




e Obvious next step: add quantifiers.

e Consider the language CA defined as follows:
— Terms: 72 z|0|1|—7|T1+72| T 7
— Statements ¢ :: T =710 | C(11,72) | 1 A P2 | = | Tz,

with variables ranging over certain collections (details to follow)
of regular open of subsets of topological spaces belonging to

some class, and and the predicate C' is interpreted as:

X EC[rsiff r—ns™ #0.

e The predicate C is the contact predicate (and the relation it

expresses, the contact relation).

e Whitehead (1919) introduced this relation, calling it

“connection”.

e Whitehead’s motivation was metaphysical /epistemological,

rather than computational.




We now explain the ‘certain collections’ of regular open sets ...

Definition: Let X be a topological space. A mereotopology
over X is a Boolean sub-algebra M of RO(X) such that
every neighbourhood in X contains a neighbourhood in M:

if ¢ € 0 C X with o open, there exists » € M such that
qerCo.

e Where M is clear from context, we refer its elements as regions.

e Important: not every regular open subset of the space in

question need count as a region.

e We shall always interpret the language CA over

mereotopologies.




e A word on etymology:

— Mereology (Lesniewski): the logic of the part-whole

relationship (<).
— Mereotopology is simply the study of topological spaces

with regions functioning as the primary objects.

— I am not sure where the term first appeared in print.

e [t is easy to see that, for most interesting classes of
mereotopologies, deciding satisfiability of C A-formulas is
undecidable. But there is plenty else we can ask about these

logics ...




Definition: A contact algebra is a structure interpreting the
signature (C, <, 4+, -, —,0, 1) satisfying the usual axioms of

Boolean algebra together with

0) Vx—C(z,0)
Ve(zx >0 — C(z,x))

(C
(C
(C2) Vavy(C(x,y) — C(y,))
(C

v

v

3) Vavy(C(z,y) Ny <z — C(z, 2))

4) Vavy(C(z,y +z) — Clz,y) v C(z, 2))

(C

e We consider also the following additional axioms:
(Ext) VaVy(Vz(C(x, z) — C(y, 2)) = 2 < y)
(Int) VaVy(=C(z,y) — F2(-C(z, —2z) A =C(y, 2)))
(Con)Vavy(z +y=1— C(z,y)).
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e A topological space is semi-regular if it has a basis of regular
open sets; a topological space is weakly regular if it is
semi-regular and, for any non-empty open set u, there exists a

non-empty open set v with v— C wu.

e X isregular = X is weakly regular = X is semi-regular.

Theorem: Let X be a topological space, and let M be a

mereotopology over X, regarded as a structure interpreting

the signature (C, <,+,-,—,0,1). Then M = (C0)—(C4). In
addition:

1. If X is weakly regular, then M = (Ext).

2. If X is compact and Hausdorff, then M = (Int).

3. If X is connected, then M = (Con).

Proof: Routine.




Theorem: (Dimov and Vakarelov, 2006) Let 2 be a structure
interpreting (C, <,+,-,—,0,1), whose reduct to (<, +,-, —,0,1)

is a Boolean algebra. If 2 = (C0)—(C4), then 2 is isomorphic

to a mereotopology over some topological space X. Moreover:
1. if A = (Ext), then X can be chosen to be weakly regular
(Diintsch and Winter, 2004 );

. if A = (Int) and (Ext), then X can be chosen to be compact
and Hausdorff (Roeper, 1997); and

3. if M = (Con), then X can be chosen to be connected.

Proof sketch: Define the points of X to be ultrafilter-like
subsets of A; define a mapping g : A — P(X) by

gla)={r € X |a€ X}

use these sets as the basis of a topology.




e Examples of mereotopologies:
RO(X) for any semi-regular space X.
ROS(R™): the regular open semi-algebraic sets in R";

ROP ): the regular open polyhedra in R";

(R™
ROQ(R™): the regular open rational polyhedra in R™.

i

These have their closed-space analogues: RO(S™), ROS(S"),
ROP(S™), ROQ(S™).




e It is interesting to ask what first-order sentences (with various
signatures of topological primitives) are true in

mereotopologies over certain classes of spaces.

e Consider, for example, the sentence Y., given by

VaVy(c(z) ANe(y) Az -y >0 — c(z +y))

e If M is any mereotopology, then M = 1cop.




e Consider the sentence Vg, given by
VaVy(c(z) A cely) — (c(z-y) vV C(—z, —y))).

® Yguc is not true in all mereotopologies:

e However, if M is any mereotopology over R" (n > 1), then

M _H ﬁ@c& .




e Consider the sentence ;¢ given by

VavVy(Clz,y) — Jz(c(z) ANz <x ANC(y,2)))

e ;u¢ 1S not true in WOA%MY

r

ANW
e However, i, is true in ROQ(R?), ROP(R?), ROS(R?).




e Consider the sentence ¥yigely glven by
VariVraVrs(c(xy) A c(xe) A e(xs)A
c(ry + a2 +x3) — (c(x1 + 22) V(1 + 23))).

® Yyigely 18 MOt true in RO(R?):

e However, tyigay is true in ROQ(R?), ROP(R?), ROS(R?).




We can characterize mereotopologies over large classes of

topological spaces abstractly; but what about familiar
mereotopologies, such as ROQ(R"), ROP(R"™) and ROS(R")?

We proceed to give a partial answer to this question where

n = 2.

Here it turns out to be more convenient to employ the
signature (¢, <,+, -, —,0,1) (rather than (C, <, +,-,—,0,1)).

In fact, for this signature, we have RO(R") ~ RO(S™), and
similarly, ROP(R™) ~ ROP(S™) etc.




e Notice that ROQ(R™), ROP(R™) and ROS(R") are all tame, in

the following sense:

— They are all finitely decomposable: each region is the sum
of finitely many connected regions (Cell Decomposition

Theorem).

— They exhibit curve-selection: if r € M and q € F(r) there
exists a Jordan arc have end ¢ as one of its endpoints, lying

in r U {q} (Curve Selection Lemma)).

e They are also all splittable: they make true the following

splitting azxiom:

VxVy Aﬁ y and —(x + y) are non-empty and connected —

FuJv(ug B ug =z A c(ug +y) A—e(ur + —(x +y))A
c(ug + —(z +y)) A —c(uz +y)).




o \ =




e Consider the following axioms
1. the usual axioms of Boolean algebra, and the axiom 0 # 1;
2. the axiom VaVy(c(z) Ac(y) ANx -y # 0 — c(z +y)).
. where n > 2, the axioms

<§...<&:AQA§+...+H:V> > c(z;) — < QA&H‘T&LV.

1<i<n 2<i<n

. two planarity axioms, e.g.

—3zy .. 3ws (0 \ (e(@i) A mp #0)A

1<i<5

> (c(@i + zj) ANwi - xj =0));
1<i<j<5

. the axioms ¢(0) and ¢(1);
. the splitting axiom:;

. another dreadful axiom to do with splitting up regions.




e If n>1, welet Y2 (z) stand for the formula

mmp...m_N:A > QAN@.V>A&HNH+...+N§VV

1<i<n

stating that x can be formed by adding together n connected

regions.

e Thus, for any finitely decomposable mereotopology, the

following infinitary rule of inference is valid:

{(Vz (¢ (z) — ¢(z)) [n > 1}
Vap(x) .

e This rule simply says that, if a property holds of all

n-components regions, for all n, then it holds for all regions.




e We have the following:

Theorem: Let M be a finite decomposable mereotopology
over R? having curve-selection, and satisfying the splitting
axiom. Then M satisfies all the above axioms, and makes
the infinitary rule of inference valid.

Proof: Routine.
e More interestingly, we have a converse. Let T, < denote the set

of sentences which are consequences of the above axioms and

the infinitary proof rule.

Theorem: 7. < is the complete theory of any finitely

decomposable mereotopology over R? having curve-selection

and satisfying the splitting axiom.

Proof: Use the omitting types theorem to get a finitely
decomposable model of T, <; embed it in ROP(R?), and
show that the embedding is elementary.




e The above theorem entails that all finitely decomposable,
splittable mereotopologies over R? having curve-selection,
considered as {c, <}-structures, are elementarily equivalent.

e Actually, over the closed plane, more is true:

Theorem: All splittable, finitely decomposable

mereotopologies over S? with curve-selection have the same

Ly-theory for any topological signature ..




e The theory T, < is well-behaved. It is atomic, with ROQ(R?) a

prime model.

e In addition, we have:

Theorem: All countable finitely decomposable models of the

theory T, < are isomorphic.

e Thus, we can get reasonably close to characterizing the
tame-region-based topology of the Euclidean plane

axiomatically.




We conclude with an open problem regarding contact algebras.

All of the results so far concern mereotopologies over various

topological spaces X—that is, certain sorts of dense
subalgebras of RO(X).

But what about the contact structure of the whole algebra
RO(X)? Can we characterize that?

The example yigg1y, which is true in ROS(R?), but not true in

RO(R?), suggests that this problem may not be so simple:




Theorem Suppose A = Pca U{dint, Pext }, and A is a (non-trivial)
complete Boolean algebra. Then
A = eIy (Cx,y) AVz(z < A
VaiVzo (21 > 0N 20 > 0N 2 =21 + 20 — C(21,22)) — =C(2,9)))

e But this sentence is false in any finitely decomposable

mereotopology over a topological space.
e Let X be the class of all topological spaces, and set

R {RO(X) | X € X}
M {M | M a mereotopology over X for some X € X'}.

Then Th(M) # Th(R).

Open problem: What is the elementary theory (over a
suitable signature) of classes {RO(X) | X € X'}, where X is
some salient class of topological spaces?




e Summary

— T'wo important ideas:
x formal language interpreted over classes of geometrical
structures (spatial logic),
x study of topology from a region-based viewpoint
(Whitehead’s vision).

— These ideas led us to the notion of a mereotopology.

— We can prove representation theorems for the first-order

theories of various classes of mereotopologies.

— We can prove an almost-first order representation theorem
for the rational polygonal mereotopology over the Euclidean

plane.

e See Aiello, Pratt-Hartmann and van Benthem: Handbook of

Spatial Logic (Springer, 2007) for details ...




