The University of Manchester

MANCHESTER 1824

Mereotopology: a Survey

Ian Pratt-Hartmann School of Computer Science Manchester University

TANCL 07

Workshop on Spatial and Spatio-temporal Logics University of Oxford 5th August, 2007

- A topological space is a pair $\langle X, \mathcal{O} \rangle$ where \mathcal{O} is a collection of subsets of X s.t.
- Let X be a topological space and p a subset of X. Then

$$-\left((p^{-0})^{0^{-}} \right) \cup p^{-0} = X.$$

Changing notation slightly, we obtain the modal logic formula

$$\neg \Box \diamond \Box \diamond p \lor \Box \diamond p$$

which happens to be an S4-theorem.

More generally, McKinsey and Tarski, 1944, showed:

Theorem: Let ϕ be a formula of modal logic. TFAE:

- 1. ϕ is an S4-theorem;
- 2. ϕ is valid in the class of topological spaces;
- 3. ϕ is valid in X, where X is any dense-in-itself, separable metric space.

• Consider the formal language T:

- Terms:
$$\tau :: x \mid 0 \mid 1 \mid -\tau \mid \tau_1 \cup \tau_2 \mid \tau_1 \cap \tau_2 \mid \tau^- \mid \tau^0$$

- Statements: $\phi :: \tau_1 = \tau_2 \mid \phi_1 \wedge \phi_2 \mid \neg \phi$.

- An interpretation for \mathcal{T} is simply a topological space X(belonging to some class), with variables ranging over $\mathbb{P}(X)$.
- Using the obvious semantics for the above primitives, we obtain the notion of a \mathcal{T} -validity. For example:

$$\models -((p^{-0})^{0}) \cup p^{-0} = 1$$

The McKinsey-Tarski theorem tells us that the logic of \mathcal{T} , over dense-in-itself, separable metric space X, is (in effect) the logic S4. In particular, the corresponding satisfiability problems are the class of all topological spaces, or indeed over any single PSPACE-complete.

- If X is a topological space, a subset $u \subseteq X$ is regular open if u is equal to the interior of its closure: $u = (u^{-})^{0}$.
- the set of regular open subsets of X is denoted RO(X).
- $(RO(X), \subseteq)$ is always a (complete) Boolean algebra under the interpretation:

$$1 = X x \cdot y = x \cap y$$

$$0 = \emptyset x + y = (x \cup y)^{-0}$$

$$-x = (X \setminus x)^{0}.$$

It is called the regular open algebra of X.

The valid formula in the previous example states (in effect) that the regular open sets are exactly those of the form p^{-0} .

- This leads to the following fragment of \mathcal{T} :
- take variables to range only over regular open sets
- take atomic formulas to be only those of the forms

$$DC(x,y) \equiv x^- \cap y^- = 0$$

$$EC(x,y) \equiv x \cap y = 0 \land x^- \cap y^- \neq 0$$
etc.

- Call this language $\mathcal{R}CC8$ (Egenhofer and Franzosa, Bennett
- For example,

$$\models \mathrm{EC}(x,y) \wedge \mathrm{NTPP}(y,z) \to (\mathrm{O}(x,z) \vee \mathrm{TPP}(x,z) \vee \mathrm{NTPP}(x,z))$$

- We can extend $\mathcal{R}CC8$ by adding function symbols +, \cdot and denoting the obvious operations in RO(X).
- Call this language $\mathcal{B}RCC8$ (Wolter and Zakharyaschev, 2000)
- For example, we have the validity

$$\models \mathrm{EC}(x,y+z) \to (\mathrm{EC}(x,y) \vee \mathrm{EC}(x,z)).$$

Theorem: Sat- $\mathcal{R}CC8$ is NP-hard. Sat- $\mathcal{B}RCC8$ is in NP.

- Returning to the language \mathcal{T} , one can extend to obtain a language TC by adding an additional unary predicate c:
- Terms: ...
- Statements: $\phi :: \ldots \mid c(\tau)$

with the interpretation: $X \models c[s]$ iff $s \subseteq X$ is connected.

- Let X be a topological space and r, s subsets of X:
- if r is connected and $r \subseteq s \subseteq r^-$, then s is connected;
- if r and s are connected and $r \cap s \neq \emptyset$, then $r \cup s$ is connected.
- We can express these (textbook) results as the TC-validities:

$$- \models c(x) \land -x \cup y = 1 \land -y \cup x^{-} = 1 \rightarrow c(y)$$

- $\models c(x) \land c(y) \land x \cap y \neq 0 \rightarrow c(x \cup y).$
- The problem Sat- $\mathcal{T}C$ is in NEXPTIME.

- Obvious next step: add quantifiers.
- Consider the language $\mathcal{C}A$ defined as follows:

- Terms:
$$\tau :: x \mid 0 \mid 1 \mid -\tau \mid \tau_1 + \tau_2 \mid \tau_1 \cdot \tau_2$$

some class, and and the predicate C is interpreted as: of regular open of subsets of topological spaces belonging to with variables ranging over certain collections (details to follow) Statements $\phi :: \tau_1 = \tau_2 \mid C(\tau_1, \tau_2) \mid \phi_1 \land \phi_2 \mid \neg \phi \mid \exists x \phi$,

$$X \models C[r, s] \text{ iff } r^- \cap s^- \neq \emptyset.$$

- The predicate C is the contact predicate (and the relation it expresses, the contact relation).
- Whitehead (1919) introduced this relation, calling it "connection"
- Whitehead's motivation was metaphysical/epistemological, rather than computational

- We now explain the 'certain collections' of regular open sets ... **Definition:** Let X be a topological space. A mereotopology every neighbourhood in X contains a neighbourhood in M: over X is a Boolean sub-algebra M of RO(X) such that $q \in r \subseteq o$. if $q \in o \subseteq X$ with o open, there exists $r \in M$ such that
- Where M is clear from context, we refer its elements as regions.
- Important: not every regular open subset of the space in question need count as a region.
- We shall always interpret the language $\mathcal{C}A$ over mereotopologies

- A word on etymology:
- Mereology (Leśniewski): the logic of the part-whole relationship (\leq).
- Mereotopology is simply the study of topological spaces with regions functioning as the primary objects
- I am not sure where the term first appeared in print.
- It is easy to see that, for most interesting classes of undecidable. But there is plenty else we can ask about these mereotopologies, deciding satisfiability of CA-formulas is $\log i cs \dots$

Definition: A contact algebra is a structure interpreting the signature $(C, \leq, +, \cdot, -, 0, 1)$ satisfying the usual axioms of Boolean algebra together with

(C0)
$$\forall x \neg C(x, 0)$$

(C1)
$$\forall x(x>0 \rightarrow C(x,x))$$

(C2)
$$\forall x \forall y (C(x,y) \to C(y,x))$$

(C3)
$$\forall x \forall y (C(x,y) \land y \leq z \rightarrow C(x,z))$$

(C4)
$$\forall x \forall y (C(x, y + z) \rightarrow C(x, y) \lor C(x, z))$$

We consider also the following additional axioms:

(Ext)
$$\forall x \forall y (\forall z (C(x, z) \to C(y, z)) \to x \leq y)$$

(Int) $\forall x \forall y (\neg C(x, y) \to \exists z (\neg C(x, -z) \land \neg C(y, z)))$

$$(\operatorname{Con}) \, \forall x \forall y (x+y=1 \to C(x,y)).$$

- A topological space is semi-regular if it has a basis of regular open sets; a topological space is weakly regular if it is non-empty open set v with $v^- \subseteq u$. semi-regular and, for any non-empty open set u, there exists a
- X is regular \Rightarrow X is weakly regular \Rightarrow X is semi-regular.

Theorem: Let X be a topological space, and let M be a addition: the signature $(C, \leq, +, \cdot, -, 0, 1)$. Then $M \models (C0)-(C4)$. In mereotopology over X, regarded as a structure interpreting

- 1. If X is weakly regular, then $M \models (Ext)$.
- 2. If X is compact and Hausdorff, then $M \models (Int)$.
- 3. If X is connected, then $M \models (Con)$.

Proof: Routine.

Theorem: (Dimov and Vakarelov, 2006) Let **2** be a structure to a mereotopology over some topological space X. Moreover: is a Boolean algebra. If $\mathfrak{A}\models (C0)-(C4)$, then \mathfrak{A} is isomorphic interpreting $(C, \leq, +, \cdot, -, 0, 1)$, whose reduct to $(\leq, +, \cdot, -, 0, 1)$

- 1. if $\mathfrak{A} \models (\operatorname{Ext})$, then X can be chosen to be weakly regular (Düntsch and Winter, 2004);
- 2. if $\mathfrak{A} \models (Int)$ and (Ext), then X can be chosen to be compact and Hausdorff (Roeper, 1997); and
- 3. if $M \models (Con)$, then X can be chosen to be connected.

Proof sketch: Define the points of X to be ultrafilter-like subsets of A; define a mapping $g: A \to \mathbb{P}(X)$ by

$$g(a) = \{ x \in X \mid a \in X \};$$

use these sets as the basis of a topology.

- Examples of mereotopologies:
- RO(X) for any semi-regular space X.

 $ROS(\mathbb{R}^n)$: the regular open semi-algebraic sets in \mathbb{R}^n ;

- $ROP(\mathbb{R}^n)$: the regular open polyhedra in \mathbb{R}^n ;
- $ROQ(\mathbb{R}^n)$: the regular open rational polyhedra in \mathbb{R}^n .

These have their closed-space analogues: $RO(\mathbb{S}^n)$, $ROS(\mathbb{S}^n)$, $ROP(\mathbb{S}^n)$, $ROQ(\mathbb{S}^n)$.

- It is interesting to ask what first-order sentences (with various signatures of topological primitives) are true in mereotopologies over certain classes of spaces.
- Consider, for example, the sentence ψ_{con} given by

$$\forall x \forall y (c(x) \land c(y) \land x \cdot y > 0 \rightarrow c(x+y))$$

If M is any mereotopology, then $M \models \psi_{\text{con}}$.

• Consider the sentence ψ_{Eucl} given by

$$\forall x \forall y (c(x) \land c(y) \rightarrow (c(x \cdot y) \lor C(-x, -y))).$$

• ψ_{Eucl} is not true in all mereotopologies:

However, if M is any mereotopology over \mathbb{R}^n $(n \geq 1)$, then $M \models \psi_{\text{Eucl}}.$

• Consider the sentence ψ_{inf} given by

$$\forall x \forall y (C(x,y) \to \exists z (c(z) \land z \leq x \land C(y,z)))$$

• ψ_{inf} is not true in RO(\mathbb{R}^2):

However, ψ_{inf} is true in ROQ(\mathbb{R}^2), ROP(\mathbb{R}^2), ROS(\mathbb{R}^2).

• Consider the sentence ψ_{wiggly} given by

$$\forall x_1 \forall x_2 \forall x_3 (c(x_1) \land c(x_2) \land c(x_3) \land c(x_1 + x_2 + x_3) \rightarrow (c(x_1 + x_2) \lor c(x_1 + x_3))).$$

• ψ_{wiggly} is not true in RO(\mathbb{R}^2):

However, ψ_{wiggly} is true in $\text{ROQ}(\mathbb{R}^2)$, $\text{ROP}(\mathbb{R}^2)$, $\text{ROS}(\mathbb{R}^2)$.

- We can characterize mereotopologies over large classes of mereotopologies, such as $ROQ(\mathbb{R}^n)$, $ROP(\mathbb{R}^n)$ and $ROS(\mathbb{R}^n)$? topological spaces abstractly; but what about familiar
- We proceed to give a partial answer to this question where
- Here it turns out to be more convenient to employ the signature $(c, \le, +, \cdot, -, 0, 1)$ (rather than $(C, \le, +, \cdot, -, 0, 1)$).
- In fact, for this signature, we have $RO(\mathbb{R}^n) \simeq RO(\mathbb{S}^n)$, and similarly, $ROP(\mathbb{R}^n) \simeq ROP(\mathbb{S}^n)$ etc.

- Notice that $ROQ(\mathbb{R}^n)$, $ROP(\mathbb{R}^n)$ and $ROS(\mathbb{R}^n)$ are all tame, in the following sense:
- They are all finitely decomposable: each region is the sum of finitely many connected regions (Cell Decomposition Theorem).
- They exhibit curve-selection: if $r \in M$ and $q \in \mathcal{F}(r)$ there in $r \cup \{q\}$ (Curve Selection Lemma). exists a Jordan arc have end q as one of its endpoints, lying
- They are also all splittable: they make true the following splitting axiom:

$$\forall x \forall y (x, y \text{ and } -(x+y) \text{ are non-empty and connected} \rightarrow$$

$$\exists u \exists v (u_1 \oplus u_2 = x \land c(u_1+y) \land \neg c(u_1+-(x+y)) \land$$

$$c(u_2+-(x+y)) \land \neg c(u_2+y)).$$

We can illustrate the splitting axiom diagrammatically:

<u>b</u>)

- Consider the following axioms
- 1. the usual axioms of Boolean algebra, and the axiom $0 \neq 1$;
- 2. the axiom $\forall x \forall y (c(x) \land c(y) \land x \cdot y \neq 0 \rightarrow c(x+y))$.
- 3. where n > 2, the axioms

$$\forall x_1 \dots \forall x_n \left(c(x_1 + \dots + x_n) \land \bigwedge_{1 \le i \le n} c(x_i) \to \bigvee_{2 \le i \le n} c(x_1 + x_i) \right).$$

4. two planarity axioms, e.g.

- 5. the axioms c(0) and c(1);
- 6. the splitting axiom;
- 7. another dreadful axiom to do with splitting up regions.

If $n \geq 1$, we let $\psi_c^n(x)$ stand for the formula

$$\exists z_1 \dots \exists z_n \Big(\bigwedge_{1 \le i \le n} c(z_i) \land (x = z_1 + \dots + z_n) \Big)$$

stating that x can be formed by adding together n connected regions.

Thus, for any finitely decomposable mereotopology, the following infinitary rule of inference is valid:

$$\frac{\{\forall x(\psi_c^n(x) \to \phi(x)) \mid n \ge 1\}}{\forall x \phi(x)}.$$

This rule simply says that, if a property holds of all n-components regions, for all n, then it holds for all regions.

We have the following:

Theorem: Let M be a finite decomposable mereotopology axiom. Then M satisfies all the above axioms, and makes over \mathbb{R}^2 having curve-selection, and satisfying the splitting the infinitary rule of inference valid.

Proof: Routine.

More interestingly, we have a converse. Let $T_{c,\leq}$ denote the set the infinitary proof rule. of sentences which are consequences of the above axioms and

Theorem: $T_{c,\leq}$ is the complete theory of any finitely and satisfying the splitting axiom. decomposable mereotopology over \mathbb{R}^2 having curve-selection

Proof: Use the omitting types theorem to get a finitely show that the embedding is elementary. decomposable model of $T_{c,\leq}$; embed it in ROP(\mathbb{R}^2), and

- The above theorem entails that all finitely decomposable, considered as $\{c, \leq\}$ -structures, are elementarily equivalent. splittable mereotopologies over \mathbb{R}^2 having curve-selection,
- Actually, over the closed plane, more is true:

Theorem: All splittable, finitely decomposable mereotopologies over \mathbb{S}^2 with curve-selection have the same L_{Σ} -theory for any topological signature Σ .

- The theory $T_{c,\leq}$ is well-behaved. It is atomic, with $ROQ(\mathbb{R}^2)$ a prime model.
- In addition, we have:

Theorem: All countable finitely decomposable models of the theory $T_{c,\leq}$ are isomorphic.

Thus, we can get reasonably close to characterizing the axiomatically. tame-region-based topology of the Euclidean plane

- We conclude with an open problem regarding contact algebras.
- subalgebras of RO(X). topological spaces X—that is, certain sorts of dense All of the results so far concern *mereotopologies* over various
- But what about the contact structure of the whole algebra RO(X)? Can we characterize that?
- The example ψ_{wiggly} , which is true in ROS(\mathbb{R}^2), but not true in $RO(\mathbb{R}^2)$, suggests that this problem may not be so simple:

Theorem Suppose $\mathfrak{A} \models \Phi_{CA} \cup \{\phi_{int}, \phi_{ext}\}\$, and \mathfrak{A} is a (non-trivial) complete Boolean algebra. Then

$$\mathfrak{A} \models \exists x \exists y (C(x,y) \land \forall z (z \leq x \land \forall z_1 \forall z_2 (z_1 > 0 \land z_2 > 0 \land z = z_1 + z_2 \rightarrow C(z_1, z_2)) \rightarrow \neg C(z,y)))$$

- But this sentence is false in any finitely decomposable mereotopology over a topological space.
- Let \mathcal{X} be the class of all topological spaces, and set

$$\mathcal{R} = \{ \text{RO}(X) \mid X \in \mathcal{X} \}$$

 $= \{M \mid M \text{ a mereotopology over } X \text{ for some } X \in \mathcal{X}\}.$

Then $Th(\mathcal{M}) \neq Th(\mathcal{R})$.

Open problem: What is the elementary theory (over a suitable signature) of classes $\{RO(X) \mid X \in \mathcal{X}\}$, where \mathcal{X} is some salient class of topological spaces?

Summary

- Two important ideas:
- * formal language interpreted over classes of geometrical structures (spatial logic),
- study of topology from a region-based viewpoint (Whitehead's vision).
- These ideas led us to the notion of a mereotopology.
- theories of various classes of mereotopologies. We can prove representation theorems for the first-order
- plane. for the rational polygonal mereotopology over the Euclidean We can prove an almost-first order representation theorem
- See Aiello, Pratt-Hartmann and van Benthem: Handbook of Spatial Logic (Springer, 2007) for details ...