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• Euclid’s Elements (c. 300 B.C.)

Postulate 1 To draw a straight line from any point to any point.

. . .

Postulate 5 That, if a straight line falling on two straight lines

make the interior angles on the same side less than two right

angles, the two straight lines, if produced indefinitely, meet on

that side on which the angles are less than the two right angles.

(Tr. Sir Thomas L. Heath, 1908)
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• Hilbert’s Grundlagen der Geometrie (3rd Ed., 1909)

I.1 Two distinct points A and B determine a line.

. . .

IV Let a be a line, and A a point not on a. Then, in the plane

determined by a and A, there is at most one line which passes

through A and does not meet a.

V.2 The elements (points, lines, planes) of the geometry form a

system of objects which is not capable of any extension, subject to

maintenance of all the preceding axioms. That is to say: it is not

possible to add to the system of points, lines and planes another

system in such a way that, in the combined system, all axioms

I–IV and V.1 are satisfied.

• What had happened to make the axioms so complicated?
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• Two obvious developments:

– the use of the algebraic method in geometry following the

work of Descartes (1637), and the ensuing arithmetization

of geometry;

– the rise of non-Euclidean geometries due to the work of

Lobachevsky (1826) and Bolyai (1829).

• Thus, we have a radical change in the subject matter of

geometry: from

– the study of the consequences of a given set of postulates

about geometrical entities and relations

to

– the study of the properties of (classes of) geometrical

structures, which need not be given axiomatically.
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• Hilbert axiomatized the structure formed by IR3, with the

standard interpretation of the geometrical primitives.

• The axioms make sense only as an attempt to do just this.

• Note that Hilbert (like Euclid) wrote his axioms out in natural

language; his Foundations of Geometry is (implicitly) clear

about the geometrical primitives of his system, but not about

the set-theoretical and logical resources at his disposal.

• This shift from consequences of axiom-systems to facts

about (classes of) structures opens new mathematical

possibilities.
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• Tarski: What is elementary geometry? (1958)

A1 ∀xy(β(x, y, x) → x = y)

. . .

A12 ∀xyzuv(δ(x, u, x, v) ∧ δ(y, u, y, v) ∧ δ(z, u, z, v) ∧ u 6= v →

β(x, y, v) ∨ β(y, z, x) ∨ β(z, x, y))

. . .

• Here the variables range over points, and only first-order logic

is employed.

• Tarski was well-aware of alternatives: in 1929, he had

developed a geometry of solids employing second-order logic,

and with object-variables ranging over spheres in IR3.
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• The shift from the axiomatic to the constructive method

enables us to study (classes of) structures from the point of

view of different formal languages.

• Let us call a formal language interpreted over a (class of)

geometrical structures, broadly construed, a

geometrical logic.

• Informally, we can identify three ‘dimensions’ of variation in

geometrical logics:

1. the (classes of) structures considered;

2. the primitive geometrical terms interpreted thereover;

3. the logical (and set-theortical) resources by means of which

these terms may be combined.
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• Here are some of the questions you can ask about a geometrical

logic:

– Can you axiomatize its validities?

– Is its satisfiability problem decidable, and if so, with what

complexity?

– What relations can formulas (with free variables) express

over the intended interpretations?

– What are the other models of the theory?

• For a variety of geometrical logics, we have answers to these

questions.

8



• Example 1: The Boolean theory of plane discs over the RCC-8

primitives

– The formula φ(x, y, z, u) given by

EC(x, y) ∧ EC(x, z) ∧ O(x, u) ∧ O(y, z) ∧ DC(y, u) ∧ O(z, u)

is satisfied by the tuple (A, B, C, D)

A

B

C

D

– Schaefer, Sedgwick and Štefankovič (2003) showed that

satisfiability in this logic is NP-complete.
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• Example 2: The first-order theory of the regular open

semialgebraic plane sets ROS(IR2) over the primitives c (“is a

connected region”) and ≤ (“is a part of”).

– Some formulas in this theory are:

∀x∀y∀z
(

(

c(x + y) ∧ c(y + z) ∧ y 6= 0
)

→ c(x + y + z)
)

;

∀x1∀x2∀x3

(

c(x1) ∧ c(x2) ∧ c(x3) ∧ c(x1 + x2 + x3) →

c(x1 + x2) ∨ c(x1 + c3)
)

.

• This theory can in fact be axiomatically characterized
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• Example 2 (contd.)

– The language L(c,≤) is not ‘topologically lossless’ over

ROS(IR2): an open disc and its complement (which are

topologically distinguishable) satisfy exactly the same set of

formulas.

– But it becomes topologically lossless if an extra predicate b

(‘is bounded’) is added: every tuple satisfies a formula of

L(c,≤,b) which is identifies it up to topological similarity.

– The first-order L(c,≤)-theory of ROS(IR2) has, up to

isomorphism, exactly one countable model in which every

element is the sum of finitely many connected elements.
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• Example 3: The first-order theory of the regular open plane

sets RO(IR2) over the signature (c,≤)

– The set RO(IR2) contains some pathological regions

– Almost nothing is known about this theory, except that it is

not identical to the theory of ROS(IR2) over the same

signature. For example,

∀x1∀x2∀x3(c(x1) ∧ c(x2) ∧ c(x3) ∧ c(x1 + x2 + x3) →

c(x1 + x2) ∨ c(x1 + c3)).

does not belong to it.
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• The resulting space of geometrical logics can be visualized thus:

Geometrical primitives

Logical/set-theoretical resources

Classes of interpretations
7

6

4

2

3

1

1. RCC-type constraint languages
2: Nutt/Bennett’s PSPACE mereotopological language
3: TCC (topological constraints with component counting)
4: Davis et al’s constraint language with convexity
5: First order theory of convexity in Euclidean plane

7: First-order polyhedral mereotopology
6: First-order polygonal mereotopology

5
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• Conclusion

– A geometrical logic is a formal language interpreted over a

(class of) geometrical structures, broadly construed.

– The study of geometrical logics is a way of pursuing the

study of geometry—but with particular emphasis on the

relationship between sentences of those logics and the

structures they describe.

– This study involves questions which cannot formulated

without the model-theoretic view that I have outlined.

– That view is the product of a long historical development.
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