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e A spatial logicis a formal language with
— variables ranging over ‘geometrical entities’
— non-logical primitives denoting relations and operatidefined
over those geometrical entities.
e Any spatial logic is thus characterized by by three paramete

— alogical syntax
propositional logic, FOL, higher-order logic ...

— a signature ohon-logical (geometrical) primitives
conv(z), c(x), C(x,y), ...
— aclass of interpretation@nore on this below).

e A topological logicis a spatial logic whose non-logical primitives arg
all topological in character.




e Probably the best-known topological logic is thHeCC8’ language
(Randall, Cui and Cohn, 1992), (Egenhofer 1991)

DC(r1,72) EC(r1,72)

PO(Tl,Tz) EQ(Tl,Tz)
TPP(Tl,Tg) NTPP(Tl,Tg)

e Example of a formula in this logic:

(TPP(Tl, 7“2) N\ NTPP(T1, 7“3)) —
(PO(TQ,Tg) V TPP(TQ,Tg) V NTPP(TQ,Tg)).




e If X is atopological space,feameon X is a pair(X, R), whereR
IS a (non-empty) collection of subsets_&f—calledregions

e For example, we can consider the frafde RC(X)) of regular
closedsets inX. (A regular closed set is th#dosure of an open et
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e If X is atopological spac&C(X) is a Boolean algebra under
natural operations:

1+ T2 r1 U
T1 -T2 cl(int(r1 N r2))

—7 cl(cmp(ry))

So frames of the forlRC(X') are natural structures over which to
Interpret topological logics.




Denote the class of framd$ X, RC(X)) | X a topological spaceby
REGC.

And given an assignment of variables to regions of a framedo@®
the RCC8-primitives have natural formal interpretations:

DC(Tl, 7“2) iff rNro=10
TPP(r1,72) iff 71 Crobutry € int(rs)
NTPP(ri,r2) iff 71 Cint(r2)

This gives us notions ddatisfiabilityandvalidity for formulas, with
respect to either frames or, more generallgsses of frames

We denote the satisfiability problem f&CC8-formulas over a
frame-classC by Sat(RCCS8, K).




e For example,

—l(TPP(Tl, 7“2) N NTPP(T1, 7“3)) —
(PO(?“Q, 7“3) V TPP(TQ, 7“3) V NTPP(?“Q, 7“3)).

IS not satisfiable over R:C.

(O

N

We can also interpréRCC8-formulas over smaller frame-classes:
e.g.

RC(R), RC(R?), RC(R), {RC@R™)|n>1},...

However, this makes no difference to the satisfiabilitydigt
problem:Sat(RCC8, REGC) = Sat(RCC8,RC(R™)) for all n > 1.




e Some simple facts:

Theorem 1(~ Renz 1998) The problem Sat(RCC8, REGC) is
N P-complete. Indeed, for any n > 0,

Sat(RCC8, RC(R™)) = Sat(RCC8, REGC).

e Actually, by restricting the language somewhat, we getbett
complexities:

— if we consider only conjunctions G2CC8-primitives, complexity
of satisfiability goes down to NQGSPACE

— Various (larger) tractable fragments have been found (Nsatok
Blrckert 1995), (Renz 1999), ...,

e \Warning:

Regions need not be connect




e Now suppose we add, -, —, 0 and1 to RCCS, yielding the language
BRCCS (Wolter and Zakharyaschev, 2000), thus:

EC(Tl + 7“2,7’3) — (EC(Tl,Tg) V EC(?“Q, 7“3)).

e But now, we can replace theCC8-predicates with the binary
relations ofequality(=) andcontact

C(ri,re) iff 11 Nre = 0.

DC(’I“1,7“2) _'0(7"1,7"2)
TPP<T1,T2) ry-—re=0A C(’I“1, —?“2)
NTPP(T1,T2) T1 75 O/\—|C(7°1,—’r2)

e For this reason, the language is now called, simply,




e Some more simple facts:

Theorem 2 (Wolter and Zakharyaschev, 2000)he problem
Sat(C, REGC) is NP-complete. For any n > 1, the problem
Sat(C, RC(R™)) is PSPACE-complete.

e The critical difference here is that the spatsareconnected(The
P S,AcE-hardness result generally applies wlieis interpreted over
the class of regular closed algebras of connected topabgpaces.)

e Logics which cannot express the property of connectedmressfa
limited interest. So let’s add it!




e \We employ a unary predicatewith the semantics

c(r) iff r is connected

e \We consider the languages
— RCC8c: RCC8 plus the unary predicatie

— Cc: W+Z's language (i.eC, +, -, —, 0, 1) plus the unary
predicater;

— Be: like C, but withoutC'.

e Example of arRCC8c-formula in the 3 variables

T17T27T3:

/\ c(ri) A /\ EC(r;,7;).

1<i<3 1<i<j<3




e Adding the predicate makes the logic much more sensitive to the
underlying space.

Example:
/\ c(r;) A /\ EC(r;, 1)
1<i<3 1<i<j<3

IS not satisfiable iRC(R) (because any realizing assignment would

makery, ro andrs intervals); but it is satisfiable iIRC(R™) for
n > 2.

Example:

/\C(Ti,j) N\ /\DC(T¢,j7Tk,g) N\ /\ TPP(T7;77“j’k).

1<i<j<5 {i,7}n{k,0}=0 i€{j,k}

is not satisfiable ilRC(RR?) (because any realizing assignment woul

induce a plane embedding &f;); but it is satisfiable iIRC(R™) for
n > 3.
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e Various complexity results are known here

Theorem 3(Kontchakov, P-H, W+Z, forthcoming)

Sat(RCC8c¢, REGC) is NP-complete (trivial);
Sat(Ce, REGC) is EXPTIME-complete;
Sat(Bce, REGC) is EXPTIME-complete.

Theorem 4.

Sat(RCC8c¢, RC(R™)) is NP-complete (n > 1)*;
Sat(Be, RC(R)) is NP-complete ;

Sat(Ce, RC(R)) is PSPACE-complete;

Sat(Be, RC(R™)) isEXPTIME-hard (n > 2);
Sat(Ce, RC(R™)) is EXPTIME-hard (n > 2).

* Membership ofSat(RCC8c, RC(IR?)) in NPis highly non-trivial
(Shaefer, Sedgwick artefankovt).




We may wish to distinguish betweeonnnectednessndinterior
connectedness

p{ P4 PC

We employ a unary predicaté with the semantics

c¢” (r) iff int(r) is connected

This gives us the further languagRe C8c¢°, Bc°, Cc°.

Example of arCc°-formula

c®(—=r1) Ac®(—=ra) ADC(r1,12) A = (—(r1 + 12))




e Thelc°-formula

c(—=r1) A c®(—=ra) ADC(r1,12) A = (—(r1 + 12))

IS satisfiable over RGC, thus:
1

But it is not satisfiable oveRC(IR™) for any n!
Theorem 5.

Sat(RCC8c®, RC(R™)) is NP-complete (n > 2);
Sat(Cc®, RC(R™)) iISEXPTIME-hard (n > 2);*
Sat(Bc®, RC(R™)) is NP-complete (n > 3).




e Actually, matters are even more delicate than tRIG(R™) contains
some very pathological sets:

e This prompts us to consider interpretations of spatialdegiver
collections oftameregions.

e Natural candidates for tame subalgebraBG{R"):
— The regular closegolyhedrain R™, RCRR"):

I

— The regular closedemi-algebraisubsets oR"”, RCSR").




We consider first logics interpreted over 1-dimensionatepa

Consider theRCC8c-formula

c(ry) A /\ EC(r;,75).

1<i<j<4

This formula is satisfiable ovétC(RR):

T4

But the only satisfying tuples are those in which some of the
members have infinitely many components.

That is, the formula is not satisfiable ove€P(RR).




e Thus, we have shown:

Sat(RCC8c,RC(R)) # Sat(RCC8c¢,RCP(R))
Sat(Ce, RC(R)) #  Sat(Ce, RCP(R)).

e These problems do, however, have the same complexity:
Theorem 6.

Sat(RCC8¢, RCP(R)) is NP-complete;
Sat(Ce, RCP(R)) is PSPACE-complete.

e On the other hand:

Theorem 7. Sat(Be, RCP(R)) = Sat(Be, RC(R)), and henceis
N P-compl ete.




¢ In two dimensions, we get a different pattern of sensititaty
tameness:

e For example, théc°-formula

A ei) A (Y r) A(e(r+ra) Ve (1 +73))

1<i<3 1<i<3

is satisfiable oveRC(R?), thus,

but is unsatisfiable oveRCP(IR?).




e Thus, we have shown:
Sat(Bc®, RC(R?)) # Sat(Bc®, RCP(R?))
Sat(Cc®, RC(R?)) # Sat(Cc®, RCP(R?)).

e Similarly (via a more elaborate construction):
Sat(Bc, RC(R?))
Sat(Ce, RC(R?))

Sat(Bc, RCP(R?))
Sat(Cc, RCP(RR?)).

£
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Theorem 8.
Sat(RCC8c{°}, RCP(R?)) = Sat(RCC8c{°}, RC(R?)).
Theorem 9.

ISEXPTIME-hard (n > 2);
ISEXPTIME-hard (n > 2);
ISEXPTIME-hard (n > 2);

IS EXPTIME-hard,;

IS EXPTIME-complete (n > 3).




Conclusions

We have explained whattapological logic(more generally, a
spatial logig is.

We have reviewed some well-known results/®GCs, and

considered the effect of addimgnnectednegsredicates.

We showed that even the simplest logics with connectedness:
— are sensitive to the underlying space;

— exhibit complex patterns of sensitivity tamenes# Euclidean
spaces of different dimension;

— reveal a complicated (and still, to some extent uncharted)
complexity-theoretic landscape.

The authoritative reference for more results on spatiatfog

Aiello, P-H and van Benthem (edsHandbook of Spatial
Logics, Springer, 2007.




