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• A spatial logicis a formal language with

– variables ranging over ‘geometrical entities’

– non-logical primitives denoting relations and operationsdefined

over those geometrical entities.

• Any spatial logic is thus characterized by by three parameters:

– a logical syntax:

propositional logic, FOL, higher-order logic . . .

– a signature ofnon-logical (geometrical) primitives:

conv(x), c(x), C(x, y), . . .

– aclass of interpretations(more on this below).

• A topological logicis a spatial logic whose non-logical primitives are

all topological in character.
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• Probably the best-known topological logic is the‘RCC8’ language

(Randall, Cui and Cohn, 1992), (Egenhofer 1991)

DC(r1, r2) EC(r1, r2)

PO(r1, r2) EQ(r1, r2)

TPP(r1, r2) NTPP(r1, r2)

• Example of a formula in this logic:

(

TPP(r1, r2) ∧ NTPP(r1, r3)
)

→
(

PO(r2, r3) ∨ TPP(r2, r3) ∨ NTPP(r2, r3)
)

.

r3

r2

r1
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• If X is a topological space, aframeonX is a pair(X,R), whereR

is a (non-empty) collection of subsets ofX—calledregions.

• For example, we can consider the frame(X, RC(X)) of regular

closedsets inX . (A regular closed set is theclosure of an open set).

.

.

• If X is a topological space,RC(X) is a Boolean algebra under

natural operations:

r1 + r2 = r1 ∪ r2

r1 · r2 = cl(int(r1 ∩ r2))

−r1 = cl(cmp(r1))

So frames of the formRC(X) are natural structures over which to

interpret topological logics.

4



• Denote the class of frames{(X, RC(X)) | X a topological space} by

REGC.

• And given an assignment of variables to regions of a frame in REGC,

theRCC8-primitives have natural formal interpretations:

DC(r1, r2) iff r1 ∩ r2 = ∅

TPP(r1, r2) iff r1 ⊆ r2 but r1 6⊆ int(r2)

NTPP(r1, r2) iff r1 ⊆ int(r2)

· · · · · · · · ·

• This gives us notions ofsatisfiabilityandvalidity for formulas, with

respect to either frames or, more generally,classes of frames.

• We denote the satisfiability problem forRCC8-formulas over a

frame-classK by Sat(RCC8,K).
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• For example,

¬
(

TPP(r1, r2) ∧ NTPP(r1, r3)
)

→
(

PO(r2, r3) ∨ TPP(r2, r3) ∨ NTPP(r2, r3)
)

.

is not satisfiable over REGC.

r3

r2

r1

• We can also interpretRCC8-formulas over smaller frame-classes:
e.g.

RC(R), RC(R2), RC(R), {RC(Rn) | n ≥ 1}, . . .

However, this makes no difference to the satisfiability/validity

problem:Sat(RCC8, REGC) = Sat(RCC8, RC(Rn)) for all n ≥ 1.
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• Some simple facts:

Theorem 1(≈ Renz 1998). The problem Sat(RCC8, REGC) is

NP-complete. Indeed, for any n ≥ 0,

Sat(RCC8, RC(Rn)) = Sat(RCC8, REGC).

• Actually, by restricting the language somewhat, we get better

complexities:

– if we consider only conjunctions ofRCC8-primitives, complexity

of satisfiability goes down to NLOGSPACE

– Various (larger) tractable fragments have been found (Nebel and

Bürckert 1995), (Renz 1999), . . . ,

• Warning:

Regions need not be connected.
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• Now suppose we add+, ·, −, 0 and1 toRCC8, yielding the language
BRCC8 (Wolter and Zakharyaschev, 2000), thus:

EC(r1 + r2, r3) →
(

EC(r1, r3) ∨ EC(r2, r3)
)

.

• But now, we can replace theRCC8-predicates with the binary

relations ofequality(=) andcontact:

C(r1, r2) iff r1 ∩ r2 = ∅.

thus:

DC(r1, r2) ≡ ¬C(r1, r2)

TPP(r1, r2) ≡ r1 · −r2 = 0 ∧ C(r1,−r2)

NTPP(r1, r2) ≡ r1 6= 0 ∧ ¬C(r1,−r2)

· · · · · · · · ·

• For this reason, the language is now called, simply,C.
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• Some more simple facts:

Theorem 2(Wolter and Zakharyaschev, 2000). The problem

Sat(C, REGC) is NP-complete. For any n ≥ 1, the problem

Sat(C, RC(Rn)) is PSPACE-complete.

• The critical difference here is that the spacesR
n areconnected. (The

PSPACE-hardness result generally applies whenC is interpreted over

the class of regular closed algebras of connected topological spaces.)

• Logics which cannot express the property of connectedness are of

limited interest. So let’s add it!
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• We employ a unary predicatec with the semantics

c(r) iff r is connected

• We consider the languages

– RCC8c: RCC8 plus the unary predicatec;

– Cc: W+Z’s language (i.e.C, +, ·, −, 0, 1) plus the unary

predicatec;

– Bc: like C, but withoutC.

• Example of anRCC8c-formula in the 3 variables

r1, r2, r3:
∧

1≤i≤3

c(ri) ∧
∧

1≤i<j≤3

EC(ri, rj).
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• Adding the predicatec makes the logic much more sensitive to the

underlying space.

• Example:
∧

1≤i≤3

c(ri) ∧
∧

1≤i<j≤3

EC(ri, rj)

is not satisfiable inRC(R) (because any realizing assignment would

maker1, r2 andr3 intervals); but it is satisfiable inRC(Rn) for

n ≥ 2.

• Example:
∧

1≤i<j≤5

c(ri,j) ∧
∧

{i,j}∩{k,`}=∅

DC(ri,j, rk,`) ∧
∧

i∈{j,k}

TPP(ri, rj,k).

is not satisfiable inRC(R2) (because any realizing assignment would

induce a plane embedding ofK5); but it is satisfiable inRC(Rn) for

n ≥ 3.
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• Various complexity results are known here

Theorem 3(Kontchakov, P-H, W+Z, forthcoming).

Sat(RCC8c, REGC) is NP-complete (trivial);

Sat(Cc, REGC) is EXPTIME-complete;

Sat(Bc, REGC) is EXPTIME-complete.

Theorem 4.

Sat(RCC8c, RC(Rn)) is NP-complete (n ≥ 1)∗;

Sat(Bc, RC(R)) is NP-complete ;

Sat(Cc, RC(R)) is PSPACE-complete;

Sat(Bc, RC(Rn)) is EXPTIME-hard (n ≥ 2);

Sat(Cc, RC(Rn)) is EXPTIME-hard (n ≥ 2).

∗ Membership ofSat(RCC8c, RC(R2)) in NPis highly non-trivial

(Shaefer, Sedgwick anďStefankovǐc).
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• We may wish to distinguish betweenconnectednessandinterior

connectedness:

• We employ a unary predicatec◦ with the semantics

c
◦(r) iff int(r) is connected

• This gives us the further languagesRCC8c◦, Bc◦, Cc◦.

• Example of anCc◦-formula

c◦(−r1) ∧ c◦(−r2) ∧ DC(r1, r2) ∧ ¬c◦(−(r1 + r2))
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• TheCc◦-formula

c◦(−r1) ∧ c◦(−r2) ∧ DC(r1, r2) ∧ ¬c◦(−(r1 + r2))

is satisfiable over REGC, thus:
r1

r2

But it is not satisfiable overRC(Rn) for any n!

Theorem 5.

Sat(RCC8c◦, RC(Rn)) is NP-complete (n ≥ 2);

Sat(Cc◦, RC(Rn)) is EXPTIME-hard ( n ≥ 2 );∗

Sat(Bc◦, RC(Rn)) is NP-complete (n ≥ 3).
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• Actually, matters are even more delicate than this:RC(Rn) contains

some very pathological sets:

• This prompts us to consider interpretations of spatial logics over

collections oftameregions.

• Natural candidates for tame subalgebras ofRC(Rn):

– The regular closedpolyhedrain R
n, RCP(Rn):

– The regular closedsemi-algebraicsubsets ofRn, RCS(Rn).
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• We consider first logics interpreted over 1-dimensional space.

• Consider theRCC8c-formula

c(r1) ∧
∧

1≤i<j≤4

EC(ri, rj).

• This formula is satisfiable overRC(R):

r1 r3 r4r2r4

r2

r3

r4

• But the only satisfying tuples are those in which some of the

members have infinitely many components.

• That is, the formula is not satisfiable overRCP(R).
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• Thus, we have shown:

Sat(RCC8c, RC(R)) 6= Sat(RCC8c, RCP(R))

Sat(Cc, RC(R)) 6= Sat(Cc, RCP(R)).

• These problems do, however, have the same complexity:

Theorem 6.

Sat(RCC8c, RCP(R)) is NP-complete;

Sat(Cc, RCP(R)) is PSPACE-complete.

• On the other hand:

Theorem 7. Sat(Bc, RCP(R)) = Sat(Bc, RC(R)), and hence is

NP-complete.
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• In two dimensions, we get a different pattern of sensitivityto
tameness:

• For example, theBc◦-formula
∧

1≤i≤3

c◦(ri) ∧ c◦
(

∑

1≤i≤3

ri

)

∧ ¬(c◦(r1 + r2) ∨ c◦(r1 + r3))

is satisfiable overRC(R2), thus,

r1

r2

r3

sin
(1/x

)

but is unsatisfiable overRCP(R2).
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• Thus, we have shown:

Sat(Bc◦, RC(R2)) 6= Sat(Bc◦, RCP(R2))

Sat(Cc◦, RC(R2)) 6= Sat(Cc◦, RCP(R2)).

• Similarly (via a more elaborate construction):

Sat(Bc, RC(R2)) 6= Sat(Bc, RCP(R2))

Sat(Cc, RC(R2)) 6= Sat(Cc, RCP(R2)).

Theorem 8.
Sat(RCC8c{◦}, RCP(R2)) = Sat(RCC8c{◦}, RC(R2)).

Theorem 9.

Sat(Bc, RCP)(Rn)) is EXPTIME-hard (n ≥ 2);

Sat(Cc, RCP)(Rn)) is EXPTIME-hard (n ≥ 2);

Sat(Cc◦, RCP(Rn)) is EXPTIME-hard ( n ≥ 2 );

Sat(Bc◦, RCP(R2)) is EXPTIME-hard;

Sat(Bc◦, RCP(Rn)) is EXPTIME-complete (n ≥ 3).
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Conclusions

• We have explained what atopological logic(more generally, a
spatial logic) is.

• We have reviewed some well-known results onRCC8, and
considered the effect of addingconnectednesspredicates.

• We showed that even the simplest logics with connectedness:

– are sensitive to the underlying space;

– exhibit complex patterns of sensitivity totamenessin Euclidean
spaces of different dimension;

– reveal a complicated (and still, to some extent uncharted)
complexity-theoretic landscape.

• The authoritative reference for more results on spatial logics

Aiello, P-H and van Benthem (eds.),Handbook of Spatial

Logics, Springer, 2007.
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