Mobile and Ubiquitous Computing

Wireless Transmission and Mobility

George Roussos

g.roussos@dcs.bbk.ac.uk

Mobile Computing in More Depth

- Wireless communication
 - Disconnection
 - Low bandwidth
 - High bandwidth variability
 - Heterogeneous networks
 - Security
- Mobility
 - Addressing and routing
 - Location based information
 - Migration
- Portability
 - Low power
 - Small interface
 - Restricted storage
 - Security

- physical representation of data
- function of time and location
- signal parameters: parameters representing the value of data
- classification
 - continuous time/discrete time
 - continuous values/discrete values
 - analog signal = continuous time and continuous values
 - digital signal = discrete time and discrete values

Signals II

- signal parameters of periodic signals: period T, frequency f=1/T, amplitude A, phase shift φ
 - sine wave as special periodic signal for a carrier:

$$s(t) = A_t \sin(2 \pi f_t t + \varphi_t)$$

Fourier representation of periodic signals

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

Signals III

Different representations of signals

- amplitude (amplitude domain)
- frequency spectrum (frequency domain)
- phase state diagram (amplitude M and phase ϕ in polar coordinates)

Antennas: isotropic radiator

- Radiation and reception of electromagnetic waves, coupling of wires to space for radio transmission
- Isotropic radiator: equal radiation in all directions (three dimensional) - only a theoretical reference antenna

ideal isotropic radiator

Antennas: radiation pattern

- Real antennas always have directive effects (vertically and/or horizontally)
- Radiation pattern: measurement of radiation around an antenna

Antennas: simple dipoles

• Example: Radiation pattern of a simple dipole

Antennas: directed and sectorized

Signal propagation ranges

- Transmission range
 - communication possible
 - low error rate
- Detection range
 - detection of the signal possible
 - no communication possible
- Interference range
 - signal may not be detected
 - signal adds to the background noise

Signal propagation

- Propagation in free space always like light (straight line)
- Receiving power proportional to 1/d² in vacuum much more in real environments (d = distance between sender and receiver)
- Receiving power additionally influenced by
 - fading (frequency dependent)
 - shadowing
 - reflection at large obstacles
 - refraction depending on the density of a medium
 - scattering at small obstacles
 - diffraction at edges

shadowing

reflection

refraction

scattering

diffraction

Real world example

Multipath propagation

- Signal can take many different paths between sender and receiver due to reflection, scattering, diffraction
- The signal reaches a receiver directly and phase shifted
- Adjustment of the different of the different parts

Effects of mobility

- Channel characteristics change over time and location
 - signal paths change
 - different delay variations of different signal parts
 - different phases of signal parts
- → quick changes in the power received (short term fading) / long term
- Additional changes in
 - distance to sender
 - obstacles further away
- → slow changes in the average power short term fading received (long term fading)

Cell structure

- Implements space division multiplex: base station covers a certain transmission area (cell)
- Mobile stations communicate only via the base station
- Advantages of cell structures:
 - higher capacity, higher number of users
 - less transmission power needed
 - more robust, decentralized
 - base station deals with interference, transmission area etc. locally
- Problems:
 - fixed network needed for the base stations
 - handover (changing from one cell to another) necessary
 - interference with other cells
- Cell sizes from some 100 m in cities to, e.g., 35 km on the country side (GSM)
 even less for higher frequencies

Frequency planning I

- Frequency reuse only with a certain distance between the base stations
- Standard model using 7 frequencies:

- Fixed frequency assignment:
 - certain frequencies are assigned to a certain cell
 - problem: different traffic load in different cells
- Dynamic frequency assignment:
 - base station chooses frequencies depending on the frequencies already used in neighbor cells
 - more capacity in cells with more traffic
 - assignment can also be based on interference measurements

Frequency planning II

3 cell cluster

7 cell cluster

3 cell cluster with 3 sector antennas

Frequency multiplex

- Separation of the whole spectrum into smaller frequency bands lacksquare
- A channel gets a certain band of the spectrum for the whole time \bullet
- Advantages: lacksquare
 - no dynamic coordination necessary
 - works also for analog signals
- **Disadvantages:**
 - waste of bandwidth if the traffic is distributed unevenly
 - inflexible
 - guard spaces_t

Time multiplex

• A channel gets the whole spectrum for a certain amount of time

C ▲

- Advantages:
 - only one carrier in the medium at any time
 - throughput high even for many users
- Disadvantages:
 - precise
 synchronization
 necessary

Time and frequency multiplex

- Combination of both methods
- A channel gets a certain frequency band for a certain amount of time

С

- Example: GSM
- Advantages:
 - better protection against tapping
 - protection against frequency selective interference
 - higher data rates compared code multiplex
- but: precise coordination required

κ_թ

Code multiplex

 \mathbf{k}_1

 k_2

K2

- Each channel has a unique code
- All channels use the same spectrum at the same time
- Advantages:
 - bandwidth efficient
 - no coordination and synchronization necessary
 - good protection against interference and tapping
- Disadvantages:
 - lower user data rates
 - more complex signal regeneration
- Implemented using spread spectrum technology
 Iondonknowledgelab

