Putting Ubiquitous Devices' Data to Use

@neal_lathia University of Cambridge January 23, 2013

Transport for London Issued subject to conditions - see over

what data can we collect?

recommender systems

aim to match users to items that will be of interest to them

recommender systems

aim to match users mobility profiles to items social events that will be of interest to them

use mobility data to recommend social events

(1) infer attendance at events(2) recommend (test 6 different algorithms)(3) evaluate recommendation quality



task

(1) get users' data, split temporally
(2) run algorithm that outputs recommendations...
(3) evaluate the quality of the recommendations

algorithms

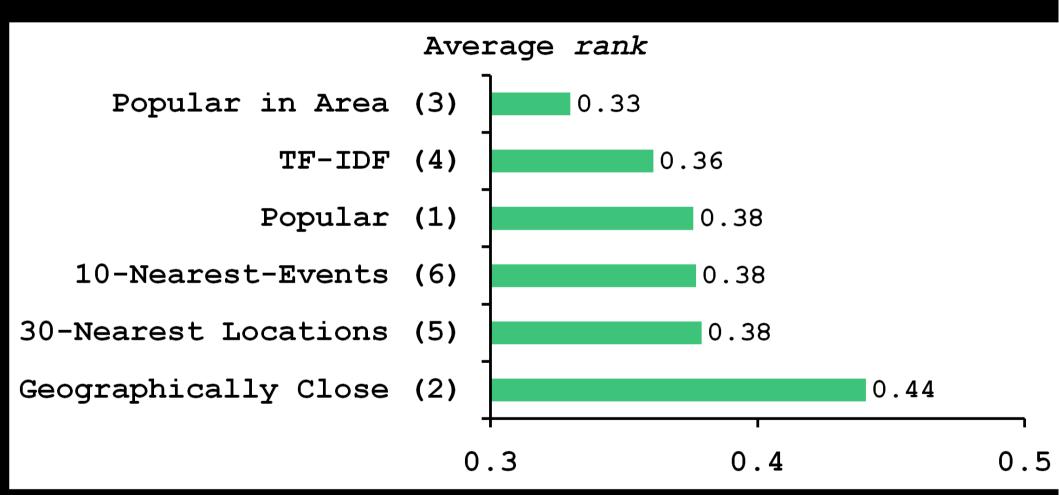
- (1) popular events (in the city)
- (2) geographically close
- (3) popular events (where you live)
- (4) TF-IDF
- (5) k-Nearest Locations
- (6) k-Nearest Events

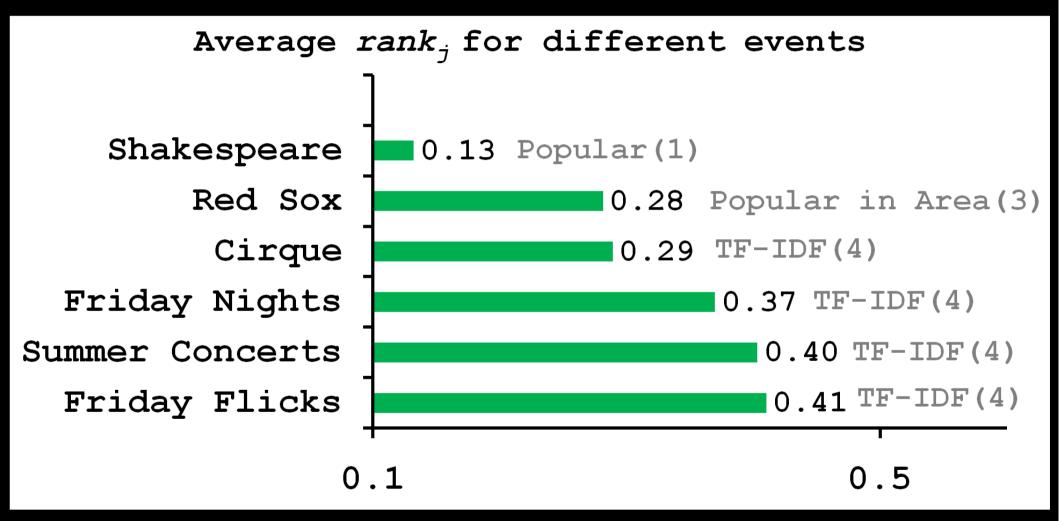
what is a good recommendation?

what is a good recommendation?

evaluate by **ranking:** are the events you went to 'near' the top of the recommendation list?

metric: percentile ranking. small value = good. high value = bad.





future

how would you use other smartphone sensors to improve recommendations?

Transport for London Issued subject to conditions - see over

what tools could we design to help travellers?

sensing mobility: 5%-sample, 2 x 83-days

time-stamped location (entry, exit), modality payments (top-ups, travel cards) card-types (e.g., student)

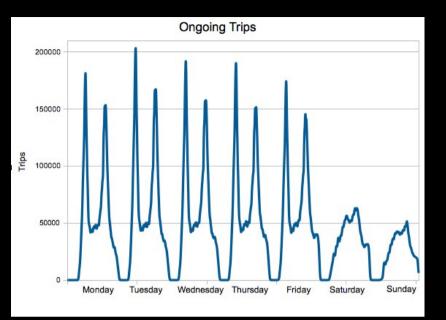
Adult	18+ student	16 - 18	11 - 15	5 -10	New Deal	Bus & Tram	Railcard	Groups	
-------	-------------	---------	---------	-------	----------	------------	----------	--------	--

Adult

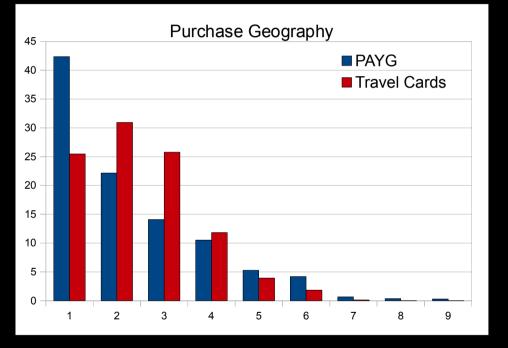
Zone	Cash <table-cell></table-cell>	Oyster p	Oyster pay as you go				Travelcards ?				
		Peak single	Off-peak single	Peak price cap	price cap	Day Anytime	-		Monthly ?	Annual ?	
Zone 1 only	£4.00	? £1.90	? £1.90	2 £8.00	? £6.60	2 £8.00	£6.60		£106.00	£1,104	
Zones 1-2	£4.00	£2.50	£1.90	£8.00	£6.60	£8.00	£6.60	£27.60	£106.00	£1,104	
Euston - Zone 2*	£4.00	£2.00	£1.90	£8.00	£6.60	£8.00	£6.60	£27.60	£106.00	£1,104	
Zones 1-3	£4.00	£2.90	£2.50	£10.00	£7.30	£10.00	£7.30	£32.20	£123.70	£1,288	
Euston - Zone 3*	£4.00	£2.70	£2.50	£10.00	£7.30	£10.00	£7.30	£32.20	£123.70	£1,288	
Zones 1-4	£5.00	£3.40	£2.50	£10.00	£7.30	£10.00	£7.30	£39.40	£151.30	£1,576	
Euston - Zone 4*	£5.00	£3.10	£2.50	£10.00	£7.30	£10.00	£7.30	£39.40	£151.30	£1,576	
Zones 1-5	£5.00	£4.10	£2.70	£15.00	£8.00	£15.00	£8.00	£47.00	£180.50	£1,880	
Euston -	65.00	F3 80	£2 70	£15.00	£8.00	£15.00	£8.00	£47.00	£180 50	£1.880	

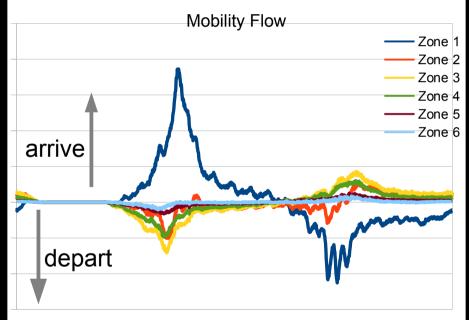
questions

(1) what is the relation between how we <u>travel</u> & how we <u>spend</u>?
(2) do travellers make the correct <u>decisions</u>? (no)
(3) can we help them with <u>recommendations</u>? (yes)



(%)	pay as you go purchases
49.8	< 5 GBP
24.2	5 – 10 GBP
15.5	10 – 20 GBP
(%)	travel card purchases
70.8	7-day travel card
15.8	1-month travel card
11.6	7-day bus/tram pass





the data shows that:

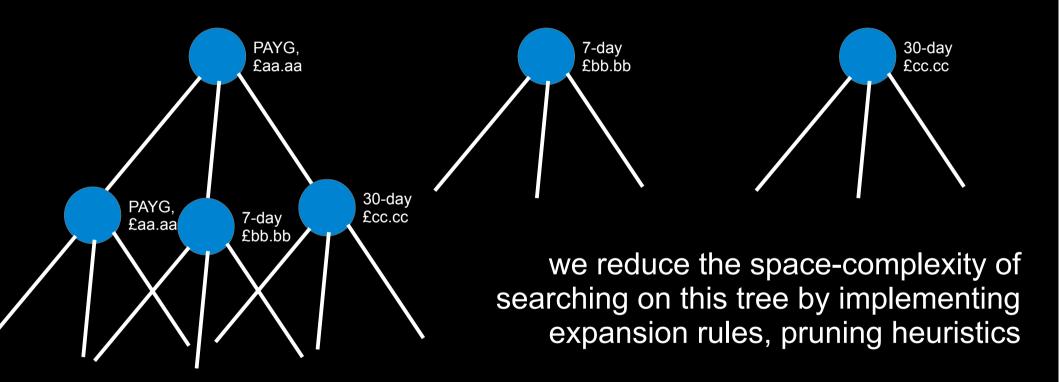
(a) there is a high regularity in travel & purchase behaviour(b) travellers buy in small increments and short-terms(c) most purchases happen upon refused entry

(2) do travellers make the correct decisions? compare actual purchases to the optimal (per traveller)

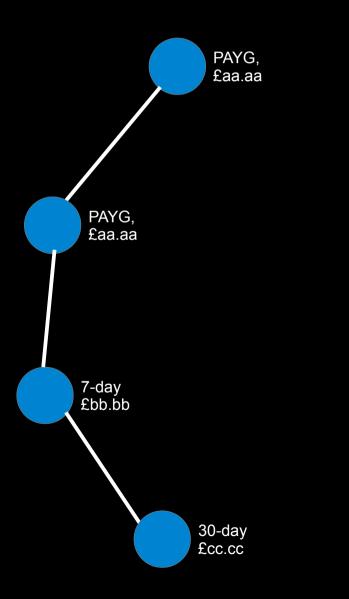
how:
(a) clean data
(b) build & search on a tree ~ sequence of choices

how: build a tree with each user's mobility data where a node is a **purchase (expire, cost)** that is expanded when it has expired (reduced) example:

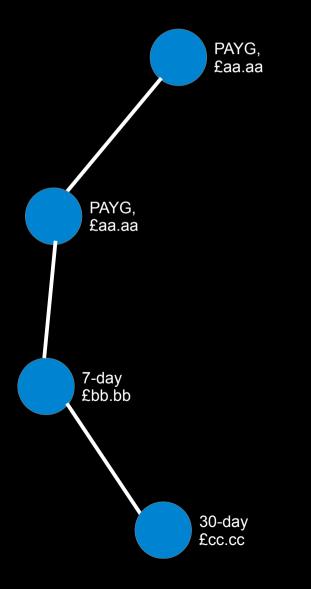
how: build a tree with each user's mobility data where a node is a **purchase (expire, cost)** that is expanded when it has expired (reduced) example:



the cheapest sequence of fares can then be compared to what the user actually spent



the cheapest sequence of fares can then be compared to what the user actually spent



in each 83-day dataset, the 5% sample of users where overspending by ~ £2.5 million

An estimate of how much everybody (100%) is overspending during an entire year (365 days) is thus £200 million

overspending comes from

(a) failing to predict one's own mobility needs ...but we have observed that mobility is predictable

(b) failing to match mobility with fares (in a complex fare system) ...which is an easy problem for a computer

can we help travellers?

recommender systems

aim to match users to items that will be of interest to them

recommender systems

aim to match users mobility profiles to items fares that will be of interest the cheapest for them

three steps

1. for a given set of travel histories, compute the cheapest fare (by tree expansion)

2. reduce each travel history into a set of generic features, describing the mobility (next slide)

3. train classifiers to predict the cheapest fare given the set of features

we have a set of $\{d, f, b, r, pt, ot, N\} = F$

where

d = number of trips f = average trips per day b / r = proportion of trips on the bus / rail pt / ot = proportion of peak & off-peak trips N = zone O-D matrix F = cheapest fare (label)

two baselines, three algorithms:

- 0. baseline everyone on pay as you go
- 1. naïve bayes estimating probabilities
- 2. k-nearest neighbours looking at similar profiles
- 3. decision trees (C4.5) recursively partitions data to infer rules
- 4. oracle perfect knowledge

	Accura	юу (%)	Savings (GBP)			
	Dataset 1	Dataset 2	Dataset 1	Dataset 2		
Baseline	74.99	76.91	326,447.95	306,145.85		
Naïve Bayes	77.46	80.71	393,585.81	369,232.24		
k-NN (5)	96.74	97.09	465,822.17	426,375.85		
C4.5	98.01	98.29	473,918.38	434,082.81		
Oracle	100	100	479,583.91	438,923.30		

current system: free travel alerts – manually set up by traveller

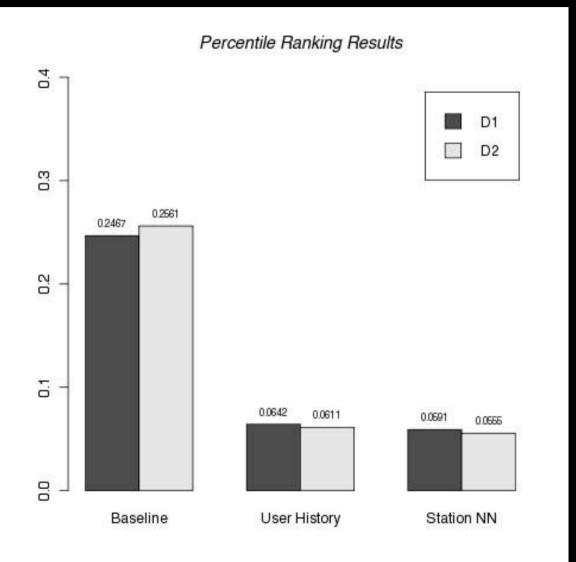
future system: predict (and rank) the stations that travellers will visit in their future trips for personalised notifications station interest ranking

can we automate this?

baseline: rank by visit popularity

proposal: station similarity neighbourhood (visit cooccurrence) and traveller trip history

station interest ranking



accurate ranking

without knowing who travellers are, the network topology, train schedule, disruptions and closures, we designed: **no context**

today:

(a) mobile location recommendations

(b) fare purchase recommendations

(c) travel alerts

Further reading:

D. Quercia, N. Lathia, F. Calabrese, G. Di Lorenzo, J. Crowcroft. **Recommending Social Events from Mobile Phone Location Data**. In IEEE ICDM 2010, Sydney, Australia.

N. Lathia, L. Capra. Mining Mobility Data to Minimise Travellers' Spending on Public Transport. In ACM KDD 2011, San Diego, USA.

N. Lathia, J. Froehlich, L. Capra. **Mining Public Transport Data for Personalised Intelligent Transport Systems**. In IEEE ICDM 2010, Sydney, Australia.

Android app to try: www.tubestar.co.uk

Questions?

@neal_lathia neal.lathia@cl.cam.ac.uk