Mobile Computing and the IoT Wireless and Mobile Computing

Wireless Signals

George Roussos

g.roussos@dcs.bbk.ac.uk

Overview

- Signal characteristics
- Representing digital information with wireless
- Transmission and propagation
- Accessing the wireless medium

Signals

- physical representation of data
- function of time and location
- signal parameters: parameters representing the value of data
- classification
 - continuous time/discrete time
 - continuous values/discrete values
 - analog signal = continuous time and continuous values
 - digital signal = discrete time and discrete values

Signal parameters

- signal parameters of periodic signals:
 - period T,
 - frequency f=1/T,
 - amplitude A,
 - phase shift $\boldsymbol{\phi}$
- Example: A sine wave as special periodic signal:

$$s(t) = A_t \sin(2 \pi f_t t + \phi_t)$$

Fourier representation of signals

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

Modulation and demodulation

Encoding

- A set of rules according to which a sequence of bits is mapped to a signal
- Example: Manchester encoding

Source netlab.ulusofona.pt

Modulation

- Digital modulation
 - digital data is translated into an analog signal
 - different ways to achieve this
 - sine waveforms whose parameters are shaped (modulated) by the sequence of bits that is transmitted
 - different alternatives have differences in spectral efficiency, power efficiency, robustness

Digital modulation

- Modulation of digital signals known as Shift Keying
 - Amplitude Shift Keying (ASK)
 - Frequency Shift Keying (FSK)
 - Phase Shift Keying (PSK)

Example: EPC Gen2 RFID Example

Antennas: isotropic radiator

- Radiation and reception of electromagnetic waves, coupling of wires to space for radio transmission
- Isotropic radiator: equal radiation in all directions (three dimensional) - only a theoretical reference antenna

Antennas: radiation pattern

- Real antennas always have directive effects (vertically and/or horizontally)
- Radiation pattern: measurement of radiation around an antenna

 $a 1-3/4\lambda$ high L-An

Antennas: simple dipoles

• Example: Radiation pattern of a simple dipole

Antennas: directed and sectorized

Example: Mobile phone antenna

Signal propagation ranges

- Transmission range
 - communication possible
 - low error rate
- Detection range
 - detection of the signal possible
 - no communication possible
- Interference range
 - signal may not be detected
 - signal adds to the background noise

Signal propagation

- Propagation in free space always like light (straight line)
- Receiving power proportional to $1/d^2$ in vacuum much more in real ٠ environments (d = distance between sender and receiver)
- Receiving power additionally influenced by ٠
 - fading (frequency dependent)
 - shadowing
 - reflection at large obstacles
 - refraction depending on the density of a medium
 - scattering at small obstacles
 - diffraction at edges

shadowing

reflection

refraction

scattering

diffraction

Real world examples

Multipath propagation

- Signal can take many different paths between sender and receiver due to reflection, scattering, diffraction
- The signal reaches a receiver directly and phase shifted
 - → signal distortion depending on the phases of the different parts

Example: Effect on GPS

Source: Bosch Sensortec

Observable error

Urban Canyons

GPS in Urban Canyons

GPS in multi-storey car parks

Media access

- Can we apply media access methods from fixed networks?
- Example CSMA/CD
 - Carrier Sense Multiple Access with Collision Detection
 - send as soon as the medium is free, listen into the medium if a collision occurs (original method in IEEE 802.3)
- Problems in wireless networks
 - signal strength decreases proportional to the square of the distance
 - the sender would apply CS and CD, but the collisions happen at the receiver
 - it might be the case that a sender cannot "hear" the collision, i.e., CD does not work
 - furthermore, CS might not work if, e.g., a terminal is "hidden"

Hidden and exposed terminals

- Hidden terminals
 - A sends to B, C cannot receive A
 - C wants to send to B, C senses a "free" medium (CS fails)
 - collision at B, A cannot receive the collision (CD fails)

- Exposed terminals
 - B sends to A, C wants to send to another terminal (not A or B)
 - C has to wait, CS signals a medium in use
 - but A is outside the radio range of C, therefore waiting is not necessary
 - C is "exposed" to B

Motivation - near and far terminals

- Terminals A and B send, C receives
 - signal strength decreases proportional to the square of the distance
 - the signal of terminal B therefore drowns out A's signal

C cannot receive A

- If C for example was an arbiter for sending rights, terminal B would drown out terminal A already on the physical layer
- Also severe problem for CDMA-networks precise power control needed!

Effects of mobility

- Channel characteristics change over time and location
 - signal paths change
 - different delay variations of different signal parts
 - different phases of signal parts
- → quick changes in the power received power (short term fading)
- Additional changes in
 - distance to sender
 - obstacles further away
- → slow changes in the average power received (long term fading)

Summary

- Signal characteristics
- Signal modulation to represent information
- Signal processing pathway
- Role of antenna
- Propagation of wireless signals
- Wireless media access

