Michael Zoumboulakis

Birkbeck College, University of London

March 2013

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Outline

1 Motivation

- Introduction
- Examples
- Characteristics of the Problem

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Justification

Outline

1 Motivation

- Introduction
- Examples
- Characteristics of the Problem

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Justification

2 Our Approach

Symbolic Conversion

Outline

1 Motivation

- Introduction
- Examples
- Characteristics of the Problem
- Justification
- 2 Our Approach
 - Symbolic Conversion
- 3 Contributions
 - Efficient Pattern Matching and Detection in WNSs

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Matching Algorithms

Outline

1 Motivation

- Introduction
- Examples
- Characteristics of the Problem
- Justification
- 2 Our Approach
 - Symbolic Conversion
- 3 Contributions
 - Efficient Pattern Matching and Detection in WNSs

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

- Matching Algorithms
- 4 Spatial Detection

Outline

1 Motivation

- Introduction
- Examples
- Characteristics of the Problem
- Justification
- 2 Our Approach
 - Symbolic Conversion
- 3 Contributions
 - Efficient Pattern Matching and Detection in WNSs

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

- Matching Algorithms
- 4 Spatial Detection

- Motivation

Introduction

Introduction

Pattern: An ordered list of sensor observations revealing interesting or unusual activity in the monitored object.

- Motivation

— Examples

Example

- Motivation

— Examples

Example

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト の 9

- Motivation

- Characteristics of the Problem

Characteristics

- Lists of sensor observations
- Pattern Matching refers to the problem of finding occurrences of one or more user-submitted template patterns.

◆□▶ ◆帰▶ ◆□▶ ◆□▶ □ のQ@

 Pattern Detection refers to the problem of discovering sustained changes or local anomalies.

- Motivation

└─ Justification

Why do we need a different pattern matching and detection abstraction for WSNs?

 Matching or detecting patterns in sensor observations is a common requirement in a number of domains.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Motivation

└─ Justification

Why do we need a different pattern matching and detection abstraction for WSNs?

- Matching or detecting patterns in sensor observations is a common requirement in a number of domains.
 - Precision Agriculture, Volcanic Monitoring, SHM, Pervasive Healthcare, Disaster Detection, etc.

- Motivation

└─ Justification

Why do we need a different pattern matching and detection abstraction for WSNs?

- Matching or detecting patterns in sensor observations is a common requirement in a number of domains.
 - Precision Agriculture, Volcanic Monitoring, SHM, Pervasive Healthcare, Disaster Detection, etc.

• Only a few in-network approaches are available.

- Motivation

└─ Justification

Why do we need a different pattern matching and detection abstraction for WSNs?

- Matching or detecting patterns in sensor observations is a common requirement in a number of domains.
 - Precision Agriculture, Volcanic Monitoring, SHM, Pervasive Healthcare, Disaster Detection, etc.

- Only a few in-network approaches are available.
- The alternative of using thresholds and a programmatic description of patterns as series of logically combined conditions is neither efficient nor scalable.

On-line data-mining

Central Idea: Use a well-understood & established algorithm for the online conversion of sensor readings to characters. Reduce matching and detection to a string matching problem. **Why?**

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

On-line data-mining

Central Idea: Use a well-understood & established algorithm for the online conversion of sensor readings to characters. Reduce matching and detection to a string matching problem. **Why?**

◆□▶ ◆帰▶ ◆□▶ ◆□▶ □ のQ@

- Vast collection of algorithms.
- Rich Pattern Detection Capabilities.
- Scalable & Resource-efficient solution.

Our Approach

Symbolic Conversion

Symbolic Aggregate approXimation (SAX)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

Our Approach

Symbolic Conversion

Symbolic Aggregate approXimation (SAX)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Our Approach

Symbolic Conversion

Symbolic Aggregate approXimation (SAX)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Contributions
 - -Efficient Pattern Matching and Detection in WNSs

Contributions

- Developed temporal domain in-network Pattern Matching and Detection algorithms that reduce network communication.
- Demonstrated that the algorithms are suitable for extremely resource-constrained WNSs by integer arithmetic refactoring and dynamic sampling frequency adjustments.
- Introduced an iterative algorithm, based on a geometric computation and a Kalman filter that detects spatial patterns inside the network in a collaborative manner.

- Contributions

└─ Matching Algorithms

Exact and Approximate or Non-parametric Detection

- Exact matching is performed when a user is interested in a specific pattern.
- Approximate matching is performed when a user is interested in a pattern and other patterns similar to it.
- Non-parametric matching is performed when a user does not provide a pattern.

- Contributions

Matching Algorithms

Multiple Pattern Matching (using Suffix Arrays)

Store all interests in a suffix array: speeds up searches & makes the solution scalable.

うして ふゆう ふほう ふほう うらつ

• . . .

- efcghaaagdbeabc
- fcghaaagdbeabc
- gdbeabc
- ghaaagdbeabc
- haaagdbeabc

. . .

- Contributions

Matching Algorithms

Non-parametric Detection

▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● のへで

- Contributions

Matching Algorithms

Non-parametric Detection

▲ロト ▲御 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ― ヨ … の 9

- Contributions

Matching Algorithms

Non-parametric Detection

▲ロト ▲課 ト ▲注 ト ▲注 ト → 注 → のへの

Contributions

└─ Matching Algorithms

Dynamic Sampling Frequency Adjustments

- Many WSN nodes exhibit the *boredom punctuated by panic* property.
- Sampling at a constant rate when very little happens is wasteful.
- Instead, adjust sampling frequency by continuously monitoring string distances.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Contributions

└─ Matching Algorithms

Probabilistic Detection

- The process that generates characters can be viewed as a Markov Chain of desirable order (depending on the app requirements).
- Use a portion of the time series that is known to be normal to generate transition probabilities.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Allows to compute probabilities for various sequences.

The Spatial Pattern Detection Problem

We considered the problem of estimating the location and intensity of "dirty bomb" dispersion attacks inside the network. Also known in literature as the *Inverse Problem* where dispersion parameters must be estimated from sensor-observed data.

Spatial Detection

An example

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 … 釣�?

Spatial Detection

An example

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Evaluation

The spatial detection algorithm was evaluated through simulations and detection accuracy was satisfactory but heavily dependent on node placement and topology.

The work on spatial detection opened a number of future work directions:

Alter the gas dispersion model and consider multiple sources.

うして ふゆう ふほう ふほう うらつ

- Evaluate against competitive techniques such as TDOA.
- Implement the algorithm for WSNs.

Selected Results from Emulation

- We compared our temporal detection algorithm to two competitive approaches — Exponential Weighted Moving Average (EWMA) and Real-time Seismic Amplitude Measurement (RSAM).
- We found improved accuracy (true positive ratio of 92.7%) and a reduction of false positives (a ratio of 3.8%).
- We found detection accuracy degrading gracefully in relationship to decreasing SNR.
- For some time-critical applications we established that the average detection latency is low (0.086 secs in a physiological data set).

Selected Results from Deployment

- An integer only implementation showed a factor of ten runtime improvement in comparison with a FP implementation.
- The Dynamic Sampling Frequency Adjustment algorithm resulted in 64% fewer timer ticks in comparison with a fixed sampling scheme.
- The execution profile was sufficiently low to support use in a new class of energy harvesting nodes powered from RFID readers.

Software Timing Model

	Arithmetic (Integer)		
Operation	16-bit	32-bit	64-bit
Increment	6,734	12,824	67,271
Addition	7,955	15,319	88,301
Subtraction	7,969	15,310	87,985
Multiplication	145,020	159,060	316,755
Division	226,265	709,720	3,519,055
Remainder	225,375	706,875	3,540,080
	Bitwise		
AND	7,965	15,285	88,095
OR	7,985	15,325	88,360
XOR	7,955	15,315	88,310
SHIFT	56,735	62,880	573,665
	Floating Point Arithmetic		
Assignment & Cast	2,687,535		
Addition	3,438,530		
Subtraction	3,499,920		
Multiplication	4,841,490		
Division	4,041,785		
	Array Comparisons & Swaps		
Straight Comp	104,095		
Comp C Fcn	83,315		
Comp TOS Fcn	83,335		
Comp TOS task	159,055		
Swap C Macro	93,085		
Swap C Function	83,320		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Thank you!

Questions?

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 - のへで