

Lab 2

● Goal 1: Program the critical part of an
application

● Goal 2: Use the radio component to have
motes communicate

A wireless application

● Problem:
− Create an application called Broadcast that

● makes a gateway broadcast packets every second
● makes the red LED of a mote toggle each time it receives

a packet (from the gateway)
● Solution:

− Raise a timer every second at the gateway node
− Each time the timer expires, we send a packet
− Each time a packet is received, we toggle the red

LED

Architecture of Broadcast

BroadcastC

Leds Timer SendMsg

BroadcastM

StdControlReceiveMsg

LedsC TimerC GenericComm Main

Makefile

Broadcast application

− the gateway (id==0) keeps broadcasting packets
− when receiving a packet, a node (id!=0) toggles

the red LED
● Create a directory Broadcast in your home

directory (say muc/Broadcast)
● Copy Makefile, BroadcastC.nc,
BroadcastM.nc and Broadcast.h to this
directory (they are in a shared directory)

● Edit the files and fill in the blanks
● Compile, run and check the application

Hints

● If your module provides interface Intf
− open /opt/tinyos-1.x/interfaces/Intf.nc
− ensure that you implement all the commands

● If your module requires interface Intf
− open /opt/tinyos-1.x/interfaces/Intf.nc
− ensure that you implement all the events

● To test the application, a good filter might be
− export DBG=am,led

● http://www.tinyos.net/api/tinyos-
1.x/doc/tutorial/lesson5.html

Makefile
COMPONENT = BroadcastC

include /opt/tinyos-1.x/apps/Makerules

Broadcast.h
#ifndef BROADCAST_COUNT_H
#define BROADCAST_COUNT_H

enum {
AM_COUNT_MSG = 100,

};

typedef struct Count_Msg {
uint16_t value; // we do not use this field currently

} Count_Msg;

#endif

BroadcastC.nc
includes Broadcast;

configuration BroadcastC {
}

implementation {
components BroadcastM, LedsC, TimerC,

 GenericComm as Comm, Main;

Main.StdControl -> BroadcastM;
Main.StdControl -> TimerC;
Main.StdControl -> Comm.Control;

BroadcastM.Leds -> LedsC;
BroadcastM.CountTimer ->

 TimerC.Timer[unique(“Timer”)];
BroadcastM.SendCountMsg ->

Comm.SendMsg[AM_COUNT_MSG];
Broadcast.ReceiveCountMsg ->

Comm.ReceiveMsg[AM_COUNT_MSG];
}

BroadcastM.nc (1/4)
module BroadcastM {

provides {
interface StdControl;

}
uses {

interface Leds;
interface Timer as BlinkTimer;
interface SendMsg as SendCountMsg;
interface ReceiveMsg as ReceiveCountMsg;

}
}

implementation {
... // see next slides

}

BroadcastM.nc (2/4)
implementation {

TOS_Msg message; // “message” has to be global

task void SendCountTask() {
Count_Msg * payload;
payload = (Count_Msg *)message.data;
payload->value = 0x1234;
call SendCountMsg.send(TOS_BCAST_ADDR,

sizeof(Count_Msg), &message);
}
command result_t StdControl.init() {

call Leds.init();
return SUCCESS;

}
command result_t StdControl.stop() {

return SUCCESS;
}

// ...

BroadcastM.nc (3/4)
command result_t StdControl.start() {

if (TOS_LOCAL_ADDRESS==0) {
call CountTimer.start(TIMER_REPEAT, 1024);

}
return SUCCESS;

}
event result_t CountTimer.fired() {

post SendCountTask();
}
event result_t SendCountMsg.sendDone(

TOS_MsgPtr message, result_t result) {
return SUCCESS;

}

// ...

BroadcastM.nc (4/4)
event TOS_MsgPtr ReceiveCountMsg.receive(

TOS_MsgPtr receivedMessage) {
Count_Msg * payload;
uint16_t value;
if (TOS_LOCAL_ADDRESS!=0) {

payload =
(Count_Msg *)receivedMessage->data;

value = payload->value;
call Leds.redToggle();

}
return receivedMessage;

}

}

