
Mobile and Ubiquitous Computing

Resource Constrained Devices

George Roussos
g.roussos@dcs.bbk.ac.uk

Session Overview

• Resource constrained devices
– evolution, architecture, components
– a detailed example

• Energy efficiency
• Programming primitives in Tiny OS
• Concurrency

Drivers

Moore’s Law:
“the complexity of an

integrated circuit, with
respect to minimum
component cost, will
double in about 18 months”

"Cramming more components onto
integrated circuits", Electronics
Magazine, April 1965.

More Drivers

• Cheap and reliable communications:
– short-range RF, infrared, optical
– low power

• New interesting sensors
– light, heat, humidity
– position, movement, acceleration, vibration
– chemical presence, biosensor
– magnetic field, electrical inc. bio-signals (ECG and

EEG)
– RFID
– acoustic (microphone)

Long-term objective

• Completely integrated
– one package includes: computation, communication,

sensing, actuation, (renewable) power source
– modular

• Less than a cubic millimeter in volume
• Cheap
• Diverse in design and usage
• Robust
• Main challenge: energy efficiency!

Device evolution

What else is out there?

Internet 0 at MIT Centre of Atoms and Bits
http://cba.mit.edu/~neilg

What else is out there?

Smart-its http://www.smart-its.org/

What else is out there?

gumstix http://www.gumstix.org/

Embedded Linux

What else is out there?

pico-TRON

Hardware-software platform
from Japan

Derived from TRON

http://www.t-engine.org/

IMEC Sensor Cube

Very low power, modular design for
body area applications

Tiny OS and embedded C

Tmote Sky

• Texas Instruments MSP430
– 16-bit RISC, 8MHz, 10k RAM, 48k Flash, 128b storage
– Integrated analog-to-digital converter (12 bit ADC)

• Chipcon wireless transceiver
– IEEE 802.15.4 (Zigbee) compatible
– 250kbps at 2.4GHz

• Sensirion SHT11/SHT15 sensor module
– humidity and temperature

• Hamamatsu light sensors
– S1087 (photosynthetic)
– S1087-01 (full visible spectrum)

Module layout (top)

Module layout (bottom)

Block diagram

Where does the power go?

• Processing
– excluding low-level

processing for radio,
sensors, actuators

• Radio
• Sensors
• Actuators
• Power supply

discussion follows Srivastana tutorial
(check module website)

Sky module characteristics

Need power management to actually exploit energy
efficiency:

•idle and sleep modes
•variable voltage
•variable frequency
•in-network storage and processing

Chipcon radio is only a transceiver, and a lot of low-level
processing takes place in the main CPU. Contrast this with Wi-
Fi radio which will do everything up to MAC and link level
encryption in the “radio.”

Sensors and power consumption

• Several energy consumption sources
– transducer
– front-end processing and signal conditioning

• analog, digital
– ADC conversion

• Diversity of sensors: no general conclusions can be
drawn
– Low-power modalities

• Temperature, light, accelerometer
– Medium-power modalities

• Acoustic, magnetic
– High-power modalities

• Image, video, chemical

Observations

• Radio benefits less from technology improvements than processors
• The relative impact of the communication subsystem on the system

energy consumption will grow
• Using low-power components and trading-off unnecessary

performance for power savings can have orders of magnitude
impact

• Node power consumption is strongly dependent on the operating
mode

• At short ranges, the Rx power consumption > T power consumption
• Idle radio consumes almost as much power as radio in Rx mode
• Processor power fairly significant (30-50%) share of overall power
• In many cases, the sensor overhead is negligible

Programming challenges

• Driven by interaction with environment
– Data collection and control, not general purpose computation
– Reactive, event-driven programming model

• Extremely limited resources
– Very low cost, size, and power consumption
– Typical embedded OSs consume hundreds of KB of memory

• Reliability for long-lived applications
– Apps run for months/years without human intervention
– Reduce run time errors and complexity

• Soft real-time requirements
– Few time-critical tasks (sensor acquisition and radio timing)
– Timing constraints through complete control over app and OS

Current popular platform

• NesC: a C dialect for
embedded
programming
– Components, “wired

together”
– Quick commands and

asynch events

• TinyOS: a set of NesC
components
– hardware components
– ad-hoc network formation

& maintenance
– time synchronization

Tiny OS facts

• Very small “operating system” for sensor networks
– Core OS requires 396 bytes of memory

• Component-oriented architecture
– Set of reusable system components: sensing, communication, timers,

etc.
– No binary kernel - build app specific OS from components

• Concurrency based on tasks and events
– Task: deferred computation, runs to completion, no preemption
– Event: Invoked by module (upcall) or interrupt, may preempt tasks or

other events
– Very low overhead, no threads

• Split-phase operations
– No blocking operations
– Long-latency ops (sensing, comm, etc.) are split phase
– Request to execute an operation returns immediately
– Event signals completion of operation

discussion follows Welsh
check module website

nesC facts

• Dialect of C with support for components
– Components provide and require interfaces
– Create application by wiring together components using

configurations
• Whole-program compilation and analysis

– nesC compiles entire application into a single C file
– Compiled to mote binary by back-end C compiler (e.g., gcc)
– Allows aggressive cross-component inlining
– Static data-race detection

• Important restrictions
– No function pointers (makes whole-program analysis difficult)
– No dynamic memory allocation
– No dynamic component instantiation/destruction

• These static requirements enable analysis and optimization

nesC interfaces

nesC interfaces are bidirectional
– Command: Function call from one component requesting service from

another
– Event: Function call indicating completion of service by a component
– Grouping commands/events together makes inter-component protocols

clear

nesC components

• Two types of components
– Modules contain implementation code
– Configurations wire other components together
– An application is defined with a single top-level configuration

nesC configurations

Concurrency in nesC

• Tasks used as deferred computation mechanism
– Commands and events cannot block
– Tasks run to completion, scheduled non-preemptively
– Scheduler may be FIFO, EDF, etc.

More on concurrency

• All code is classified as one of two types:
– Asynchronous code (AC): Code reachable from at least one

interrupt handler
– Synchronous code (SC): Code reachable only from tasks

• Any update to shared state from AC is a potential data
race
– SC is atomic with respect to other SC (no preemption)
– Race conditions are shared variables between SC and AC, and

AC and AC
– Compiler detects data races by walking call graph from interrupt

handlers

Avoiding a data race

• Two ways to fix a data race
– Move shared variable access into tasks
– Use an atomic section
or
– Short, run-to-completion atomic blocks
– Currently implemented by disabling interrupts

Summary

• Resource constrained devices
– evolution, architecture, components
– a detailed example

• Energy efficiency
• Programming primitives in Tiny OS
• Concurrency

