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Moving human-computer interaction off the desktop and into our cities requires new 
approaches to understanding people and technologies in the built environment.  We 
approach the city as a system, with human, physical and digital components and 
behaviours.  In creating effective and usable urban pervasive computing systems, we 
need to take into account the patterns of movement and encounter amongst people, 
locations, and mobile and fixed devices in the city.  Advances in mobile and wireless 
communications have enabled us to detect and record the presence and movement of 
devices through cities.  This paper makes a number of methodological and empirical 
contributions.  We present a toolkit of algorithms and visualisation techniques that we 
have developed to model and make sense of spatial and temporal patterns of mobility, 
presence and encounter.  Applying this toolkit, we provide an analysis of urban Bluetooth 
data based on a longitudinal dataset containing millions of records associated with more 
than 70000 unique devices in the city of Bath, UK.  Through a novel application of 
established complex network analysis techniques, we demonstrate a significant finding 
on the relationship between temporal factors and network structure.  Finally, we suggest 
how our understanding and exploitation of these data may begin to inform the design and 
use of urban pervasive systems. 
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1. INTRODUCTION  
A long-term goal of our research is to inform the design of pervasive computing systems 

that are deployed in urban environments.  We regard such systems as more than a 

collection of technologies, but as a system that includes humans, technologies – mobile 

and fixed, wired and wireless – and urban space as its components.  Developing 

understandings and ultimately requirements for applications and services that form part 

of such complex systems presents defining challenges for pervasive computing.  The 

research reported in this paper seeks to lay some of the groundwork by developing and 

applying empirical and analytical tools to begin a systematic understanding of some of 

the relevant phenomena, specifically patterns of urban mobility and encounter between 

technological devices and the people who carry and use them. 

The richness of activity taking place in the city, along with the inherent difficulties of 

developing systems in real-world settings make it extremely difficult to approach the 

design of pervasive systems from a theoretically founded, top-down perspective.  

Furthermore, much of the information in a city does not necessarily flow through routers 



and cables, but rather through people carrying devices and those devices coming in range 

with one other, making it even more difficult to obtain data about such a dispersed 

system.  To address these challenges, we combine a systemic view that includes the city, 

the people and the technologies with a strongly empirical approach to systematically 

observing and recording in the city, and making sense of the collected data to build 

models of human behaviour that can begin to inform our understanding and design of 

mobile and pervasive systems. 

In [O’Neill et al., 2006] we described our development of novel methods for 

systematically observing and recording the city, physically, digitally and socially.  Our 

methods extended methods conventionally applied to understanding the traditional 

architectural features and uses of the urban environment.  We showed how our methods 

help analyse and understand mobile and pervasive computing features and uses as 

integral aspects of that environment.  As a central part of our approach, we automated the 

capture of longitudinal data on mobility and encounter of users and devices in the city. 

This paper makes several key contributions in terms of data visualisation, complex 

network analysis and constructing a model of urban encounter.  We develop and apply 

novel techniques in mining the data collected using previously reported methods.  Our 

novel data visualization and analytical techniques, and findings from applying those 

techniques, are a main contribution of this paper.  We show that mobility and encounter 

data exhibit significant patterns, both structural and temporal.  Furthermore, through the 

use of modelling and emulation we examine the effects of these patterns, and derive a 

predictive model of urban encounters.  Linking our findings to pervasive systems design, 

we suggest how mobility and encounter data may be utilised as contextual data, and 

discuss how our techniques might help inform the design of urban pervasive computing 

systems and enable their run time self adaptation. 

In Section 2 we briefly review how we developed and applied our methods for 

collecting mobility and encounter data in a real urban environment, extending previous 

work.  Section 3 gives a brief overview of some of the data visualisation techniques that 

we have developed to begin making sense of the captured data.  In Sections 4 and 5 we 

move from visualization techniques to the development of increasingly more formal and 

systematic analytical concepts and tools, presenting a significant novel finding on the 

relationship between temporal and structural features of the dataset, and developing a 

predictive model of human encounter in the city based on our empirical data.  In Section 

6 we discuss the implications of mining these data for the design and use of pervasive 

computing systems. 



2. CAPTURING MOBILITY AND ENCOUNTER DATA IN THE CITY 
Mobility has received a lot of attention as a defining feature of the move from desktop-

bound computing to pervasive computing.  As is often noted, mobility introduces 

challenges of attention and orientation during use [Brewster et al., 2003, Nicol et al., 

2004, Ker & Schiele, 2006], and unreliable network connections [Kjaergaard, 2006].  

Strongly linked to mobility is the notion of encounter.  The movement of people and 

devices through an urban environment brings them into contact with each other. In an 

urban pervasive computing system, there are additional patterns of encounter between 

diverse combinations of users, places, mobile devices, fixed devices, and services.  This 

results in an enormously increased number of spontaneous interactions with consequent 

effects on security and privacy [Kindberg & Zhang, 2001]. 

A number of projects have focused on capturing mobility data enabled by the 

popularisation of mobile and wireless technologies.  For example, the Reality Mining 

project1 collected proximity, location and activity information, with proximity nodes 

being discovered through periodic Bluetooth scans and location information by cell tower 

IDs.  Several other groups have performed similar studies [Eagle & Pentland, 2006; 

Balazinska, 2003; Chaaintreau et al., 2006; McNett & Voelker, 2005; Nicolai et al., 

2005].  Most of these, such as [Balazinska, 2003] and [Nicolai et al., 2005], use 

Bluetooth to measure mobility, while others, such as [Chaaintreau et al., 2006] and 

[McNett & Voelker, 2005], rely on WiFi.  The duration of such studies varies from 2 

days to over 100 days, and the numbers of participants vary from 8 to over 5000 (see the 

Haggle2 project and Crawdad database3).  The MetroSense project4 explores the use of 

people-centric sensing with personal consumer-oriented sensing applications such as 

Nike+,5 and sensor-enabled mobile phone applications, which can potentially enable 

applications such as noise mapping and pollution mapping.6  The Pervasive Mobile 

Environmental Sensor Grids (MESSAGE) project7 aims to collect data at a metropolitan 

scale through smart phones carried by cyclists, cars, and pedestrians monitoring carbon 

dioxide values, with an ultimate goal of controlling traffic in the city of Cambridge.  

Similarly, the urban sensing project CENS8 seeks to develop cultural and technological 

                                                             
1 Reality Mining: http://reality.media.mit.edu, accessed 14/07/2007. 
2 Haggle Project: http://www.haggleproject.org, accessed 14/07/2007. 
3 Crawdad project: http://crawdad.cs.dartmouth.edu, accessed 14/07/2007. 
4 MetroSense Project: http://metrosense.cs.dartmouth.edu, accessed 14/07/2007. 
5 Nike+: http://www.nikeplus.com, accessed 14/07/2007. 
6 Noise Mapping England: http://noisemapping.org, accessed 14/07/2007. 
7 MESSAGE Project: http://155.198.92.106/pmesg.html, accessed 14/07/2007. 
8 Urban Sensing: http://research.cens.ucla.edu/projects/2006/systems/Urban_Sensing, 
accessed 14/07/2007. 



approaches for using embedded and mobile sensing to invigorate public space and 

enhance civic life. 

A limitation of previous research in the relatively new field of pervasive computing is 

the absence of an established toolkit of concrete methods for recording, modelling, 

analysing and understanding salient properties of users and technologies in the urban 

context.  In particular, our community lacks tools that can help us to combine and 

compare the individual user and aggregate city-scale perspectives.  Aggregate models are 

sometimes based on either small samples of individual data that may not scale up 

reliably, or on simple software agents whose combined behaviour may resemble human 

behaviour at the aggregate level but whose individual behaviour bears no resemblance to 

individual human behaviour in the city.  Our major contribution is the development of 

such tools and techniques to help us analyse human behaviour at both the individual and 

aggregate levels by considering mobility and encounter as two key inputs. 

Recording mobility and encounters at the city scale is challenging.  A key challenge is 

in acquiring large scale longitudinal data.  In [O’Neill et al., 2006] we described in detail 

the development of methods for automating such longitudinal observation through 

Bluetooth sensing.  We employed these methods in collecting the data described in this 

paper. 

Our central data collection technique exploits the characteristics of Bluetooth 

technology.  Bluetooth is a proximity-based wireless communication technology, 

allowing devices within a short range (approximately 10, 100 or 250 meters) to 

communicate directly with each other.  With no central servers to facilitate 

communication, Bluetooth devices rely on a discovery protocol to identify nearby 

devices.  This protocol requires the initiating device to carry out an inquiry scan in a 

specific range of frequencies and wait for nearby devices to advertise their presence by 

transmitting their unique identifier.  Thus, each inquiry scan provides information about 

which devices are in range at a discrete point in time.  In our data collection we make use 

of the three key characteristics of Bluetooth: physical proximity, the explicit 

advertisement of presence, and the unique identifiers transmitted by each device. 

We carried out our observations at 8 sites in the city of Bath (including six streets, a 

pub and an office).  These sites covered a good portion of the city centre while at the 

same time representing different levels of pedestrian activity.  Our technical setup 

involved installing a computer that constantly recorded the presence of discoverable 

Bluetooth devices within approximately a 10-metre range (Figure 1).  The Bluetooth 

protocol enables any device to search its environment and identify nearby devices that 



support Bluetooth and are set to be discoverable.  Each device has a unique 12-digit 

identifier, which makes it possible to differentiate between all discovered devices. 

The Bluetooth discovery protocol consists of two stages. In the first stage, a list of 

nearby devices is retrieved, while in the second stage each of these discovered devices is 

queried for additional information such as device class and user-defined name.  During 

the second stage, which can last minutes if many devices are present, a single-transceiver 

scanner cannot detect any new devices in the environment, thus failing to record passing 

Bluetooth devices that typically move into and out of scanner range within seconds at 

normal pedestrian speeds.  In our scanners, one Bluetooth transceiver was dedicated to 

the stage one discovery of new devices, while the remaining transceivers were 

responsible for performing stage two, querying those devices for additional information.  

This method allowed us to capture more data in locations where there were high flows of 

pedestrian traffic. 

 

 
 

Fig. 1.  At each scanning site, a computer uses Bluetooth to monitor the presence of discoverable mobile 

devices within an approximate 10 meter radius. 

 
It is worth noting that there is a clear distinction between Bluetooth device identity 

and a person's identity, and our system is able to capture only Bluetooth device identities.  

A device identity consists of the 12 hexadecimal digits that uniquely identify each device 

or, specifically, the Bluetooth chipset in the device.  In the research reported here we are 

not interested in people’s personal identities, but simply require a mechanism that helps 



us uniquely differentiate between individuals in space and time.  Hence we use Bluetooth 

as an identification mechanism since Bluetooth is a good proxy for inferring an 

individual’s presence and movement [O’Neill et al., 2006]. 

If we assume that a single person carries a single Bluetooth device, typically a mobile 

phone, we can begin to draw some, limited, inferences about the movement of people 

from the movement of the devices.  Thus, in [O’Neill et al., 2006] we reported that for 

the city of Bath approximately 7.5% of observed pedestrians had discoverable Bluetooth 

devices.  This number, which was derived by correlating manual counts of the number of 

pedestrians with Bluetooth counts of the number of discovered devices at the same 

location, will vary over time and place.  However, for the analyses presented in this paper 

we do not require knowledge of an exact figure. We should also point out that our data 

does not contain demographic information about those carrying Bluetooth devices, such 

as gender, age, social status, education, and where they live.  To the extent that our data 

represents a sample of a larger population (in this case the city of Bath), demographics 

may be inferred from secondary sources such as local government records and statistics. 

Even in this case, however, it is a challenge to accurately establish which portions of the 

population actually carry a Bluetooth-enabled device and which do not.  

As this was an observational study in the field rather than, for example, a controlled 

experiment, our scanners attempted to record any Bluetooth activity detected in the field 

at each site.  At each location we attempted to minimise the amount of “noise” picked up 

by our scanners by appropriately locating the scanner in the physical environment.   For 

indoors locations we placed our equipment near the centre of the enclosed space so that 

outside activity could not be detected.  For monitoring streets, we placed our equipment 

on ground floor or first floor windows overlooking the street.  However, given the 

inevitable vagaries of field observation studies and the properties of Bluetooth, in 

addition to these pre-data collection physical efforts, we also applied post-data collection 

analytical filters to reduce noise in the dataset. 

Hence, due to the omnidirectional nature of Bluetooth, it was possible for our street 

scanners occasionally to pick up Bluetooth activity from nearby buildings.  To address 

this issue, we can use filters to discard nearby static devices that are likely to be coming 

from a nearby building rather than the street.  Another anomalous case is when a person 

carries two discoverable Bluetooth devices.  In this case unrefined data analysis would 

falsely infer the presence of two people instead of one, although again post hoc filters 

could identify such pairs of devices that seem to be consistently discovered in unison.  

Another potential weakness of our data is the case where multiple people share a single 



Bluetooth device, in which case our analysis would falsely suggest one person making 

multiple visits.  It is not possible to filter for this case, however since mobile Bluetooth 

devices – most likely mobile phones – overwhelmingly tend to be owned and used by one 

individual, at least in Europe, it is a very unlikely case.  For the Bluetooth data collection 

presented in this paper we did not employ any of the above filtering mechanisms as we 

have yet to establish their validity and robustness. 

Our Bluetooth scanning equipment does not record anything other than Bluetooth 

discovery events.  In [O’Neill et al., 2006] we reported complementary data collection 

techniques that use manual field observations to correlate the publicly observable urban 

activities of nearby people with the Bluetooth data recorded by our scanners.  For the 

research reported in this paper we did not collect such data.  The data visualization and 

analysis techniques and findings we describe here do not rely on such knowledge and do 

not – indeed cannot – make claims about the activities and interactions of individuals 

beyond their relative proximity to our scanner sites from time to time. 

Over approximately 12 months we recorded more than 70,000 devices and 3,000,000 

discrete records of their presence in the city.  We stored our data in a number of database 

tables, with a single table containing raw data as recorded by our scanners.  The records 

in this table contain a timestamp, the device Bluetooth ID, the device Bluetooth friendly 

name (if available), and a unique code for the location where the scanning took place. 

While the Bluetooth protocol allows for the distinction between different “classes” of 

mobile devices (such as mobile phones, smart phones, PDAs, etc.), we discarded such 

information. 

Our recording of longitudinal and large-scale data allows us to make two significant 

advances that extend traditional approaches to modelling and understanding the city.  

Such approaches either rely on simulation-based analyses that often make crude 

simplifications about human behaviour [e.g. Turner & Penn, 2002], or they analyse 

quantitative data that cannot be associated to individual behaviour (for instance 

automated counting of cars, aggregated demographic data, etc.).   First, we can inform 

our aggregate level modelling and analyses with real world empirical data.  This should 

help us to validate and improve upon the often necessarily simplistic assumptions that are 

common in agent-based approaches to such modelling.  Secondly, we can investigate and 

analyse data that relate to a single user or a specific group of users, thus individualising 

our analysis in ways not possible with traditional aggregate approaches to modelling.  In 

the next section we describe the data that we have collected and demonstrate some of the 

techniques we have developed for visualising, analysing and making sense of these data. 



 

3. DATA VISUALISATION 
The data record of Bluetooth activity is fundamentally a set of individual Bluetooth 

discovery events.  A single discovered device typically generates multiple events while it 

is within range of a scanner.  In making sense of these data, we need to relate the 

individual events to a particular device and to its patterns of presence and absence across 

given scanner sites.  In investigating encounter, we also need to relate these patterns 

across different devices. 

A critical feature of these data is the temporal aspect, a theme to which we will return 

in subsequent sections.  A temporal view allows us to begin making sense of the 

individual Bluetooth discovery records.  Figure 2 illustrates our most basic temporal 

visualisation of a snapshot of raw data generated by our Bluetooth scanners. 

 

 
Fig. 2.  A timeline visualisation of our Bluetooth scanning.  Each device is given its own timeline (dashed lines) 

and each Bluetooth discovery event is plotted as a circle on the timeline. 

 

In Figure 2 we see a set of timelines, indicated as dashed horizontal axes.  Whenever 

a new device (i.e. a device for which no Bluetooth discovery events are already recorded 

in our dataset) is discovered in the environment, it is allocated its own timeline above the 

last newly created timeline.  Because of the use of unique identifiers in the Bluetooth 

protocol, each device can be associated with one and only one timeline across all our 

scanning locations in the city.  On each timeline we indicate with a blue circle the point 

in time at which a device was recorded by a scanner.  We refer to these as contact points.  

Typically, a device moving past a scanner will generate a series of successive contact 



points on its timeline.  So, for example, Device 16 (in Figure 2) appeared approximately 

18.5 minutes after scanning began and was present for almost a minute. 

Successively “zooming out” from our basic temporal visualisation provides a very 

useful tool for making sense of the data.  Figure 3 illustrates the effect of zooming out 

from the timelines shown in Figure 2. 

 

 
Fig. 3:  A timeline visualization of our Bluetooth gatecounts.  Each device is given its own timeline (dashed 

lines in top half) and each discovery event is plotted as a circle on the timeline. 

 
Our zoomed out timeline visualisation creates the cumulative effect of a diagonal line 

from bottom left to top right.  This diagonal effect is created by the appearance of new 

devices over time.  Any activity recorded below this main diagonal is attributable to 

persistent devices, i.e. devices that remain in the vicinity of our scanner for relatively 

long periods of time.  In investigating mobility, persistence is a crucial factor, since a 

device that is persistent at one scanner site is by definition not mobile, given a scanner 

radius of less than the area under consideration.  Even more significantly, persistence is 

crucial since it increases the probability of encounters, as we discuss in Section 5.1. 



Examining the “timeline diagonal” visualisation allows us to compare patterns of 

transience and persistence across different scanner sites.  Our knowledge of the urban 

spaces in which these scanners are situated then allows us to begin to relate features of 

the urban form to the observed patterns of transience and persistence.  Thus, Figure 4 

shows data from 3 Bluetooth gatecounts that took place at different sites and reflect 

contrasting patterns of Bluetooth presence.  Gatecount 9, carried out near a tourist 

attraction, has a relatively high level of persistent devices, indicating that people are 

spending a few minutes at this location.  We also observe bursts of Bluetooth activity 

recorded at 0, 5, 13 and 23 minutes, which correspond to groups of people arriving at the 

location.  Gatecount 5, on a relatively quiet street in a residential area, recorded devices 

appearing at a rate of 22 per thirty minutes.  These were mostly transient devices, with a 

few persistent devices including one that stayed for 17 minutes.  This location was 

characterised mainly by individuals walking between their homes and the city centre.  

Finally, Gatecount 10 was recorded on a busy street leading to the train station.  This 

location has a much higher flow of devices, with 90 devices appearing in thirty minutes.  

These were almost entirely transient devices, correlating with pedestrians making their 

way between the train station and the city centre. 

Zooming out even further, we can begin to identify daily and weekly temporal 

patterns in the data.  In Figure 5 we show a visualisation from one location over 1 day, 1 

week and 2 weeks.  In these graphs we can identify distinct days, which appear as distinct 

humps in the main diagonal of the timeline.  From the length of the hump we can infer 

the number of new devices that appeared on that day.  Furthermore, the slopes of sections 

of the main diagonal reflect the rate at which new devices appear.  For instance Saturdays 

(the 6th and 13th days) have a much higher number of new devices appearing than any 

other day (giving a long hump), and at a higher rate (giving a steeper slope).  We also see 

in shaded region 1 that the devices appearing on Saturday do not reappear during the 

following week, or indeed during the following Saturday.  Additionally, in shaded region 

2 we see that many devices that appear on the first day, a Monday, then reappear during 

the following weeks at regular intervals.  These patterns in the data reflect a daily routine 

observed during weekdays, coupled with a relatively distinct pattern at weekends 

[Department for Transport, 2005]. 

 



 
Fig. 4. Visualizing Bluetooth gatecount records.  Activity below the main diagonal indicates persistent devices. 

 
 



 
Fig. 5. Visualizing Bluetooth gatecount records over 1 day (left), 1 week (middle), and 2 weeks (right). 

 

The visualisations presented in this section allow us to begin making sense of the data 

temporally and spatially.  They reveal patterns of transience and persistence varying 

across times and spaces in the city and allow us to begin relating characteristics of those 

differing times and spaces to these data patterns.  While these visualisations are 

themselves a very useful toolkit in making sense of the data, visual inspection offers only 

one approach to analysis of our data, and typically assists in hypothesis generation.  In 

the next section, we describe how we built on our visualizations to develop more formal 

and systematic analytical concepts and tools.  These allow us to automate aspects of our 

data analysis.  We then go on to demonstrate the application of these concepts and tools 

to produce important novel results in understanding mobility and encounter in the urban 

environment. 

 

4. DATA ANALYSIS: SESSIONS, TRAILS AND ENCOUNTERS 
In this section we introduce the basic concepts of our approach to our data analysis, and 

then proceed to describe some of the findings resulting from applying our tools to mine 



the dataset collected from our scanner sites in Bath.  To illustrate our analysis and results, 

we draw on examples from four contrasting scanning sites.  These sites are: a passageway 

on our university campus, a street in the city centre, a city centre pub, and an office, also 

in the city centre. 

 
Table 1. The characteristics of our basic concepts: session, encounter and trail. 

Concept Characteristics 
Session Device, location, start time, duration 
Encounter Device x 2, location, start time, duration 
Trail Device, location x n, start time, duration 

 

The data visualisations discussed in the previous section provide the foundation for an 

approach to making sense of our data in terms of three distinct abstractions: sessions, 

encounters and trails (Table 1).  A session is defined as a set of contact points having no 

more than a threshold temporal distance of δ1 between any two consecutive points, i.e. δ1 

is a time-out threshold.  Thus, a session has an associated device, a start time, duration, 

and an associated location in the city (i.e. the scanner site).  In the work reported in 

[O’Neill et al., 2006] we empirically derived appropriate values for δ1 by correlating 

human observations with Bluetooth observations.  We can inspect a visualisation such as 

Figure 2 to identify distinct sessions.  For instance, device 13 generated a session 

between 15.5 and 16.5 minutes.  Similarly, device 10 recorded a session between 13.5 

and 14.5 minutes and between 20 and 21.5 minutes.  The concept of a session is central to 

our analyses, since it gives a time dimension to the discrete contact points generated by 

our scanners. 

Our next concept, encounter, builds on the concept of session.  Encounter describes 

instances when two devices have been copresent.  Thus, an encounter is defined by two 

devices, a location, a starting time and duration.  To detect encounters we look for 

temporally overlapping sessions that took place at the same location.  Visually inspecting 

Figure 2 we see that devices 12 and 13 encountered each other, since their sessions 

overlap, and they recorded these sessions at the same location in the city of Bath.  We 

calculate the duration of each encounter as the period of overlap between the sessions.  

Thus, devices 12 and 13 encountered each other for just over 30 seconds, while devices 

10 and 17 encountered each other for about 45 seconds. 

Our final concept, trail, extends the concept of a session with the spatial dimension.  

A trail is defined as a set of consecutive sessions for a given device, having no more than 



a threshold temporal distance δ2 between any two consecutive sessions.  Note that a trail 

may span a number of locations across the city.  A trail, therefore, has an associated 

device, starting time, duration and number of hops (number of distinct sessions).  Once 

again, δ2 has been empirically derived, and is based on our knowledge of the typical 

journey times between the physical locations we are observing. 

 

 
Fig. 6.  A visual representation of sessions, encounters and trails. 

 

4.1 Sessions 
In making sense of the patterns of movement and interaction of devices and people 

around the city, we first consider the distribution of session duration across our different 

scanning sites.  We distinguish between persistent and transient devices using a threshold 

for session duration of 90 seconds.  We empirically derived this threshold by measuring 

the session duration for individuals who walked past our scanners at a comfortable 

walking speed [O’Neill et al., 2006]. 

In Figure 7 we compare the distribution of session duration for two locations: the 

street in the city centre (left) and the pub (right).  From these distributions we can see that 

in the city centre street the vast majority of devices is seen for less than 90 seconds per 

session, indicating highly transient devices and people.  On the contrary, the distribution 

of session duration in the pub suggests that people are much more static, with about 65% 

of sessions lasting more than 90 seconds. 

 



 
Fig. 7.  Duration of presence of Bluetooth devices at two locations with distinct characteristics 

 

This threshold of around 90 seconds allows us to establish empirically a conceptual 

distinction between transient and persistent devices.  From a static observer’s (or 

scanner’s) point of view, transient devices come and go in less than 90 seconds, while 

persistent devices remain relatively static.  Considering the pub in Figure 7, we see that 

while the number of sessions with duration up to 20 minutes gradually decreases, there is 

a rise in the number of sessions lasting half an hour and one hour. A Mann–Whitney U 

test showed that the distributions of the two samples differed significantly (U=27177, 

p<0.0001). Relating this observed pattern in the data to our knowledge of the space in 

which the corresponding scanner is situated, we attribute this pattern to the actual 

activities taking place in a pub, as opposed to the street.  People have a reason to spend an 

hour in the pub rather than on the street. 

If, conceptually, we distinguish between slow-moving (persistent) and fast-moving 

(transient) devices, we can study how each group flows through different spaces in the 

city.  Note that transient devices are those that have sessions of up to 90 seconds, and 

hence are shown in the leftmost bar of each bar chart in Figure 7.  In Figure 8 we show 

on an hourly basis the number of transient devices that passed along the street in the city 

centre (red solid line) and the passageway on our university campus (blue dashed line).  

Examining transience here shows us how raw Bluetooth data can be misleading.  From 

the top of Figure 8 it appears that our university scanner gate was much busier than the 

city centre gate, with much more Bluetooth activity recorded at the university gate 

(Figure 8 top).  However, filtering out multiple records per device and persistent devices 

(indicating nearby static Bluetooth devices), we can identify the transient Bluetooth 

devices, shown in the bottom half of Figure 8. 

So, the city centre gate peaks at 15 unique transient devices per hour, while the 

campus gate peaks at 6 devices per hour.  The 2 graphs have a very similar profile despite 

recording Bluetooth traffic at sites with very different characteristics.  This reflects the 



temporal pattern of activity across the city, with Bluetooth traffic at both sites peaking in 

mid-afternoon.  The peak of 15 devices per hour for the city centre gate refers to the 

period around 1pm, corresponding to 7.8% of the pedestrian traffic for that location 

[O’Neill et al., 2006].  Again, these temporal patterns in the data reflect the periodicity of 

urban life as observed in other studies, for example of urban transport [Department for 

Transport, 2005]. 

 

 
Fig. 8: Raw Bluetooth activity (top) and transient Bluetooth devices (bottom)  for our campus and city centre 

street gates. 

 

Our measure of transience, based on our empirically derived threshold for session 

duration, describes how people’s movement may be viewed from the perspective of a 

specific location or a static observer.  For instance, a smart poster placed in our city 

centre street would expect to see about 15 highly transient devices between 12pm and 

1pm.  Similarly, we can calculate the number of unique devices with sessions of, say, 

more than 30 minutes in the pub, and so on.  In addition to understanding the patterns of 

persistence and transience from the perspective of a single space, we can also begin to 

explore how transient devices move through a sequence of urban spaces.  To make sense 

of the data from this perspective, we use the concept of trails. 

4.2  Trails 



A trail is a sequence of sessions recorded for a specific device over time across a 

succession of urban spaces in which there are scanners.  Thus, we can represent trails as 

directed paths across a network graph.  Each node can have metadata associated with it, 

such as duration of session, related semantic information (e.g. name, location co-

ordinates, and so on), the identifiers of the devices that have visited it and various 

computed statistics such as frequency and average session duration.  Thus, by preserving 

all the information recorded by each individual trail we can begin to analyse and compare 

trails. 

To carry out trail analysis, we have built a query engine which can be used to search, 

retrieve and rank trails based on any of the properties of the trails (device, hops, start 

time, duration) as well as their combinations.  For instance, we can search for trails 

between any two specific locations, which enables us to identify the range of routes 

people take between those two locations.  We can also search for trails that start at a 

specific location and last more or less than a fixed period of time, thus identifying the 

routes that people take when leaving, for example, a central square or a train station.  

Similarly, we can identify all trails that pass through a specific location, such as a coffee 

shop, and thus begin to understand the routes that the coffee shop serves.  We can also 

search for cyclic trails, thus identifying locations that may act as entry and exit points to a 

site, such as the entrance/exit to a zoo.  Furthermore, we can query for trails that occur 

within a specific time period (e.g. in the morning, in the afternoon, on Tuesdays, or 

during a particular event such as market day or a music festival), thus identifying how 

people’s trail preferences change over time and seasons. 

All of these analyses are possible on complete datasets, or may be applied to a subset 

of the data focusing, for example, on a specific device, or comparing males vs females, 

teenagers vs adults, or locals vs tourists, provided that such data has been recorded. 

Having retrieved all trails that match our search criteria, our system ranks these trails 

according to their significance.  A trail is significant if it matches one or more of the 

following criteria: 

• It is one of the top n trails in terms of trail popularity.  Given all trails that fulfil the 

search criteria, popularity for each trail can be defined as the number of times that 

the trail was recorded in the data, or the number of distinct devices that recorded the 

specific trail. 

• It is one of the top n trails in terms of average time spent on the trail, or some other 

time-related statistical measure. 



• It is one of the top n trails in terms of relevance of the locations to a particular 

subject (for example shopping the high street, or taking the scenic route). 

 

 
Fig. 9.  Visualisation of trails in the city of Bath as a network graph.  In this graph, nodes represent locations, 

while edges represent transitions between locations made by a specific mobile device (and its user). 
 

The results of our search queries can be viewed as text or visualised as a network 

graph, as illustrated in Figure 9.  Here, each node represents a location, while links 

between nodes represent transitions between locations made by a specific mobile device 

and, by extension, its user.  For visualisation purposes, we assign each trail a distinct 

colour, and use a layout algorithm that avoids overlaps between graph edges.  Graphs can 

offer an effective way to inspect a set of trails, and explore the relationships amongst 

them.  For any given set of trails matching a set of criteria, we are able visually to inspect 



their layout and identify patterns.  For instance, searching for the most popular trails late 

on a Friday night we can identify the taxi ranks as being the destination for many trails. 

Figure 9 highlights that our trails are not topographic descriptions of routes between 

points in the city.  Clearly, if we were interested simply in a trace of the movements of a 

device through urban space, we could use various technologies, e.g. GPS, to provide 

trails.  However, the approach described here provides a means of analyzing trails in 

which the nodes are particular spaces in the city with particular meanings – the pub, the 

museum, the doctor’s surgery, the suspected safe house.  We can then begin to mine the 

data in terms of these meanings associated with the network, typically by looking for 

patterns and deviations from patterns.  So, for example, the Tourist Information Centre in 

Bath would like to know which sites people visit, in what order and over what period, but 

they don’t particularly care about precisely which routes people chose between those 

sites.  In this case, by identifying patterns in visitors’ trails, as well as deviations from 

these patterns, the tourist agencies can provide more appropriate services and better 

adaptation to visitors’ needs. 

While our trail visualisations are amenable to visual inspection much like our earlier 

visualisations, they represent a crucial move to using network graphs.  From each 

location we have a number of transitions, each of which goes to a distinct location.  

Hence, the totality of locations is connected via a tree of transitions.  Within this tree we 

choose to analyze trails that represent linear chains of transitions between locations.  In 

the following sections we describe how we move from analysing network graphs visually 

to analysing them algorithmically. 

4.3  Encounters 
Visualising and analysing our raw Bluetooth activity data as sessions and trails allowed 

us to begin making sense of the data in terms of people’s behaviours in various forms of 

urban space (such as contrasting patterns of persistence between the pub and the street).  

Associating a unique timeline with every newly discovered device also allowed us to 

trace the progress, or trail, of a device (and its user) by analysing the device’s sequential 

presence at different scanning sites.  A third crucial aspect of investigating the 

relationships between people, technologies and the city directly links the temporal and 

the spatial.  Copresence or encounter requires that 2 or more devices are in the same 

space at the same time.  It is this notion of encounters between the diverse combinations 

of mobile and fixed devices and people in the urban environment that provides the richest 

ground for mining our dataset.  It is in encounters that interactions occur: interactions 

between person and person, between person and fixed device, between mobile device and 



mobile device, between mobile device and fixed device, and so on.  As noted above, 

however, our Bluetooth scans do not record the details of any real world interactions.  

They simply record that 2 or more devices were simultaneously within range of one of 

our Bluetooth scanners.  Hence, our notion of encounter in our Bluetooth data does not 

describe real-world relationships between humans, but rather opportunities that may arise 

for networking, both social and digital, amongst humans and devices. 

To study the patterns of encounter in our data, we first need to identify instances 

where two or more devices were present at the same time in the same place, i.e. within 

range of one of our scanners.  For example, from Figure 2 we can see that devices 12 and 

13 encountered each other at 15.5 minutes and were together for approximately 1 minute.  

In observing encounters, we can once again make use of relatively simple timeline 

visualisations, as illustrated in Figure 10.  In this figure each unique device’s timeline is 

represented as a dotted line, while yellow bars indicate the sessions actually recorded by 

each device at this scanner site.  We can therefore record encounters by identifying 

device sessions that overlap in time and were recorded at the same location.  For 

example, in Figure 10 we can see that device 1 encountered devices 3, 4 and 6, while 

device 3 encountered devices 1 and 4. 

 

 
 

Fig. 10.  By identifying device sessions (yellow bars) that overlap in time at a given scanner site, we can record 

encounters (arrows) between devices.  

 

However, the timeline visualisation is not an appropriate tool for examining encounter 

over the entire dataset of millions of events.  Hence, we required additional tools to 

analyse encounter.  We developed filters that analysed our dataset and gave us instances 



of devices encountering each other across every location in our study.  For each 

encounter, we identify the two devices involved, the location of the encounter, the time 

when the encounter began, and the duration of the encounter.  These results are stored as 

records with the following form: 

device1_id, device2_id, location, start time, duration  

At this stage in our analysis we have a long list of such records, describing which 

devices encountered each other at which locations and times.  This list of encounters is a 

textual representation of the patterns of encounter in our dataset.  We then transform this 

textual representation to a network graph.  Assuming that each device from our dataset 

becomes a node in this graph, then the list of encounters describes the links between all 

nodes.  Thus, we are able to generate “complex network” graphs [e.g. Strogatz, 2001] 

that represent the patterns of encounter across our entire dataset.  We can generate 

various graphs from our data, such as an individual graph per scanner site, or a graph of 

our entire dataset in one city-scale graph.  Furthermore, we can generate these graphs 

over the entire lifetime of our scanning or over any specified period. 

 

 
Fig. 11.  A network graph visualisation of the encounters at one of the locations in our study. The graphs 

represent our data after a day (top left), a week (top centre), a month (top right), and six months (bottom). 
 



In Figure 11 we show complex network graphs from the pub in our study for periods 

of 1 day, 1 week, 1 month, and 6 months.  In this graph, each device is represented as a 

node in the graph, and connected nodes indicate that these devices encountered each 

other at some time in this period.  We observe that most devices are linked to a single 

cluster, whilst few devices are isolated.  The latter indicate cases where a device was seen 

only by itself and never in the presence of other recorded devices.  The size of a node 

represents the total amount of time that the corresponding device has spent in this 

location.  Similarly, the colour of the nodes (blue to red) indicates the “betweenness” of a 

node (from 0 to 1 respectively), which describes the extent to which an individual acts as 

a bridge between other people in the network [Freeman, 2004].  Hence red individuals are 

those who are central to the graph, while blue individuals are relatively isolated.  This 

metric, along with an array of further standard metrics such as closeness, clustering 

coefficient, etc. [Freeman, 2004], enables us to identify meaningful subgroups of the 

population, and focus our attention on them.  For instance, we might identify isolated 

individuals (blue nodes) and examine the trails these individuals take across the city. 

Once again, network graphs prove to be a useful tool in making sense of the data.  

However, the complexity of our network graphs makes visual inspection cumbersome or 

impossible for all but the smallest and simplest subsets of our data.  In the next section, 

therefore, we describe our application of more algorithmic approaches in order to make 

tractable and to automate the mining of our entire dataset. 

5.  COMPLEX NETWORK ANALYSIS 
An advantage of using network graphs to represent our data is that we can use well-

established algorithms for analysing the structure and properties of such graphs 

[Kostakos & O’Neill, 2007].  To enable this kind of analysis, we encode our data as 

graphs by representing each device as a node, and creating links between those devices 

(nodes) that encountered each other.  Furthermore, depending on where we set the 

boundaries of our dataset we can derive a number of different networks.  In our case we 

consider 5 distinct networks (Table 2).  The “Bath” network represents all the devices 

captured in the city of Bath, and all the encounters between those devices.  The other four 

networks (campus, street, pub, office) were generating by only considering the data 

captured at each site respectively.  For instance, the “pub” network is a graph where 

nodes represent the people that where observed in the pub, and links between nodes 

represent encounters between those people that took place in the pub. We have focused 



our analysis on these 4 locations is that they represent a diverse range of spaces that can 

be found in a city. 

Using network representations for data coding, we are able to derive a variety of 

properties about each node (hence user) of our dataset.  These properties are commonly 

used in assessing the role of a node in the context of the whole network or in the context 

of its immediate neighbourhood in the graph.   Their use as indicators of a node’s role 

and position in a graph has lead to these metrics being termed “structural”. Examples of 

such properties include “degree” (the number of links that a node has), or the clustering 

coefficient (also known as “transitivity”: the extend to which a node’s neighbours know 

each other).  In addition, we can derive metrics for a graph as a whole.  One such metric 

is the size of the graph (number of nodes) or the average shortest path (average number of 

hops required to go from one node to another).  

Having established the above metrics, it is possible to compare distinct networks in 

two ways.  First we can directly compare metrics that describe the graphs as a whole (e.g. 

number of nodes).  In addition, we can compare the distributions of node-specific 

variables.  For instance, given two graphs we can consider the distribution of nodes’ 

degree (number of links) or clustering coefficient.  These are two of the types of analysis 

that we present in this section. 

In Section 5.1 we present a structural analysis of the network graphs captured by our 

Bluetooth scanners, which gives us insights into the patterns of encounter of Bluetooth 

devices across different locations in a city.  In Section 5.2 we present an analysis of the 

temporal properties of our complex networks.  Finally, in Section 5.3 we develop and test 

a model of urban encounter.  We show how this model describes very well our observed 

data on encounters, and provides a basis for explaining the temporal patterns we have 

observed, as well as the structural properties of our data. 

 

5.1 Structural analysis of encounters 
In Table 2 we present structural properties of our entire dataset for Bath over 12 months, 

as well as four distinct subsets.  We note that our graphs do not represent explicit social 

relationships between individuals, but rather represent the encounters between 

individuals’ mobile devices in a city.  These encounters may provide opportunities for 

networking (both social and digital) that arise due to the movements and copresence of 

people and their devices. 



All the networks in Table 2 exhibit small average distance λ, i.e. average shortest path 

between pairs of nodes, and high clustering coefficients C, i.e. the probability that x 

connected to y and x connected to z implies y connected to z. We point out that a random 

graph with the same number of nodes and edges as the Bath graph in theory should have 

a clustering coefficient of 2.6 x 10-4. The small λ and large C for all graphs are indicative 

of small-world networks [Watts & Strogatz, 1998], suggesting that in our networks most 

nodes are not neighbours of one another but most nodes can be reached from every other 

by a small number of links.  The corollary in the city is that while most people in Bath 

directly encounter only a small portion of Bath residents, they are only a small number of 

hops away from everyone else in Bath.  This is in contrast to a network such as, for 

example, the national road network where an average journey requires a large number of 

changes of direction, or hops [Strogatz, 2001]. 

 
Table 2.  Structural properties of our complete dataset for 12 months and some of its subsets.  For each subset 

we show size of the graph, number of edges in the graph, density of edges (total edges / size * size-1), size of 

largest cluster (core), average number of edges per node (k), diameter of largest cluster (λmax), average 

distance (λ), and average clustering coefficient (C). 

 Size Edges Density Core k λmax λ C 
Bath 70516 652446 0.03% 69655 18.53 11 3.45 0.47 
         
Campus 3109 120273 2.5% 3101 77.37 6 2.57 0.44 
Street 11853 58111 0.08% 10584 9.80 12 3.23 0.28 
Pub 13476 126768 0.1% 13383 18.81 9 2.61 0.69 
Office 321 2419 4.7% 318 15.21 4 2.04 0.82 

 

Furthermore, the distribution of connections per node across the whole dataset 

follows an approximate power law equation y = x^-α [Newman, 2005] with α  ≈ 2.5  

(Figure 12a).  This suggests that in our networks a few nodes act as “highly connected 

hubs”, while most nodes are not well connected.  In other words, over time a few devices 

collect an extremely large number of encounters, while the vast majority of devices have 

a small number of encounters.  This characteristic is “scale free”, meaning that it is 

independent of the number of nodes in the network [Barabasi, 1999].  Therefore, even if 

the size of the community changes drastically, the property will persist. 

Finally, clustering in our dataset follows the approximate relationship C(k) ≈ 1/k 

(Figure 12b), which suggests an underlying modularisation of our data [Dorogovtsev et 

al., 2002; Ravasz et al., 2002].  This property, which has been observed in fractal-like 

structures resulting from recursive self-replication, suggests that as the number of a node 



N’s links grows, the density of links between the nodes encountered by N decreases 

proportionately.  Thus, if device A has a small number of encounters and it encounters 

devices B and C there is high probability that B has encountered C, and this probability 

decreases as the number of A’s encounters increases. 

The presence of small world, scale-free and clustering properties is a crucial finding.  

It indicates that our data are not random but rather follow a pattern seen often in nature.  

Specifically, power law distributions (straight lines on a graph where both axes are set to 

a logarithmic scale) have been identified in a number of natural and social phenomena, 

including the behaviour of water molecules near boiling temperature, the size of craters 

on the moon, the magnitude of earthquakes, citations of scientific papers, website hits, 

and the structure of the internet’s backbone [Newman, 2004]. 

 

 

 
Fig. 12.  Structural properties.  On the left (Figure 12a), the Pareto distribution of degree k follows an 

approximate power law with α ≈ 2.5 (red line).  On the right (Figure 12b), we observe that degree k versus 

clustering coefficient C(k) follows the relationship C(k) ≈ 1/k*c shown in the red line (c =9.8). 

 

The structural properties of the sub-networks in our dataset tell a story that intuitively 

makes sense in terms of the places where data recording took place.  For instance we see 

the strongest clustering C and smallest distance λ in the office rather than on the street, 

indicating a more clustered, tightly knit network of encounters in the office.  

Correspondingly, we would expect an office environment to be much more clustered than 

a street.  Furthermore, we see that the street network has far fewer encounters than the 

campus network, even though it has many more nodes than the campus network.  In fact, 

the campus network has only a quarter of the nodes but twice as many encounters as the 

street, suggesting a small yet active community.  On the other hand the street appears to 

be a large sparse community with relatively less activity. 



To get further insight into the different types of communities and their structures as 

recorded at our scanning sites, we can calculate the degrees of separation between all 

possible pairs of nodes at each location.  An often cited, although controversial, paper 

examining degrees of separation is Milgram’s work suggesting that people are connected 

by around six degrees of separation [1967].  More recent work by [Leskovec & Horvitz, 

2008] looking at the global social network of the Microsoft instant messaging service 

found that the average distance between people was 6.6.  Just as Milgram’s work 

considered social relationships as opportunities for forwarding letters and Leskovec & 

Horvitz’s work considers conversations as opportunities for passing along information, 

we consider encounters in our dataset as opportunities for forwarding information or even 

viruses, as described below.  In Figure 13 we plot the probability distribution of graph 

distance across the four sub-networks of Table 2.  Both the pub and office networks are 

heavily shifted towards the left, indicating “tight” networks, while the campus and street 

networks are shifted towards the right, indicating relatively “loose” networks.  

Practically, the distinction between tight and loose networks is that people in locations 

with tight networks are familiar with each other, as for example the regular customers in 

a pub or the employees of an office.  On the other hand, one is likely to be surrounded by 

strangers in locations with loose networks such as the pub.   

The average distance we have observed is smaller that the values suggested by 

previous work (e.g. 6 or 6.6). We believe this is due to the fact that our data collection 

mechanisms are operating on relatively small, location-bound communities. Sending 

letters and having instant messaging conversations can potentially be done with anyone 

on the planet, but physical co-presence is typically more difficult and expensive to 

establish.  These limitations, we argue, act against the spreading of the network, and 

effectively act in a way so as to minimize the average distance between nodes. 

 



 
Fig. 13.  Probability distribution of distance between any two nodes in the network graphs of four scanning 

sites. 
 

In Section 5.1 we have investigated what are known as structural or static properties 

of network graphs.  In other words, we have derived statistics and metrics from a 

representation of our data that completely discards temporal and sequential information.  

While useful in many respects, this popular type of analysis has considerable limitations, 

as it assumes a static 2D representation of the data (i.e. a complex network graph) from 

which it derives metrics.  In the following section we present a novel analysis that 

provides insights on the temporal properties of our data, taking into account the sequence 

in which encounters take place. 

5.2 Temporal analysis of encounters 
Although network analysis algorithms are readily available and there is a large body of 

research on representing and analyzing many complex human and natural phenomena as 

networks of relationships amongst individuals [e.g. Strogatz, 2001; Onody & de Castro, 

2004; Holme, 2003; Holme et al., 2007], previous research has used network 

representations that aggregate the relationships at discrete intervals [e.g. Snijders, 2001; 

Leskovec et al., 2005].  Time has been explicitly considered by [Kumar et al., 2006], but 

only to describe when individuals join a network as opposed to when individuals interact 

with each other.  However, links between network nodes such as the encounters between 

mobile devices represented in our network graphs are typically intermittent, and their 

aggregation does not take account of important temporal information, inhibiting 

understanding of the network’s dynamic behaviour and evolution. 



Previous techniques have been developed to describe the dynamics of networks such 

as the Brazilian soccer network [Onody & de Castro, 2004], online dating networks 

[Holme, 2003] and student affiliation networks [Holme et al., 2007].  However, such 

work typically relies on the analysis of a limited number of discrete snapshots of the 

complex networks [Snijders, 2001], often because of the impossibility of collecting large-

scale longitudinal data.  Our data, on the other hand, consist of a chain of events that 

allows for a minute-by-minute evolving description of the network as people move into 

and out of contact with each other and our scanners.  Here we explore the temporal 

properties of our network by focusing on three key aspects: presence and frequency of 

nodes, presence and frequency of links, and temporal order of events.  (There are 

alternative approaches to analysing our data without explicitly taking into account the 

relationships between users, e.g. by building models of user activity that utilise multiple 

sources of contextual information such as location and time of day [Eagle & Pentland, 

2006], resulting in the ability to predict or infer user activity.) 

While in Figure 11 all nodes are visible simultaneously in the graph representation, in 

the city they were available intermittently, and only when the corresponding individuals 

were at a scanning location.  We call this availability node presence (np), calculated as 

the total amount of time an individual spent near one of our scanners during the study, i.e. 

the sum of their sessions.  This measure is effectively the sum of all sessions for each 

device.  In Figure 14a  (black solid line) we see that np follows a power law with α ≈ 1.9.  

Thus, whilst most individuals were seen only for a few seconds, a few accumulated a 

presence of more than a month during their visits to our scanner sites.  A further temporal 

aspect, node frequency (nf), describes the number of distinct sessions recorded for each 

unique device.  In Figure 14b  (black solid line) we see that nf follows a power law with 

α ≈ 2.6.  Thus, most individuals were seen only once, while a few recorded more than 

1000 sessions.  Finally, we have observed that np and nf are not correlated across all the 

whole dataset, suggesting that the total amount of time someone spends at a location is 

not related to how many times they visit it. 
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Fig. 14. Temporal properties.  Figure 14a (top left) shows the distribution node presence follows a power law 

with α ≈ 1.9.  Figure 14b (top right) shows the distribution of node frequency follows a power law with α ≈ 2.6.  

Figure 14c (bottom left) shows link presence follows a power law with α  ≈ 2.3.    In Figure 14d (bottom right), 

we observe that link frequency follows a power law with α  ≈ 2.7.  Black solid lines represent the recorded 

empirical data, blue dashed lines represent the model we have developed. 

 

Previous work has suggested that power laws occur when nodes with high values for 

connectedness k, i.e. many links or previous encounters, are more likely to attract new 

links, an explanation known as preferential attachment or “the rich get richer” [Barabasi, 

1999].  A classic example of this scheme is the way in which websites link to one 

another: a new page appearing on the web is much more likely to link to already very 

popular pages (such as www.google.com) rather than to unpopular pages such as the 

authors’ home pages.  The analysis of our data, however, suggests an alternative 

explanation.  When considering our urban encounters, node availability is a prerequisite 

for establishing links: a device gains links by being near a scanner and “waiting” for 

others to show up.  As illustrated in Figure 10, an individual encounters all other co-

present individuals, regardless of how many encounters they have previously had, i.e. 

regardless of their value of k.  Nodes’ behaviour, however, varies in np and nf  – some are 

more “persistent” or “frequent” than others, and thus are more likely to gain new links. 

For example, a customer entering the pub is more likely to encounter the barman, not 



because the barman has had many encounters, but because the barman is more likely 

actually to be in the pub.  Thus, our analysis suggests that a power law distribution of k 

can also result from an attachment process driven by nodes’ temporal availability, rather 

than connectedness per se.  We find that for any frequency this model is a good 

approximation of our real world data. 

Availability and connectedness are completely independent in our analysis.  In theory, 

a node may be highly available (i.e. a person spending a lot of time at a location), yet 

have very low connectedness because few other nodes are available at that location (e.g. 

few others go to that location). On the other hand, a node of high availability can have 

high connectedness due to the busy nature of the location.  Similarly, low availability 

nodes can have either low or high connectedness. 

We investigated the effects of np and nf by exploring the temporal properties of 

encounter: link presence (lp) and link frequency (lf).  These are properties that allow us to 

focus our analysis on the encounters per se as opposed to the devices.  Link presence is 

the sum of the durations of all encounters between two specific devices, while link 

frequency is the number of times two devices have encountered each other.  In Figure 14c 

 (black solid line) we see that lp follows a power law with α ≈ 2.3.  Thus, while during 

our study overwhelming numbers of individuals had brief encounters, a few devices 

accumulated a total of up to a few days next to each other during their various 

encounters.  Similarly, in Figure 14d  (black solid line) we see that lf follows a power law 

with α ≈ 2.7.  Thus, whilst most individuals met only once or twice, a few met up to 300 

times. 

One of our main goals was to improve our modelling of city-scale phenomena, such 

as patterns of encounter, by informing our modelling and model-based analyses with real 

world empirical data.  Our initial approach was a fairly conventional one of developing a 

simulation model and comparing the results with our empirical dataset.  This approach 

can facilitate cross-validation of the assumptions underlying the simulation with the 

results of observing real world phenomena in the field.  Thus, to test our hypothesis that 

nodes’ temporal availability, their presence and frequency, drive the temporal and 

structural properties of networks, we first developed a simulation model of encounter 

driven by np and nf.  At each step of our model, a node was activated with probability nf, 

and if activated, stayed active for a duration of np multiplied by the number of steps it 

was previously inactive.  In our model, attachment between nodes was non-preferential: 

all simultaneously active nodes were linked to each other.  We analysed the behaviour of 



our model with varying population sizes, each time resulting in a scale free distribution of 

k, lp and lf. 

In Figure 14 (blue dashed lines) we see the resulting scale-free distributions of 

presence and frequency of a modelled population of 70,000 nodes using the np and nf 

derived from our observations.  These are clearly a very good fit to the corresponding 

observed distributions from the city (black solid lines in Figure 14).  In Figure 15 we see 

the resulting scale-free distribution of connectivity k, again showing a very good fit to the 

observed distribution from the city. 

 
Fig. 15.  Degree distribution.  Our model (blue dashed line) results in a degree distribution that approximates 

our observations (black solid line). 

Our results suggest that unlike networks where nodes are, in normal operation, 

constantly available (e.g. the Internet, the electricity grid or the road network), when we 

consider encounters between mobile devices in the city, availability follows a scale-free 

distribution, which determines the distribution of encounters, or links, between 

individuals.  Hence, whereas on a desktop computer with a fixed network connection we 

can, for example, connect to a given website on the Internet at any moment even if some 

intermediate routers and lines fail, when we consider device-to-device communication 

between mobile wireless devices in the city streets this availability is not constant.  The 

availability of device-to-device communication in this environment does not depend on 

technological infrastructure such as routers and cables, but rather it depends on the 

patterns of movement and encounter between devices in urban space.  Our findings 

describe and predict how these patterns affect device-to-device availability.  Having 

robust models of this availability would bring pervasive systems developers closer to 

taking full advantage of the networking mesh that individuals’ mobile devices can 

collectively create.  This mesh can be used as an infrastructure for free communication 

between individuals in cities, or between devices [Chaintreau et al., 2006]. An aspect of 

our work which we are currently pursuing is to consider how our findings can help us 



build predictive models that can extrapolate a population’s behavior and suggest the state 

of the social network at some point in the future. 
 

5.3 Modelling information diffusion through encounters 
An important effect of encounter networks where the timing and availability of 

encounters is critical is in the dissemination of information across networks.  There are 

many examples of the importance of such information dissemination, including message 

passing in peer-to-peer human or computer networks [Chaintreau et al, 2006; Jones et al., 

2007] and the spread of viruses, both digital and biological [Pastor et al., 2001; 

Vazaquez, 2006; Newman et al., 2002]. 

In a further effort to improve modelling using empirical data, we next created an 

emulation environment in which we studied the diffusion patterns of information packets 

or digital viruses.  We deliberately describe our system as an emulation, as opposed to a 

simulation, because the underlying mechanisms are not probabilistic as in a conventional 

simulation model but reflect real-world events as recorded by our Bluetooth scanners.  In 

our system, each encounter provides an opportunity for two devices to exchange 

information or a virus.  Our emulation environment is novel in that it effectively offers a 

dynamic bond percolation model [Newman et al., 2002] for understanding virus spread 

without relying on probabilistic operations since we know the precise time and duration 

of each encounter. 

To initiate diffusion in our emulations, we used as seeds all possible devices in our 

dataset, at all possible points in time.  At each iteration we injected a single device with 

information and our emulation then worked through our records of encounters, recreating 

every encounter in the exact order our scanners recorded them in the real world.  During 

an emulated encounter, if one of the two devices had the information, then it passed to the 

other device.  Finally, we aggregated the results of all trials to derive our final results.  

This process is in contrast to what researchers have traditionally done, which involves 

generating encounter patterns in a probabilistic manner because they have no other means 

of generating valid and realistic temporal patterns of encounters.  Our use of Bluetooth 

scanning to automate the real time recording of patterns of encounter over extended 

periods allows us to record and retain the detailed temporal properties of the data. 

To better understand how the temporal structure of our data affects information 

dissemination, we injected two types of information into our network: non-expiring and 

expiring information.  Non-expiring information can be passed along indefinitely, while 

expiring information can be passed along only up to a limited number of days after it was 



received.  Thus, in the world, expiring information is information that is invalid after a 

few days (for example, “knowledge that the circus is in town”).  It resembles viruses that 

are active in their host only for a few days.  Non-expiring, or delay-tolerant, information 

on the other hand is exemplified by knowledge of facts such as the launch of a new shop 

in the city centre or the opening of a new motorway between two local towns. 

Initially, we ran emulations using our complete dataset.  We then selectively removed 

from the dataset the links between our network nodes, and observed the cumulative effect 

of removing these links on the transmission of information through the network.  In our 

first trial, we removed links as follows: given the complete set of links ordered by lp, i.e. 

by duration of the encounter represented by the link, we began removing links at the top 

of the order, i.e. by removing the briefest encounters first.  At each step, we removed 

10% of the links in our total ordered set of links and observed the cumulative effect on 

information transmission across the network. 

We next ran emulations in which we began removing links from the bottom of the list 

working our way to the top, thus removing the most persistent encounters first.  In terms 

of city life, brief encounters predominantly represent encounters with strangers, such as 

passing in the street, while the most persistent encounters predominantly represent 

encounters with friends, family and co-workers, such as meetings, meals and so on.  

Encounters with “familiar strangers” [Paulos & Goodman, 2004; Milgram, 1977], such as 

waiting at a bus stop or train platform at around the same time every weekday, are 

typically represented more towards the persistent end of our order. 

As a measure of information dissemination across the network, in Figure 16 we show 

the number of devices that non-expiring information can reach over time.  We observe 

that the removal of brief encounters (e.g. passing encounters between strangers on the 

street) substantially diminishes the ability of non-expiring information to spread through 

the network, while the removal of the same number of persistent encounters (e.g. longer 

meetings between friends) has a much smaller effect.  For example, we see that up to 

40% of persistent encounters can be removed and 98% of devices still receive the 

information.  If, on the other hand, we remove 40% of brief encounters then only 65% of 

devices get the information. 
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Fig. 16.  The effect of selectively removing the briefest encounters (with strangers) or most persistent 

encounters (with friends) in the propagation of non-expiring information. 

 

Granovetter’s account of the importance of weak social ties [Granovetter, 1973] 

suggests that more new information flows to individuals through weak rather than strong 

ties.  This is because our close friends tend to move in the same circles that we do, hence 

the information they receive overlaps considerably with what we already know.  Weak 

ties such as acquaintances, by contrast, know people that we do not, and thus receive 

more novel information.  Our emulations suggest that brief encounters may be viewed as 

the temporal equivalent of weak social ties in that they are crucially important to network 

cohesion [Bohannon, 2006]. 

In our second set of trials we again ran exhaustive emulations, but this time we 

injected devices with short-expiry information packets, and observed changes in their 

diffusion by varying the amount of time they remained active in a device.  Such packets 

represent time-sensitive information, messages or viruses, as they remain active in their 

hosts for only a few days.  Again we removed the most brief or most persistent 

encounters from our emulations in cumulative steps of 10% of the links, and observed the 



propagation of the packets.  In Figure 17 we show the results of our emulations with 

information packets that remain active for 3 days. 
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Fig. 17.  A 3-day virus (transmission probability of 1) is injected in our dataset, and we selectively remove the 

most persistent encounters (friends) or most brief encounters (strangers). 

 

We used the Susceptible-Infected-Susceptible model [Anderson & May, 1992], which 

means that once a device has recovered from a virus, the device is susceptible to 

contracting the virus again.  It is interesting to note that the small periodicities visible in 

these graphs are 7 days long, reflecting underlying weekly patterns in the encounters in 

the city.  In marked contrast to non-expiring information (Figure 16), we found that the 

removal of brief encounters has a small effect on diffusion across the network, while 

persistent encounters have a large effect, with the removal of as little as 10% of the most 

persistent encounters immediately diminishing the network’s capacity to sustain the virus 

for long periods of time (Figure 17 bottom). Removing the 10% of most persistent 

encounters immediately reduces the virus’ expectancy by 110 days, while in the top of 

Fig. 17 removing the 10% of briefest encounters reduces the epidemic by only 30 days.  

Thus, we have made a second extension to Granovetter’s [1973] theory of weak social 

ties.  Our findings suggest that when considered in a temporal domain, non-weak ties (i.e. 

persistent ties) sustain the flow of time-expiring information. 

An interesting re-interpretation of our results is that viruses last longer on networks 

with high proportions of persistent encounters.  The removal of even a small proportion 



of persistent encounters quickly brings an epidemic to a stop.  This is consonant with 

epidemiologists’ suggestion that most infections take place between family members [e.g. 

Ferguson et al., 2006]. 

In this section we have examined both the structural and temporal properties of 

encounters between mobile devices (and by implication their users) and our fixed 

scanners (and by implication other fixed devices and digital services) across an urban 

environment.  We found that the structural properties of these encounter networks are 

both scale-free and small world.  We showed that their temporal properties are also scale-

free and we characterise such networks as Brief Encounter Networks due to the 

overwhelming proportion of short and infrequent encounters between individuals.  We 

have shown that the temporal behaviour of the nodes gives rise to the observed power-

law connectivity.  We have demonstrated that brief encounters are fundamental to the 

propagation of non-expiring information while, conversely, persistent encounters are 

needed to sustain time-expiring information through a network of urban encounters.  In 

terms of urban pervasive systems, people may rely on their persistent encounters with 

other people or location-based services to exchange time-sensitive information such as 

coordination feedback, traffic news, or limited-time marketing promotions, while brief 

encounters are likely to provide access to gossip, innovations, or news that a new 

restaurant has opened. 

6.  IMPLICATIONS FOR URBAN PERVASIVE SYSTEMS 
In this paper we have presented data collection methods and developed analysis and 

modelling techniques for making sense of the captured data on patterns of movement and 

encounter in the city.  Our applications of these techniques have provided novel findings 

including the importance of temporal properties in the structure of encounter networks 

and their capacity to disseminate information.  These methods and findings have 

implications for specific current challenges within pervasive computing such as the 

design of Delay and Disruption Tolerant Networks (DDTNs), more generally for our 

understanding of mobility and encounter of devices and their users within the urban 

environment, and more generally still for our fundamental understanding of network 

properties that are found throughout the natural and artificial worlds.  While our methods 

and findings may have potential to help inform pervasive systems design, a key 

characteristic of our techniques is that both the data collection and the analyses of the 

collected data can be completely automated.  This implies that our analyses may be used 

by the pervasive systems themselves at run time.  This approach could help in enabling 



pervasive systems dynamically to adapt their run time operation to the changing urban 

environment with its flows of people and devices. 

6.1 Potential to inform pervasive systems design 
The tools we have presented in this paper form the basis for deriving consistent and 

operationalised means of instrumenting and comparing different urban spaces.  Given a 

dataset from each environment where our system is to be deployed, our analytical tools 

can highlight their differences and constraints, and represent them to designers for 

consideration early in the design process.  For instance, considering the installation of a 

pervasive system such as a smart bus stop system, our tools can give designers an insight 

into the differences between, for example, Bath and Tokyo, or between 2 different places 

in Bath.  In addition, our model of encounter can provide the means to stress-test a design 

by considering the expected number of visitors, the frequency of their visits, and the 

duration of their visits.  To study such differences, ideally one would have to take 

samples from “equivalent” locations in the city.  There are at least two approaches to 

measuring the equivalency of two locations in different cities: use metrics derived from 

architectural theory such as Space Syntax [Hillier, 1996], or choose functionally 

equivalent locations such as the train station exit, a central parking lot, or a shopping 

mall.  While the first approach is more consistent and theoretically founded, the second 

can be more relevant and can leverage knowledge of a city’s context. 

There are further advantages in an automated approach to data collection exemplified 

by our Bluetooth scanning, in that simply installing more hardware can instrument large 

geographic areas.  This means that, for example, we can begin to automate tasks such as 

analysing the requirements of 150 different bus stops in a city centre by installing a 

scanner at each bus stop.  Whereas many approaches require human observers to monitor 

sites and record data, as in conventional space syntax methods such as gatecounts and 

static snapshots [Hillier, 1996], using our techniques we can automate the collection of 

some forms of data.  Automated data collection cannot replace all forms of human data 

collection but, as we noted in [O’Neill et al., 2006], the combination of human observer 

and automated data collection methods can capture a wide range of data that neither 

approach alone can encompass.  And of course, automated data collection can be active 

24 hours a day over very long periods and can thus begin to capture a consistent 

longitudinal picture. 

To build up this picture, designers can use our analysis techniques to look for patterns 

of presence, encounter and trails across a city, or across sites of interest (i.e. Figures 7, 8, 

9, and 13).  These patterns offer concrete metrics for comparing and differentiating 



between locations, and identifying appropriate design approaches.  To continue our bus 

stop example, our analysis can show differences in visiting patterns at each bus stop.  

Thus, while some bus stops may be continuously busy from 9am to 5pm, other bus stops 

may experience bursts of groups of people.  Similarly, some bus stops may host 

passengers for an average of 2 minutes, while other bus stops may host passengers for 

more than 30 minutes.  Additionally, designers can identify those bus stops that have 

mostly regular passengers, likely commuters, or those bus stops that have a small 

proportion of regular passengers, and design each bus stop appropriately. 

In terms of encounter, our analysis can help designers identify the structure of the 

community observed at a specific location.  Considering systems beyond our bus-stop 

examples, designers can be made aware of the presence of numerous tight-knit groups 

appearing at a specific location, how often they come in contact with each other, and 

even begin to anticipate the chance that these groups interact directly.  All these are 

means of understanding the differences between locations, which subsequently may be 

interpreted and instantiated as design decisions. 

Finally, designers can look for trail patterns amongst locations of interest, such as a 

set of bus stops under consideration.  This can offer valuable insight towards creating a 

consistent and overarching experience in terms of, for example, an advertising campaign.  

For example, our analyses can aid designers in identifying the origins to, and destinations 

from a specific bus stop.  Additionally, designers can begin to anticipate the context in 

which a specific bus stop will be used.  For instance, a bus stop may be used regularly on 

a Friday night, acting as a final social hub before everyone goes home. 

While our techniques and models can be used to provide insights about some of the 

relevant features of the urban environment, our techniques do not provide a panacea for 

pervasive systems designers.  Our techniques might be used to explore whether the 

majority of users at a bus stop are daily users, but they cannot be used alone to determine 

the specific design consequences of such an insight.  Such design decisions depend on a 

much broader set of requirements and contextual constraints.  Design remains in the 

hands of the designers and their understanding of the city context, users’ cultural values 

and even basic usability principles.  Our toolkit does not seek to replace but rather to 

complement designers’ existing tools. 

 

6.2 Dynamic run time system adaptation 
Since an urban pervasive system could itself collect data in a similar way to our approach 

and could then analyse the data, the results of the analyses could be used by the pervasive 



system dynamically to adapt its run time operation.  This could be reflected at many 

levels from choosing routing algorithms for messages to dynamically adapting user 

interfaces. 

For example, pervasive systems can be made more usable by deploying what we term 

attention span interfaces.  By interface we refer to any delivery medium, such as smart 

posters, public displays, speakers, and mobile devices.  All such interfaces can adapt their 

presentation of information based on knowledge of how much time they expect users will 

have to receive the message.  For example, a display at a train station can detect when 

people are going past it very quickly, or very slowly, and present the information in an 

appropriate way.  Note that Figures 7 and 8 respectively represent a sample distribution 

of how much time people are expected to spend at a location, and how many transient 

visitors a location can expect over the course of a day.  In other situations, a system can 

adapt its behaviour based on how long a person has remained in a specific location.  

Thus, users may receive particular information on their device only if they have spent 

more than 20 minutes at a specific location.  Similarly, appropriate action may be taken if 

a display detects users who have not been seen before; in this case the display may 

present, for example, extended instructions. 

An analysis of encounters can also be utilised at run-time by pervasive systems, 

enabling information and operation to be adapted based on inferred relationships and 

habits of users.  Thus, a system can react differently to a couple seen repeatedly as 

opposed to a large group of people never seen before.  In this fashion, pervasive systems 

can optimise the delivery of information to suit individuals, small groups or large groups.  

For instance, a smart poster may utilise Near Field Communication (NFC) for delivering 

information to small groups of people thereby preserving power, but switch its operation 

to Bluetooth when large groups of people attempt to use it. 

The analysis of trails has the potential to have a big effect on developing city-wide 

usable pervasive systems.  Our approach, which we call trail-mnemonic interfaces, relies 

on adapting interfaces based on an understanding of the trail-based context in which an 

interface is used.  This involves an understanding of where users have been before 

coming to a location, and where they are expected to go after visiting a location.  

Analysing the transition tree between city locations using our trails engine can produce 

such information.  Each node in our transition tree has associated pre- and post-visit 

nodes, signifying locations that users visit before and after a given location.  At the 

aggregate level, such an analysis yields a model of movement in the city that could be 

used to do predict where users may go to next, or from where users may be coming.  



Such models may be used to adapt applications to specific cities.  At the individual level, 

personalised transition trees can be used to adapt our engine to each user’s behaviour 

patterns, by independently considering each user’s movement in the city.  This can allow 

applications to adapt to their own users’ mobility patterns. 

Furthermore, an important concern in city-scale systems is the efficient transmission 

and dissemination of information.  While many devices can be directly connected to a 

global network such as the Internet, there are compelling reasons for having a 

complementary device-to-device network throughout a city.  First, such networks can 

potentially be free since they involve no central infrastructure and no network operator 

costs.  In addition such a decentralised structure has potentially more network capacity 

than a centralised network, hence it can sustain much higher bandwidth between its users.  

A key contribution of our work is in providing a methodology for studying communities 

and understanding the networking opportunities that arise between individuals and how 

these could contribute to the community’s ability to maintain and diffuse information.  

Our theoretical model of encounter can be used to study expected patterns of 

dissemination, and to test possible strategies for accelerating or stopping the 

dissemination of information through the population. 

Finally, a crucial issue in developing pervasive systems is privacy.  An interesting 

paradox we must deal with is that the smarter our systems get the more they can infer 

about their users, raising further privacy concerns.  The techniques we have developed in 

this paper offer a three-stage approach to dealing with privacy.  Users can completely 

opt-out of our system by setting their Bluetooth to “invisible” either temporarily or 

permanently.  This will make our system completely oblivious to them.  Alternatively, 

users can set their Bluetooth to “visible” or “discoverable”, potentially contributing to the 

analyses we have discussed in this paper.  These analyses operate at an aggregate level 

and derive models of aggregate behaviour.  In turn, the benefits in terms of novel services 

offered can only be at the aggregate or anonymous level, since little or no information 

about the individual user is available to the system.  Finally, users may wish to provide 

the system with personal information, typically through an online registration process, in 

exchange for a more personalised experience and services.  We are beginning to 

experiment with the latter approach, where users who register with our system can use 

personalised services based on our Bluetooth scanning [Kostakos et al., 2008]. 

7.  CONCLUSION 



In this paper we describe a unique approach to recording, analysing and understanding 

mobility and encounter in the urban environment.  We describe a Bluetooth-based 

method for capturing data on urban pedestrian behaviour, and discuss a number of 

analytical tools we have developed for making sense of these data.  Specifically, we 

discuss the concepts of sessions, encounters and trails, both in the context of deriving 

them from raw data, as well as utilising them as part of the design process and run-time 

implementation of a pervasive system. 

Our focus throughout the paper has been to inform the understanding, design and use 

of pervasive systems.  Usability for pervasive systems entails much more than using the 

correct icons and appropriate menu structures.  While designers of desktop systems can 

draw on an array of tools and theories, pervasive systems designers have no such luxury.  

The complexity of pervasive systems, which include people, spaces and technologies, 

makes it extremely difficult to adopt a top-down theoretical approach.  Here we describe 

our development of a bottom-up, observation-driven data mining approach. 

Data mining typically requires large amounts of data, which is something that human 

observers cannot adequately produce.  Thus, our first step has been the automation of 

observation, such that large amounts of data can be collected to begin with.  As we have 

shown, however, the raw data requires further refinement and analysis (e.g. Figure 8).  In 

fact, consecutive refinement of our data has resulted in increasingly useful and 

generalisable insights into patterns of mobility and encounter in the city. 

Our passive observation methods coupled with our analysis techniques offer 

suggestions for how location-based services could automatically capture, analyse and 

exploit data on flows of users, visiting patterns for specific locations, and trail patterns 

across locations.  Further analysis of the complex networks of encounters lead us to 

identify power-law distributions commonly found in nature, which suggest that natural 

laws underlie the apparent complexity and “randomness” of movement and encounter in 

cities.  Mining our observation data even further, taking into account temporal properties, 

we identified the importance of Brief Encounter Networks, complex networks whose 

structure is heavily influenced by well-defined temporal patterns of encounter.  Our 

large-scale longitudinal data collection and analyses have revealed emergent properties of 

the city as a system that cannot be captured through interviews, interventions, or 

controlled studies. 
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Author statement 



In this paper we significantly expand our earlier work on capturing mobility and encounter in the city.  In our 
Ubicomp 2006 paper we presented for the first time the notion of capturing the digital urban landscape by using 
Bluetooth technology to detect the presence of people.  In that paper we presented only initial empirical results 
from our data collection method, focusing on high level temporal patterns of mobility. 

 
In the TOCHI paper under submission we have made considerable progress in analyzing and modeling the same 
kind of data.  Specifically, we present our work in deriving and analyzing the complex networks that are 
implicit in our captured data, by introducing the concept of encounter.  We further explore the features of these 
networks by running diffusion emulations that help us understand how information and viruses can disseminate 
between devices as a result of their mobility and encounter.  Furthermore, we present our work on trails, which 
seeks to uncover the patterns of mobility that devices, and by implication their users, exhibit when moving 
around a city.  Trails are an extension of the concept of sessions that we introduced briefly in our Ubicomp 
paper.  Taken together, sessions and trails can be used to describe the temporal and spatial patterns of mobility 
around a city respectively.  Finally, in the TOCHI paper we provide a discussion on design implications coming 
out of our analysis, detailing how our data collection and analysis techniques may provide foundational 
understanding for potential developments in pervasive systems. 
 
To summarise, our Ubicomp 2006 paper was a short introduction in data capturing techniques.  This TOCHI 
paper is a thorough and methodical presentation of our data capturing methods, the array of our analysis 
techniques and their respective results, and a discussion of how our work can be used to understand better the 
phenomena of mobility and encounter as they pertain to urban pervasive systems.  Several new concepts and 
techniques are introduced and discussed in this paper. 
 

 

 


