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Abstract

Routing efficiency in wireless networks can be
greatly improved by matching mobile host connectivity
patterns. To this end, over the past few years consid-
erable effort has been invested in developing predic-
tors of mobility patterns that is, models of mobile host
movement so that for a specific sequence of recorded
locations to predict the most likely subsequent loca-
tion. In this paper, I initiate a study of the structure of
the connectivity space itself. I analyze samples from
the Dartmouth data set1 and conduct an exploratory
study of the structure of the underlying space. In
particular, I compute the singular values of the time-
weighted connectivity matrix, and relate this result to
principal component analysis. Initial findings indicate
that the degrees of freedom of the space induced by the
connectivity matrix is very low with respect to the num-
ber of access points and mobile hosts involved; that the
dimensionality of the underlying space grows slowly
with the size of the sample; and, that the distribution
of its eigenfrequencies follows a power law.

1. Introduction

Wireless networks can better serve mobile hosts by
employing client location information to better antic-
ipate connectivity patterns. Predicting accurately the
location of hosts can potentially improve the perfor-
mance of wireless routing and the robustness of the
network infrastructure itself, thus improving the user

1Many thanks too David Kotz and other members of the Dart-
mouth Centre for Mobile Computing for providing access to this
data.

experience for a variety of applications. These im-
provements lead to a better user experience, to a more
cost-effective infrastructure, or both. As a result, dur-
ing the past few years a number of location predictors
have been proposed in the literature based on a vari-
ety of complementary techniques including Markov-
based, compression-based, PPM, and SPM mecha-
nisms. Such approaches infer models of mobile host
movement patterns so that for a specific recorded se-
quence of recorded locations to predict the most likely
subsequent location. A comprehensive comparative
evaluation study of the relative performance of several
of these algorithms on the Dartmouth mobile data trace
[2] including a detailed description of their structure
and performance can be found in [4].

In this poster, rather than focusing on predictors I
initiate the study of the structure of the connectivity
space itself so as to understand its core characteristics.
To do this, I also employ the Dartmouth data trace to
reconstruct the time-weighted connectivity matrix be-
tween access points and mobile clients which we use
as the basis of this investigation. Several techniques
are employed to explore the structure of this space,
with a view in all cases to identify the existence of
a small subset of components or eigenfrequencies that
characterize accurately the client connectivity behav-
ior. Effectively, I aim to determine a basis for a low-
dimensional projection of the connectivity matrix that
provides an appropriately accurate approximation to
the overall connectivity patterns.

2. SVD and Principal Component Analysis

Let L = {lij} be the m × n connectivity matrix
of a data trace defined by setting the element lij to be



proportional to the time mobile host j is connected to
access point i, for a data sample that includes traces
of n hosts and m base stations. Note that row i of L
describes the time each sighted client has spend con-
nected to base station i, and column j of L describes
the time spend by host j connected to each base sta-
tion. Hence, I refer to the row vectors of L as the con-
nectivity profile for access point i and to the column
vectors as the connectivity pattern of client j. Due to
the rather limited mobility of hosts in the Dartmouth
traces, the matrix L is sparse.

The singular value decomposition (SVD) of L is

L = USV T , (1)

where U is an m×n matrix, S is an n×n diagonal ma-
trix, and V also an n×n matrix. The columns of U are
called the left singular vectors and form an orthonor-
mal basis for the connectivity patterns of clients, that
is uiuj is zero except where i = j when it is one. The
rows of V T contain the elements of the right singular
vectors and form an orthonormal basis for the connec-
tivity profiles for the access points.

The matrix S is zero everywhere except at the diag-
onal, that is S = diag(s1, . . . , sn), where it contains
the so-called singular values sk of L. Singular val-
ues are ordered so that the highest singular value is in
the upper left index of the matrix S. Note that if L is
square, that is m = n, then the SVD is equivalent to
the solution of the eigenvalue problem.

With the SVD at hand, we can compute the closest
r-rank matrix to L as follows

L(r) =
r∑

k=1

ukskv
T
k (2)

so that L(r) minimizes the sum of the squares of the
difference of the elements of L and L(r). Standard
approaches to compute the SVD can be found in [3].

2.1 Relation to principal component analysis

Principal component analysis (PCA) captures the
variance in a dataset in terms of its so-called principle
components. The SVD is intimately related to PCA
when principal components are calculated using the
covariance matrix. If each column of L is centered
then LT L is proportional to the covariance matrix of

the connectivity profile for the access points. More-
over, diagonalisation of LT L yields V T and thus the
principal components of the connectivity profile. in
other words, the right singular vectors of L are the
same as the required principal components. Further,
the eigenvalues of LT L are the singular values of L,
which are proportional to the variances of the principal
components. Overall, the matrix US contains the prin-
cipal component scores, which are the coordinates of
the connectivity profile in the space of principal com-
ponents. If instead of centering the columns of L we
center its rows then LT L is proportional to the covari-
ance matrix of the connectivity patterns of the mobile
clients. Similar to above, the left singular vectors are
also the principal components of the connectivity pat-
tern space; the singular values are proportional to the
variances of the principal components; and the ma-
trix SV T contains the principal component scores, that
is the coordinates of the connectivity patterns in the
space of principal components.

2.2 Results

In this section I report on preliminary results of the
analysis of connectivity patterns using the Dartmouth
mobile data trace. Logfiles provided by the CMC were
post-processed to extract the connection/disconnection
patterns of particular hosts to particular base stations.
Several data sets where developed consisting of up to
90, 000 samples, which were subsequently analyzed
following the discussion in previous sections.

As noted earlier the main focus of the analysis is to
better understand the underlying structure of this space
which in this case is characterized by the range of the
singular values. For the largest sample we find that
the majority of the singular values are relatively small
with respect to the largest components, in fact only 4
of those are within 10% of the magnitude of the largest
one. Figure 1 provides some more information regard-
ing the actual distribution of the spectrum: the magni-
tude of the computed singular values appears to follow
a power law distribution.

Both observations point towards the fact that it
should be possible to reconstruct the full connectivity
matrix using only a small number of principal compo-
nents within a high accuracy. Indeed, using only the
29 principal components it is possible to achieve accu-



racy of the order of 0.1% for this sample. Thus, the
variability of the connectivity patterns in the data set is
very low and can be predicted very well using a sub-
space of very low dimensionality.
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Figure 1. Logarithmic plot of the singular val-
ues of the connectivity matrix by size (90, 000
samples).

3. Discussion and Conclusions

Several papers on wireless networking measure-
ment observe that mobility patterns of individual hosts
are likely to contain a considerable amount of period-
icity. The underlying reasons for this are mainly eco-
nomic and demographic, and dictate that clients move
within a small range of different velocities, and travel
along similar routes with most journeys starting and
ending at similar places. As a consequence, there is
only a small number of approximately discrete fre-
quencies characterizing the behavior and the connec-
tivity profile of the mobile station (and its user). In
this paper I provide some preliminary results regarding
the dimensionality of the space induced by the mobil-
ity patterns observed within a particular experimental
setting. Moreover, some early results are highlighted
regarding the number of degrees of freedom that exist
in the data and have estimated the order of accuracy
of reconstruction using a low-dimensional approxima-
tion.

This evidence can be used to potentially improve
the performance of wireless routing and the robustness
of the wireless network infrastructures. For example,
using the computed principal components it is possible
to pinpoint bottlenecks in wireless networks as well as

loss points for example due to interference. Knowl-
edge of such locations allows to locate additional re-
sources where they are needed to improve reliability
for example hop-by-hop rather than end-to-end packet
loss recovery.

More importantly, these findings provide evidence
in support of a recent conjecture by Jon Crowcroft [1]
regarding the feasibility of a common network archi-
tecture that overarches both mobile wireless mesh and
fixed networks. He observes the following correspon-
dence between wireless mesh and wireline fixed net-
works:

Mesh network Wireline network
Mobility ⇐⇒ Buffering

Freq. distribution Router out degree

A critical element for the proposed unified reference
model is that the distribution of journey frequencies
follows a similar pattern to the distribution of com-
munication popularity, as recorded in the out degree
of the connectivity graph of Internet routers for exam-
ple. This would imply that the routing system for both
types of networks would have similar properties.

In this paper I provide a strong indication that this is
indeed the case, since the computed singular values of
the connectivity matrix or else the journey frequencies
clearly appear to follow a power law distribution (cf.
Figure 1) and is thus qualitatively similar to the router
out degree on the Internet.

References

[1] J. Crowcroft. Communication to the UCL Mo-
bile Systems Group. 10 September 2004.

[2] D. Kotz and K. Essien. “Analysis of a Campus-
wide Wireless Network”. Wireless Networks,
11:115-133, 2005.

[3] W. H. Press, B. P. Flannery, S. A. Teukolsky, W.
T. Vetterling. Numerical Recipes in C: The Art
of Scientific Computing. Cambridge University
Press, 1992.

[4] L. Song, D. Kotz, R. Jain, X. He. “Evaluating
next-cell predictors with extensive Wi-Fi mobil-
ity data”. Proc. 23rd Annual Joint Conference of
the IEEE Computer and Communications Soci-
eties (INFOCOM):1414-1424, 2004.


