
Vol. 41 No. 6 IPSJ Journal June 6

Regular Paper

Sensor Cube: A Modular, Ultra-Compact, Power-Aware

Platform for Sensor Networks

H. Diall ,† K. Raja ,† I. Daskalopoulos ,† S. Hailes ,†

G. Roussos ,††† T. Torfs †† and C. Van Hoof ††

The Sensor Cube platform is an ultra-compact, modular and power-aware way of building
sensor networks; they are based on a stackable hardware design supported by a Tiny OS based
operating environment. The Sensor Cube hardware measures 14× 14× 18mm3 and features
an integrated coplanar antenna, a design that results in an ultra compact footprint. A core
characteristic of the system is that its modular design allows for each of the radio, processor,
sensing and power management layers to be interchangeable in a Lego-like manner. Moreover,
its low power radio (based on the 2.4GHz Nordic nRF2401 design) and microcontroller (based
on the Texas Instruments MSP430) allow for very efficient operation. The Sensor Cube
operating and software development environment is derived from Tiny OS, which has been
modified to meet the hardware requirements, in particular by introducing a power-aware and
reliable ALOHA-type MAC protocol. In this paper we present our experience with the Sensor
Cube platform and, in particular, the implications of its ultra-compact design on system
performance, specifically as it relates to the characteristics and limitations of the radio unit.

1. Introduction

In this paper we report on the design, devel-
opment a validation of Sensor Cube, a novel
sensor network platform. Sensor Cubes are
ultra-compact compared with the currently
available sensor network platforms and provide
for a modular hardware architecture which is
supported by a software runtime derived from
Tiny OS. In addition to the usual software de-
velopment tools provided by the Tiny OS tool-
chain, Sensor Cubes support a power-aware
and reliable ALOHA-type MAC protocol that
closely meets the characteristics of its radio
unit. In particular, we report on our experi-
ences with this platform in the context of a se-
ries of empirical evaluation studies focused on
the performance of standard multi-hop routing
protocols.

This paper has the following structure: in
the next section we discuss the main ingredients
of the Sensor Cube platform with emphasis on
the characteristics that set it apart from other
existing sensor network platforms. In section
3, we briefly discuss the rationale for select-
ing Tiny OS as the foundation for developing
the Sensor Cube runtime and in the following
section we detail the challenges that had to be

† University College London
†† IMEC, Integrated Systems Department
††† Birkbeck College, University of London

addressed in porting to the Sensor Cube hard-
ware. Section 5 describes the design and devel-
opment of a power-aware MAC protocol that
closely meets the operational capabilities of the
wireless component and in section 6, we discuss
its performance in specific case studies. We con-
clude with a brief discussion of our findings.

2. Hardware Platfrom

Sensor Cubes are built on the hardware plat-
form recently developed at IMEC1),11) which
offers two distinct advantages over the current
state-of-the-art: first, it provides for an ultra-
compact design including an integrated copla-
nar antenna that allows for very low power con-
sumption; and second, it supports pluggable
modules that allow for the physical reconfig-
uration of nodes to include only the function-
ality required for a particular application. The
combination of these two characteristics implies
that Sensor Cubes are versatile enough to sup-
port a variety of application scenarios within
the same modular design:
• In cases where a large geographic area must

be covered with a low density sensor net-
work a more powerful radio could replace
the less powerful short range radio that is
more suitable for indoor or body sensor net-
work.

• In cases where high data rates and complex
signal processing functions are required,
a more powerful digital signal processor

1234



Vol. 1959 No. 6Sensor Cube: A Modular, Ultra-Compact, Power-Aware Platform for Sensor Networks 1235

could be used.
• In cases where specific specialized sensors

and associated sensor electronics are re-
quired (for example chemical or biosensors)
they could be accommodated within this
design on a separate module.

• In cases where power beyond that provided
by the battery is necessary, or when a full
power management system with scavenging
is needed, such components could also be
developed and added as separate modules.

In this section we will discuss in turn the cur-
rently implemented modules, including process-
ing, wireless and sensing modules.

2.1 Cube Architecture
The currently available hardware modules of

the Sensor Cube platform include the microcon-
troller, radio communication, power and sen-
sor. The currently available hardware modules
of the Sensor Cube platform include the mi-
crocontroller, radio communication, power and
sensor. The prototype implementation features
these four functional blocks, each 14 × 14mm2

in size printed circuit boards plugged together
to make up a four-layer stack (cf. Fig. 1). The
stacked implementation using connectors was
18mm high. In an alternative implementation
of this design solder-ball interconnections are
used instead of connectors1), thus reducing the
height of a single node to only 10mm or less, de-
pending on the application layers included (cf.
Fig. 2).

At the top of the stack is the Radio Layer,
mostly occupied by a Nordic nRF2401 2.4GHz
wireless transceiver chip6), together with an in-
tegrated antenna. The second layer incorpo-
rates the Texas Instruments MSP430 microcon-
troller9) which is the “heart” of the platform as
it is responsible for data processing and control.
In the same layer, a 32.768kHz crystal provides
a local time reference and a clock source to the
system. This layer also provides the following

Fig. 1 The four layers of the IMEC Sensor Cube hard-
ware platform. A 2Euro coin provides a size
reference.

features:
• Digital input/output.
• 12-bit analog to digital converter (built into

the MSP430).
• Universal synchronous-asynchronous re-

ceive/transmit.
• Clock System and Timers.
The microcontroller and radio layers together

form the core of the Sensor Cube platform and
they are designed to work closely together, a
fact that justifies their physical proximity - di-
rect connection.

Below the Microcontroller Layer, two addi-
tional layers provide the Power Management
(layer 3) and Sensing (layer 4) features. The
Power Management layer is designed in such a
way that it can accept power from an energy
harvesting device (including, but not limited
to, solar cells and vibration scavengers) so as to
sustain the battery life. A standard battery is
also connected to this layer: for example, the
Varta 2-cell NiMH batteries, with a nominal
voltage of 2.4V.

The available sensing equipment comprises of
a Sensirion SHT15 Temperature/Humidity sen-
sor and a Light-Dependent Resistor (for mea-
suring illumination). These commercial-off-the-
shelf sensors produce accurate measurements
while consuming very little power when in use
or standby.

2.2 Nordic nRF2401 Radio Transceiver
Of particular relevance to this work are the

characteristics of the radio module and, for this
reason, we will address it in more detail in this
section. The radio transceiver chip provides all
the hardware necessary for transmitting and re-
ceiving at the 2.4-2.5GHz ISM band in a tiny
package using a proprietary protocol and is
characterized by its low power consumption,
built-in power-saving modes and relatively high
bit-rates for transmission/reception (250kbps
and 1Mbps). Control and configuration of the
Radio is achieved by loading to it a 15-byte con-

Fig. 2 The Sensor Cube alternative hardware imple-
mentation using solder ball interconnects. The
coplanar antenna can be clearly seen as it cir-
cumscribes the edge of the top module.



1236 IPSJ Journal June 6

figuration word (or parts of it, depending on the
changes required).

The most notable feature of the Nordic ra-
dio chip is its ability to transmit and receive
data in two different modes: the ShockBurst
Mode and the Direct Mode. The very useful
DuoCeiver feature allows simultaneous recep-
tion of two different signals, provided that they
are 8MHz apart. This means that, even though
a single antenna is used, the Radio can receive
simultaneously from two potential transmitters
- in other words, it has two channels. When
in ShockBurst mode, each of the channels can
have its own address that can range from 8 to
40 bits. In Direct Mode it is the responsibility
of the software to carry out any address pro-
cessing.

Finally, the Nordic nRF2401 supports the fol-
lowing modes of operation (power characteris-
tics shown in parentheses):
• Transmit Mode (13mA average at 0dBm

output Power)
• Receive Mode (23mA average for both

channels on)
• Configuration Mode (12uA average)
• Stand-By Mode. (12uA average)
• Power Down Mode (400nA Average)
2.3 Sensing Components
As noted earlier, for the purpose of humid-

ity and temperature measurement the Sensor
Cubes are equipped with the Sensirion SHT
158) multi-sensor module. The SHT15 can be
configured to measure either relative humid-
ity with an accuracy of ±2% RH or temper-
ature with an accuracy of ±0.5◦C, by configur-
ing a digital measurement mode register. The
SHT15 sensor includes a 14-bit analog to dig-
ital converter. It provides calibrated, digitized
data to the microcontroller via a serial inter-
face. In addition, the lower sensor layer of a
Sensor Cube contains a cadmium sulfide Light-
Dependent Resistor (LDR) to measure illumi-
nation (in lux, after calibration with accuracy
±3%). This component is connected to one of
the eight ports of the 12-bit ADC built into the
MSP430.

This Sensor Layer based on commercial-off-
the-shelf sensors, completes the Sensor Cube as
an environmental sensing module. For other
applications, different custom or off-the-shelf
sensors can be used with the Sensor Cube
to meet the requirements of the application,
thanks to the modularity and pluggability of
the cube design.

3. Software Platform

In this section, we briefly discuss the ratio-
nale for the selection of Tiny OS as the foun-
dation of the software development component
of the Sensor Cube platform. To this end, the
objectives of this work have been twofold: to
identify a system that offers a suitable founda-
tion in terms of software components and tools
for further development with the Sensor Cube
hardware, while at the same time restricting the
amount of work required for developing the new
components. Several alternatives were consid-
ered, including the standard embedded systems
development approach of low level libraries that
provide a skeleton functionality; and porting
one of a number of emerging sensor network
operating systems including Tiny OS5), Contiki
OS2) and the Sensor Operating System4). We
selected TinyOS as it offers several advantages:
• It is one of the more mature sensor network

platforms and provides a rich collection of
development tools, routing protocol imple-
mentations and applications.

• Tiny OS supports the MSP430 microcon-
troller and a hardware abstraction layer is
readily available.

• Tiny OS provides a simulator that uses a
probabilistic bit error model which is rela-
tively scalable.

The first step towards supporting Tiny OS on
the Sensor Cubes related to the development of
those components that supported the operation
of the Nordic radio. However, it soon became
apparent that simply supporting the standard
Tiny OS MAC protocols was inefficient for the
Nordic device as they failed to take advantage
of its particular capabilities. As a consequence,
we proceeded to design and implement an al-
ternative.

4. Tiny OS for Sensor Cubes

Tiny OS has a simple mode of operation, fol-
lowing an event driven paradigm: every pro-
cessing step is triggered by an event of some
type and tasks triggered as a result of such
events are added to a worker queue that is
processed by the main program loop. This
approach allows for a similarly simple system
building process since the full operating system
and the application are built together in one
step. The nesC3) compiler combines all compo-
nents of the application and operating system
and builds a C file that is passed to the com-



Vol. 1959 No. 6Sensor Cube: A Modular, Ultra-Compact, Power-Aware Platform for Sensor Networks 1237

piler. Thus, supporting a new platform with
Tiny OS involves modifying the following sec-
tions of the source code tree:
• the platform independent operating system

part (system),
• common interface definitions (interfaces),
• a library with commonly used functions

(lib),
• platform dependent hardware definitions

and access driver functions (platform), and
• definitions for different sensor boards that

can be used in combination with the motes
(sensorboard).

After the binary is prepared and uploaded to
the sensor node, the program loads in memory
and executes — a process that combines system
and application specific procedures. Initializa-
tion of the system components is carried out
by the so-called Bootup process, which always
starts at Main.nc with its first call to hard-
wareinit(). Subsequently, this function calls
TOSH SET PIN DIRECTIONS() from hard-
ware.h, which in turn calls macros to set the
direction registers of the microcontroller and
initialize the hardware clock. Finally, the Std-
Control.init() and start() functions are called
and dispatched to all connected modules. After
enabling interrupts, the Tiny OS system kernel
enters an infinite loop calling TOSH run task()
repeatedly. This function processes all pend-
ing tasks in the queue until none is left and
then enters sleep mode until an interrupt re-
quest (IRQ) occurs. For a new platform, two
files are required to describe its architecture,
namely .platform and hardware.h. The former
is described in detail in the following section
and the later is used to assign functions to the
pins of the microcontroller.

4.1 Setting up the Build Tool-Chain
The Tiny OS build tool-chain consists of the

make system, the nesC compiler driver and
nesC-to-C preprocessor. The make system pro-
vides simple ways to compile install and oth-
erwise manage Tiny OS programs for different
platforms, using a set of standard options. To
do this, it invokes ncc, the driver for the com-
piler, and other software packaging and instal-
lation tools including uisp and the TI loader
msp430-bsl. This system is implemented as an
overlay to the GNU software development tools
and compilers and, in fact, ncc is simply a pre-
processor for nesC, with the C compiler respon-
sible for most of the actual work. This has sig-
nificant implications for debugging as variable

and function names appear in the debugger out-
put with their C rather than nesC names.

Specifying the build options so that the tool-
chain will produce correct code for the new plat-
form is primarily the role of the .platform file.
Several more configuration files for the tool-
chain are required:
• .target files (valid make target),
• .extra files (dummy target for defining ex-

tra make variables),
• .rules files (part of ”msp” subdirectory).
Thus, the new platform name (imec) was de-

fined, all necessary files specifying the different
aspects of the compilation process for this plat-
form had to be created and added to the source
code tree.

4.2 Establishing Radio Communica-
tion

To simplify management of system devel-
opment processes, Tiny OS defines stan-
dard within the Tiny OS Extension Proposals
(TEP)10). Two TEPs deal with radio code:
Radio Physical Layer and Radio Link Layer,
which provide the hardware abstraction archi-
tecture for Radio Components implemented by
Tiny OS. The Hardware Abstraction Archi-
tecture (HAA) for radio components is split
in three separate layers: the Hardware Phys-
ical Layer (HPL), Hardware Adaptation Layer
(HAL), and Hardware Interface Layer (HIL).

As the basis for our implementation of the
Sensor Cube HAA components, we used soft-
ware developed by DSYS257), a sensor platform
based on the Atmel AVR ATMEGA microcon-
troller and the Nordic nRF2401. In particu-
lar, we re-engineered a large part of the radio
transceiver code as appropriate for our plat-
form.

The correct implementation of the HPL and
HAL and the actual radio communication lay-
ers was verified by testing standard Tiny OS
applications.

4.3 Supporting the Sensors
As noted earlier, the Sensor Cube prototype

implementation provides three sensing devices
built into the Sensing Module and a further
temperature sensor built into the MSP micro-
controller. Supporting these sensors in Tiny OS
involved the following steps.

Sensirion SHT15 Humidity and Temperature
Sensor. The Sensirion SHT11 sensor has been
used in the Telos platform and thus a suitable
driver is readily available in the Tiny OS source
code. The SHT11 employs a one-wire proto-



1238 IPSJ Journal June 6

col which is similar to the SHT15 but the lat-
ter carries out its own analog to digital conver-
sions. The SHT15 components which perform
this conversion support the standard ADC and
ADCError interfaces of Tiny OS and thus the
implementation of a suitable driver was rela-
tively straightforward.

This design proved robust in testing with
no problems encountered. Moreover, it pro-
vides a consistent external view of the sensor
to other Tiny OS components and is compliant
to the specifications in TEP 101: Analog-to-
Digital Converters10). Finally, the appropriate
pin names and settings had to be configured in
hardware.h and modifications to the interrupt
pin to P1.1 were made to match the SHT15
specification.

Light-dependent Resistor (LDR). Support for
the 12-bit ADC incorporated in the MSP430
is fairly mature in Tiny OS and follows closely
the hardware abstractions specified in TEP 101.
Thus, enabling the LDR of the Sensor Cube
involved a simple modification of the existing
code base to read the LDR output on input
channel 0 (pin P6.0, configured as peripheral
function).

MSP430 Internal Temperature Sensor. This
internal sensor is connected to input channel
10 on the ADC and is directly supported in the
MSP430 platform.

5. MAC Protocol Design

Although assembling a fully functioning sys-
tem has been a critical milestone for the Sen-
sor Cube platform, in practice it became ev-
ident from early on that it was necessary to
design an optimized protocol stack. This task
involved the development of an energy-efficient
MAC layer that closely fits the capabilities of
the radio component. In this section, we detail
the design of this protocol stack.

There are several limitations imposed by the
characteristics of the Nordic design: due to lack
of a high speed clock source, which would lead
to substantially higher power consumption, it is
not possible to employ the transceiver’s Direct
Mode, which would allow for better radio con-
trol. Moreover, in Shockburst mode, the con-
trol header and the payload cannot exceed 32
bytes, which is the maximum frame size. Fi-
nally, the radio configuration word cannot be
altered while the device is transmitting or re-
ceiving data.

5.1 MAC Design Overview
Two choices were available to us in transmit-

ting acknowledgement packets:
• Use the same channel for ACKs as for the

data. However, ACKs are shorter than
data packets, so either we simply fit an
ACK within the larger data packet and
transmit more than is necessary (wasting
energy), or we use the data width field in
the configuration word of the Nordic in-
terface to alter the size of the Shockburst
frame between ACK and data packets. Un-
fortunately, the time required to carry out
this change is 1ms, which is approximately
equal to the time required to transmit a full
frame at 250kbps.

• Recall that the radio component can be op-
erated in two separate channels, and, as we
elected, to use Channel 1 to send data (with
a full frame size of 32 bytes) and Channel
2 for sending/receiving ACK packets (with
a frame size of 13 bytes).

The maximum ShockBurst frame of 32 bytes
includes the ShockBurst address, the CRC and
the payload requested by the MCU. In our im-
plementation, the payload represents an Ac-
tive Message (AM) packet constructed by the
associated TinyOS layer, and contains control
header fields and actual data sent from the ap-
plication. Inevitably, the question of fragmen-
tation arises as a result of the limited Shock-
burst frame size and the fact that the overhead
incurred by the different components allow only
for 20 bytes of payload available to the applica-
tion (3 bytes are used for Shockburst address,
1 byte for CRC and 8 bytes for AM control
header).

Nevertheless, taking into account the actual
data that is transmitted in a sensor network
under normal operating conditions, we decided
not to address fragmentation at this stage: ap-
plications normally would send only a few bytes
of data due to sensor readings and some amount
of control information as part of the routing
protocol. In this scenario, providing for frag-
mentation at this level would mostly reduce the
efficiency of the system as it would add addi-
tional header data which would be unnecessary
for the vast majority of packets. Instead, those
applications that require fragmentation are ex-
pected to add it as needed.

The use of the Shockburst mode as the prin-
cipal mode of communications implies that
two addresses are encapsulated in every data



Vol. 1959 No. 6Sensor Cube: A Modular, Ultra-Compact, Power-Aware Platform for Sensor Networks 1239

Fig. 3 Flowchart describing the logic of the
Transmitter’s MAC table.

packet: the Shockburst broadcast address and
a node-specific address within the AM header.
This approach allows us to combine the perfor-
mance advantages of Shockburst while at the
same time retaining the capability to address
data to specific nodes and thus maintaining uni-
cast semantics.

The next design decision was for the receiver
to use a set duty cycle that switches the radio
between stand-by and receive mode at regular
intervals, in order to reduce the overall level of
energy consumed. The amount of time the ra-
dio stays in either mode is configurable at appli-
cation development time, and a more detailed
discussion of the implications of various choices
for duty cycle can be found in section VI.

For the same reason, we decided against using
carrier sense and, rather, elected to use a sim-
ple Aloha-based protocol instead. In the case
of carrier sense, on transmission, the radio lis-
tens to the channel to determine if it is used by
some other station. However, if collisions are
rare, either as a result of low node density or
low transmission rates, as we expect for these
nodes, then the higher energy cost required by
this approach is not justified by a requirement
for collision avoidance.

Nevertheless, it is still necessary to address
the problem of collisions whenever they arise. A
further complication of the selected solution is
the fact that a receiver node may be in stand-by

Fig. 4 Flowchart describing the logic of the
Receiver’s MAC table.

mode when the transmitter is sending data and
hence unable to receive them. To address both
of these problems, we employ link level acknowl-
edgements and retransmissions. In this scheme,
as soon as the transmitter sends data, it waits
for an acknowledgement for a set duration of
time, which is also configurable. If no acknowl-
edgement arrives within this time frame, then
the packet is retransmitted. Note that since the
transmitter cannot distinguish a packet which
was lost due to a collision or because the re-
ceiver was in stand-by mode, the transmitter
resends its packets until it receives an acknowl-
edgement or reaches the Maximum Retransmis-
sion count (which is also configurable in appli-
cation code).

A further technique that we considered for in-
clusion in the protocol, was RTS/CTS (Request
to send/Clear to send), which is a mechanism
often used in wireless systems to avoid the hid-
den and exposed terminal problems. To avoid
both of these problems, the RTS/CTS mecha-
nism is used to establish a session before initiat-
ing the transmission thus removing the possibil-
ity of collision from data packets, which can be
long, to RTS/CTS packets, which are short and
therefore less likely to result in collision. In our
case, data packets are themselves not long, and



1240 IPSJ Journal June 6

Fig. 5 Radio State Diagram.

Fig. 6 Backoff State Diagram.

so the value of adding the RTS/CTS mechanism
is at best questionable. The hop-by-hop data
forwarding which uses a unicast transmission
is protected by the link-level acknowledgements
which we introduced and retransmissions, and
effectively addresses the hidden terminal prob-
lem.

5.2 MAC with Idle-RQ Table Manage-
ment

The MAC layer can have no more than one
outstanding packet at any given point of time.
A packet is said to be outstanding, when it has
been transmitted and not yet acknowledged and
the maximum retransmission count has not yet
been reached. Allowing multiple outstanding
packets might result in a collision (with any
ALOHA based approach) and will also increase
the complexity of sequence number manage-
ment. Before performing the actual transmis-
sion of the packet, the following checks will be
performed by the MacTable as described in the
flowchart in Fig. 3. A similar table is main-
tained at the receiver and its operation is high-
lighted in Fig. 4.

Figure 5, Fig. 6 and Fig. 7 show the the
various states and events that cause state tran-
sitions within the MAC layer. In summary, the
Sensor Cube MAC provides no fragmentation,
thus eliminating the fragment header overhead;
does not employ no carrier sense; and imple-
ments a low data width Shockburst frame for
acknowledgements.

Fig. 7 DutyCycle state diagram.

6. Evaluation and Performance Anal-
ysis

To evaluate the performance of the Sensor
Cube platform a number of experiments were
carried out. In this section we explore the be-
havior of the proposed MAC protocol in the
context of a controlled environment. We aim
to draw conclusions regarding the effects of dif-
ferent choices of parametres regarding the duty
cycle and retransmission on the performance of
the MAC protocol.

The evaluation process aimed specifically to
provide an understanding of the trade-offs in-
volved and draw conclusions on how different
duty cycle lengths and ratios, acknowledge-
ments and retransmissions can affect packet
delivery ratio. The aim has been to identify
the optimal set of parametres for some appli-
cation. Rather than have this discussion in the
abstract, we specifically considered the case of
data harvesting using the Surge application5),
a simple tree-based acquisitional query engine
available with Tiny OS.

6.1 Experimental Setup
The experiments were conducted in an envi-

ronment that supports several wireless LANs,
and as a consequence there was a significant
amount of interference, as both Sensor Cubes
and the IEEE 802.11 protocol use the 2.4GHz
band. We did not investigate the case where
physical obstacles were located between the
communicating nodes, as they were found to
communicate with great difficulty even through
a single wall. For the experiments, two Sensor
Cubes were used that were powered from con-
stant voltage sources in order to eliminate any
effects that inadequate power supply would in-
troduce. The first sensor was powered by a
laboratory power supply, set to output 2.7V,
whereas the second was powered directly from
the USB programming board that also pro-
vided 2.7V. The sensors were placed in posi-
tions which allowed line of sight and at dis-
tances of 1, 6 and 12 metres. Since the aim was
to explore the impact of acknowledgements, re-



Vol. 1959 No. 6Sensor Cube: A Modular, Ultra-Compact, Power-Aware Platform for Sensor Networks 1241

Fig. 8 Packet Delivery ratio with disabled
acknowledgements.

transmissions, physical proximity and duty cy-
cle lengths and ratios to packet delivery ratio, a
driver application was developed to enable the
exploration of the parametre space.

For testing, a two part application was used
with a Transmitter and a Receiver role. The
transmitter sent 100 packets at a time. In
the case where acknowledgements were used,
the timeout was set to 4ms. After 8 retrans-
missions had been attempted the transmitter
moved on to the next packet. Thus, a trans-
mitter could potentially send up to 800 packets
if no acknowledgements were ever received. In
either case, packets were sent at regular inter-
vals which, on success, were 175ms. On the re-
ceiver side, the overhead of writing data to the
USART so as to record on the laptop host was
found to be significant and interfered with the
operation of the protocol. Therefore, it was de-
cided to minimize communication to and from
the laptop by maintaining the received packet
count in a dedicated variable in the receiving
Sensor Cube’s memory, the value of which was
not transmitted until the end of the packet
transmission cycle. Since the number of pack-
ets could vary, a watchdog timer was used to
flag an upper threshold. The timer itself did
not affect the performance of the protocol. The
experiments conducted involved measurements
of both the transmission and reception sides.

6.2 Experiment Analysis
Two sets of experiments were conducted. In

the first case, acknowledgements and retrans-
missions were disabled in order to give a base-
line measurement. The transmitter and re-
ceiver were placed 6 metres apart and 100

Fig. 9 Packet Delivery ratio with ACKs enabled.

Shockburst packets were transmitted, with dif-
ferent duty cycle periods at the receiver. For
each duty cycle value, the experiment was re-
peated three times and the average packet de-
livery ratio was recorded. The results are shown
in Fig. 8.

From the graph of Fig. 8 can be seen that a
62% duty cycle wake time the packet delivery
ratio seems to be relatively high (93%), but if
the wake time is decreased, the packet deliv-
ery ratio is reduced before it rises again. The
intermediate reduction is the result of a mis-
alignment between transmission periods and re-
ception periods, and the increase simply a syn-
chronization effect. Hence, to achieve a packet
delivery ratio of at least 90%, the receiver must
have a duty cycle of no less than 60% wake time
(and thus 40% sleep time).

In the second set of experiments, the same
setup was used as for the first set. However, ac-
knowledgements and retransmissions were en-
abled. From Fig. 9, it is clear that, in spite of
very low wake time in the duty cycle (25% wake
time) the packet delivery ratio remained high
at 96%. Thus, this version of the MAC pro-
tocol smoothes out the synchronization effects
seen in the previous experiment, in addition to
providing reliable delivery. At first glance, this
approach also appears to save energy, since the
receiving node can remain off for a greater pro-
portion of the runtime. However, reality is not
quite so simple: acknowledgements and retrans-
missions also require energy for both parties as
both nodes must be enabled, though only for
the relatively short time window in which an
ACK is generated.

Likewise, to raise the packet delivery ratio



1242 IPSJ Journal June 6

from the one shown in Fig. 8 to that of Fig. 9,
retransmissions have clearly happened. In fact,
for a 30% duty cycle, around three retransmis-
sions will be needed to raise delivery rate from
33% to 97%. Although, such communication
also has a considerable energy cost associated
with it, this cost is borne by the transmitter
rather than the receiver. Thus, the addition of
ACKs will tend to move energy consumption
away from the receiver and towards the trans-
mitter.

The true picture of energy costs requires care-
ful consideration of the number of retransmis-
sions needed for a packet to be received at a
given duty cycle. However, this is also not
simple, for the same reasons of synchroniza-
tion that lead to the non-monotonicity of the
first experiment. Thus, a third set of experi-
ments were conducted, again to observe packet
delivery ratios, but this time by choosing differ-
ent sleep/wake cycle durations at the receiver,
though all with the same proportion of wake
time (37.2%) to sleep time (62.5%) and with-
out ACKs enabled. The recorded values are
plotted in Fig. 10. Even with the same duty
cycle, synchronization effects between sending
and receiving windows cause widely varying de-
livery ratios and, consequently, widely different
energy consumption figures.

It is our contention that if transmissions are
irregular, then the inherent randomness in the
synchronization would tend to avoid a situa-
tion of persistently low delivery ratio. If, on
the other hand, the transmissions are regular,
as in the experiments above, various alternative
approaches to increasing delivery rates should
be considered. An initial phase in which ACK
and retransmission occurred could be used to
understand how accurate was the synchroniza-
tion (provided that the receiver knew that a
packet were a retransmission, something that
would cost an extra bit), and thus drive the re-
ceiver towards synchronization with the trans-
mitter. The situation is more complex in the
case of multiple transmitters, but the process
can be repeated for different receive windows.
All of these have impacts on the energy con-
sumed, leading to a rather complex picture.

Duty cycle is 37.5% awake in one contiguous
period. Finally, it must be noted that these
experiments are intimately related to the ap-
plication in question. Thus, in realistic deploy-
ment scenarios, a fine tuning step would be re-
quired to identify the optimal wake up/sleep

Fig. 10 Packet Delivery ratio with different cycle
durations (in ms).

cycle which best balances data quality require-
ments and energy consumption.

7. Conclusions

The Sensor Cube is a new sensor network
platform based on IMEC’s ultra-compact, mod-
ular sensor hardware. The modularity of the
design allows for increased flexibility in tailor-
ing node capabilities to the application at hand
and also provides a coplanar antenna. A soft-
ware development environment based on Tiny
OS complements the hardware thus providing a
complete platform for the development of sen-
sor network systems. To this end, a simple, reli-
able, ALOHA based, power efficient MAC pro-
tocol with appropriate duty cycle management
has been introduced to closely meet the require-
ment and limitations of the hardware. Empiri-
cal evidence suggests a high packet delivery ra-
tio (above 95%) with relatively low radio duty
cycles (25% active). Multi-hop routing proto-
cols bundled with Tiny OS have been shown to
operate effectively on top of the Sensor Cube ra-
dio stack, and were tested experimentally and
in simulations.

References

1) Baert, K., Gyselinckx, B., Torfs, T., Leonov,
V., Yazicioglu, F., Brebels, S., Donnay, S.,
Vanfleteren, J., Van Hoof, C. and Goossens,
M.: Technologies for Highly Miniaturized
Autonomous Sensor Networks, First Int.
Work. on Advances in Sensors and Interfaces
(IWASI), Bari, Italy, April (2005).

2) Dunkels, A., Gronvall B. and Voigt, T.: Con-
tiki - A Lightweight and Flexible Operat-
ing System for Tiny Networked Sensors, First
IEEE Work. on Embedded Networked Sensors
(EMNETS-I), Tampa, Florida, USA, Novem-
ber 16 (2004).

3) Gay, D., Levis, P., von Behren, R., Welsh, M.,



Vol. 1959 No. 6Sensor Cube: A Modular, Ultra-Compact, Power-Aware Platform for Sensor Networks 1243

Brewer, E. and Culler, D.: The nesC Language:
A Holistic Approach to Networked Embedded
Systems, Proc. Programming Language Design
and Implementation 2003 (PLDI), San Diego,
California, USA, June 8-11 (2003).

4) Han, C., Rengaswamy, R., Shea, R., Kohler,
E. and Srivastava, M.: A dynamic operat-
ing system for sensor networks, Proc. Third
Int. Conf. on Mobile Systems, Applications,
and Services (MOBISYS), Seattle, Washing-
ton, USA, June 6-9 (2005).

5) Levis, P., Madden, S., Gay, D., Polastre, J.,
Szewczyk, R., Woo, A., Brewer, E. and Culler,
D.: The Emergence of Networking Abstrac-
tions and Techniques in TinyOS, Proc. First
USENIX/ACM Symposium on Networked Sys-
tems Design and Implementation (NSDI 2004),
San Fransisco, California, USA, March 29-31
(2004).

6) Nordic Semiconductor: nRF2401A Single
Chip 2.4 GHz Radio Transceiver , Trondheim
Norway.

7) O’Flynn, B., Barroso, A., Bellis, S., Ben-
son, J., Roedig, U., Delaney, K., Barton, J.,
Sreenan, C., and O’Mathuna, S.: The Devel-
opment of a Novel Miniaturized Modular Plat-
form for Wireless Sensor Networks, Proc. 4th
Int. Symp. on Info. Processing in Sensor Net-
works , (IPSN SPOTS 2005), Los Angeles,
USA, IEEE Computer Society Press, (2005).

8) Sensirion, SHT1x/SHT7x Humidity and Tem-
perature Sensor , Staefa ZH, Switzerland.

9) Texas Instruments, MSP430x1xx Family User’s
Guide, Dallas, Texas, USA.

10) Tiny OS 2.0 Working Groups. Technology Im-
plementation Notes, Berkeley, California, USA.

11) Torfs, T., Van Hoof, C., Sanders, S., Winters,
C. and Brebels, S.: Wireless Network of Au-
tonomous Environmental Sensors, IEEE Sen-
sors Conference, Vienna, Austria, April (2004).

(Received January 22, 2007)
(Accepted March 20, 2007)

H. Diall is a research engi-
neer with Fast where he works
on enterprize search applied to
complex problems in informa-
tion retrieval, knowledge man-
agement and business intelli-
gence. He holds an MSc in Data

Communications, Networks and Distributed
Systems from UCL.

K. Raja is a Senior Device
Engineer at Boingo Wireless. He
holds a BSc in Computer Science
and Engineering from Banga-
lore University and an MSc Data
Communications, Networks and
Distributed Systems from UCL.

I. Daskalopoulos is an in-
dependent consultant based in
Athens, Greece. Before this he
was a Research Assistant at the
University of Cambridge. He
holds a BSc in Computing from
UMIST and an MSc Data Com-

munications, Networks and Distributed Sys-
tems from UCL.

S. Hailes a Senior Lecturer
in the Department of Computer
Science, University College Lon-
don where he researches aspects
of mobile systems and security
with particular emphasis on ad
hoc systems, pervasive comput-

ing environments, and security in this context.
He holds a BSc and a PhD from the University
of Cambridge.

G. Roussos is a senior lec-
turer at Birkbeck College, Uni-
versity of London where he in-
vestigates the effects of social ac-
tivity on system architectures,
and exploring mechanisms to
support navigation and findabil-

ity. He holds a B.Sc. from University of Athens,
an M.Sc. from UMIST and a PhD from Impe-
rial College.

T. Torfs Tom Torfs was
born in Lier, Belgium, in 1979.
He graduated from KIH De
Nayer in 2001, joined IMEC
as a systems design engineer,
and has been mainly designing
and testing compact wireless au-

tonomous systems based around IMEC wire-
less, sensor and packaging technologies.



1244 IPSJ Journal June 6

C. Van Hoof was born in
Antwerp, Belgium, in 1963. He
received the Ph.D. degree in
electrical engineering from the
University of Leuven in collabo-
ration with IMEC in 1992. He
became a laureate of the Bel-

gian Royal Academy of Sciences based on his
postdoctoral research on quantum-effect de-
vices. He became successively head of the De-
tector Systems group (in 1998), Director of the
Microsystems Department and Integrated Sys-
tems Department (in 2002 and 2004 respec-
tively) and is currently Program Director of
MtM and SiP Systems research covering smart
sensor systems, biomedical systems, and space
sensor systems. Since 2000 he is also a guest
professor at the University of Leuven. He has
authored or co-authored more than 120 publi-
cations (80 based on peer review).


