
Requirement Analysis Evolution through Patterns

Luca Vetti Tagliati Roger Johnson George Roussos
LucaVT@gmail.com rgj@dcs.bbk.ac.uk gr@dcs.bbk.ac.uk

Computer Science and Information Systems
Birkbeck University of London

Abstract

This paper presents a strategy, based on

requirement patterns (RP), aimed at improving the
requirement analysis discipline by allowing business
analysts (BA) to produce more reliable SW
requirements in a significantly shorter time,
minimising the overall requirement risks. In numerous
business organisations, IT systems are increasing their
strategic significance. In extremely competitive
environments, such as investment banking -where this
methodology has been tested- modern and advanced IT
systems can enable the organisation to obtain and to
maintain a predominant position in the market, which
in turn results in a greater ROI.

Regrettably a number of academic and industrial
studies depict a catastrophic picture about SW
projects: most of them are likely to fail and, logically,
the probability of failure grows with the size of the
project. The project failure factor varies within a
range of 50% - 70%. Furthermore, such studies
clearly show that requirements is the area where the
major risks reside. The proposed strategy is based on
the introduction of elegant, well-proven, technology-
agnostic, architecturally-compatible, simple and
reusable patterns that, focusing on the functional
requirements, expand on other requirement analysis
artefacts such as domain object model (DOM),
business rules (BR), user interface (UI) and glossary.
Keywords: requirement patterns, functional
requirements, non-functional requirements, domain
object model, business rules, use cases, UML.

1. Introduction

This paper considers the Use Case (UC) formalism
as the foundation of the requirement analysis
discipline. However, it also provides practitioners with
a number of other requirement-related artefacts that are
beneficial to BAs regardless of the process and
formalism employed.

The RP core consists of UC models, including their
specifications, which are linked to other artefacts like

DOM, UI design, BR and glossary. Furthermore, this
paper demonstrate the opportunity to associate the RPs
with artefacts belonging to other models, like system
test cases (see Fig. 1). According to Ross Collard [1],
UCs and test cases make an effective combination in
two ways: when the UCs are complete, accurate and
clear, the process of deriving the test case is
mechanical. If the UCs are not in good shape, deriving
test cases facilitate debugging the UCs. Therefore,
while UCs describe in detail the services that the
system will have to deliver, the test cases ensure that
the system provides these services as agreed.

Figure 1. Requirement models relationships

2. Rationale

The requirements patterns concept proposed by this
research focuses on the functional requirements
modelled through the UC notation as described in the
OMG UML specification [2]. This is central to all
other artefacts. The behaviour of each UC included in
the corresponding diagrams is given in terms of a
structured natural language i.e. a template. This allows
practitioners to illustrate the sequence of interactions
between actors and the systems necessary to achieve
the UC goal. Restricting the functional requirements
modelling exclusively to UC diagrams and the
corresponding specifications would be too rigid not
only for the requirements patterns concept but also for
ordinary UC models. Therefore, it is necessary to
design a mechanism to parameterise the UCs and
requirement models to enable their convenient re-use.

This mechanism, consistently with the UC notation,
has to:
• present a variable level of formality (it is important

to remember that one fundamental audience of UC
models is the user community);

• be organised in a core part that cannot be easily
changed plus a number of parametric sections whose
definition represents the customisation of each single
pattern to the specific need.
The solution envisages using the BR document to

delegate the definition of the customisable parts, which
are directives that differentiate the use of specific
requirements. In this way it is possible to define UC
scenarios with parametrical sections whose
specification is delegated to well-defined entries
(paragraphs) included in the business rules document.
Therefore, the traditional use of BR is enhanced to
include the specification of the parameterisable
behaviour.

The adoption of this technique to model UCs
presents a number of advantages, independently from
the usage of the requirements patterns. For example, it
reduces redundancy. Typically, the same BR are
referred to by several UCs and by other artefacts (e.g.
design model). Therefore, instead of copying and
pasting the same BR across a number of different
artefacts, with evident problems related to
maintainability and traceability, it is possible to refer to
the same one stored in the BR document. Furthermore,
BR modelling, depending on their nature (constraints,
algorithm, etc.), can require different notations. For
example, one of the most effective ways of expressing
an algorithm is to use the UML activity diagram
notation, while some market regulations are better
expressed in natural language. Therefore, UC notation
is not always the most appropriate tool to express BRs.
For the above-mentioned reasons, BRs must be stored
in a single artefact and then be referenced by all the
others.

The main mechanism for customising the proposed
RPs, referred to as a light-weight customisation,
consists of specifying the content of the BRs referred
to by the requirements themselves or simply accepting
the proposed ones. However, this is not the only way
as, in fact, it is also possible to change everything else
including the UC specification itself (this is a heavy-
weight customisation). However, these kinds of
changes are pervasive and therefore they should be
used only when it is absolutely necessary.

Another advantage of this technique is related to its
capability to distinguish, clearly from the source, the
part of the requirements that do not change often from
the ones that vary more frequently (i.e. sections
defined in the business rules document). This should

provide development teams with an important input for
the design and implementation of reusable business
components.

RPs focus on UCs and expand on other models like
DOM, UI and glossary. Therefore, when a pattern that
provides the solution for a specific requirement refers
to well-defined, interrelated business entities (i.e. a
portion of the DOM) and/or a UI model, these can also
be incorporated in the corresponding requirements
model. Furthermore, it is possible to include in the
glossary an explanation, given in natural language, of
the concepts presented in the class diagrams.

A typical approach for business requirements
analysis and documentation consists of focusing first
on the services that the system will have to deliver,
modelled via the corresponding UCs, and then
validating them considering the organisation of the
corresponding business entities, modelled via class
diagrams. Typically, the definition of these class
diagrams requires a review of the UCs. This is the
case, for example, where the business entity structure
initially assumed in the UC was not fully correct or
complete.

Figure 2. Models of requirement patterns

The DOM is a key artefact for SW development not
only in balancing the related UCs, but also in using as
an input for the production of other fundamental
artefacts like: components design, database design,
system messages design and user interfaces.
Furthermore, the analysis of a number of business
services is better approached using the opposite
strategy: defining the business entities’ organisation
and then consequently modelling the UCs that,
manipulating these entities, are able to provide users
with requested services. RPs also fully supported this
approach: BAs can decide to include in their models
specific section of a DOM and then design their own
UCs. Therefore, although the RPs idea focuses on
UCs, the other models also assume a significant
relevance (Figure 2).

The overall RP idea consists of enabling BAs to
search through RP collections for specific

issues/domain problems and to extract the model
required. Each pattern can comprise a number of
models:
• one or more UC diagrams;
• a set of UC specifications (templates) which

specify the dynamics of each UC present in the
diagram mentioned above;

• a number of pre-defined paragraphs to be included
in the BRs document whose definition represents
the main mechanism to customize the RP.
Furthermore, UC specifications can contain topics
to be added into the overall glossary;

• a class diagram which models the business entities,
including their relationships, referred to by the UC.
A textual description of the mentioned entities can
be included in the glossary. Some business entities
can present a well-defined lifecycle modelled by a
corresponding UML statechart diagram which can
be included in the RP as well;

• an optional class diagram which models the UI
structure including the navigation associated with
the services described in the UC;

• a few test cases that describe the test to be
performed to verify that the implementation of the
specified services are correct and robust.

3. Case study

The following paragraphs discuss a small portion of
a case study in order to provide readers with the
practical aspect of the proposed theory. In particular,
this methodology has been successfully employed in a
global investment bank for the development of a
security system designed to implement authentication,
authorisation and data privacy services. The
experiment employed patterns previously designed and
extracted from requirements successfully used for
similar projects. These included twenty eight UCs, a
large DOM, an extensive BRs document, etc. From
this large pattern collection, we have selected an
example which is related to what is commonly and
incorrectly perceived to be a simple service: user
authentication. This service was selected because:
everybody is familiar with it, it allows the presentation
of a pattern that includes a number of different
diagrams, it is a service that everybody initially would
consider extremely simple and straightforward, but a
more detailed analysis highlights a number of
important aspects that not everybody would think
about. In the employed approach, BAs would start
from the UC diagram depicted in figure 3.

Figure 3. Authentication use case diagram

For each of the presented UCs, the RP, include the
corresponding specification. In this paper, due to
space limitations, only a small fragment of first one
(User Authentication) is presented (see fig. 4).

Date: 29/Aug/2005 USE CASE
UC: SEC.AUTHENT User authentication

Version: 0.00.001
Description: The Log-in service allows users to gain access to the system.

The system verifies the credentials inserted by the user and, if these are
valid, then the user is authenticated, otherwise the system executes a well-
define procedure depending on the number of consecutive failed log-in
attempts.
The authentication process is only a pre-condition for the execution of the
sensitive system’s services: authenticated users have to be also authorised.

User priority: Medium
Primary actor: User. This is a generic user (abstract). His/her interest in this use case is to

log into the system.
Preconditions: The system is available.
Post-conditions
 on success:

The system authenticates the user.

Post-conditions
 on failure:

The system refuses access to the user and it performs the corresponding
management actions.

Trigger: The user requests to log into the system.
MAIN SCENARIO

1 System: Displays the initial “log-in” screen. UI: SEC::LOGIN

2 User: Specifies the requested credentials. BR: SEC::login_credentials

3 System: Determines that the user login is valid. BR: SEC::login_validation

4 System: Determines that the user status is valid. BR: SEC:: login_user_status_validation

5 System: Verifies that the inserted password matches the corresponding internal one.
BR: SEC:: password_matching

6 System: Verifies that the user’s password is in a valid status.
 BR: SEC::password_status_valdation

7 System: Determines that the same credentials are not currently in use.
 BR: SEC::credentials_not_in_use

8 System: Resets the consecutive unsuccessful logins counter.
9 System: Logs the login action into the security audit trail.
10 System: Loads the user’s profile.
11 System: Verifies that the user’s profile is valid.

 BR: SEC::user_profile_status_validation
12 System: Insert the user’ login in the “users current logged in” list.

DOM: LoggedIn.users.add(current_user)

13 System: Shows the user’s menu.
14 System: The use case ends.

Alternative Scenario: User does not specify the credentials.

3.1 System: Shows an error message.
3.2 System: Resumes at point 1.

Alternative Scenario: User login not valid.

3.1 System: Determines that the maximum number of consecutive failed attempts from
the same connection has not been reached.
 BR: SEC::maximum_attempts_connection

3.2 System: Increases the number of consecutive failed attempts associated with the
connection.

3.3 System: Shows an error message.
3.4 System: Logs the login action into the security audit trail.
3.5 System: Resumes at point 1.

Alternative Scenario: Specified password does not match the internal one.

5.1 System: Determines that the maximum number of consecutive failed attempts related
to the user has not been reached.
 BR: SEC:: maximum_attempts_against_user

5.2 System: Increases the number of consecutive failed attempts associated with the user
and the ones associate with the connection.

5.3 System: Shows an error message.
5.4 System: Logs the login action into the security audit trail.
5.5 System: Resumes at point 1.

Figure 4. Authentication UC specification (Main and
some alternative scenarios)

The proposed version is particularly appropriate for
enterprise systems. This is because it includes the
logic necessary to detect possible intrusion attempts
(from a specific location and/or against a precise user)
and to check that other users are not currently logged-
in with the same credentials. Furthermore, there are
extensive controls related to the status of the user,

his/her profile and password, which are complex
objects with a well-defined cycle of life, etc. The
authentication UC specification presents a number of
areas where the corresponding default behaviour (i.e.
business logic) can be redefined. The definition of the
corresponding BRs is the main lightweight mechanism
to customize the UC specification. In particular, the
proposed UC specification presents the following
business rules: login_credentials, login_validation,
login_user_status_validation, password_matching, password_
status_valdation, credentials_not_in_use, user_profile_status_
validation,maximum_attempts_connection, maximum_attempts_
against_user, maximum_attempts_against_user. These allow
practitioners to define simple behaviour, like the
maximum number of consecutive failed attempts
allowed from the same remote address, or more
complex ones like the conditions that, if verified, force
the user to change his/her password.

The default rule states that the user’s password has
to be changed if its status is temporary, which means
that the password has been automatically issued by the
system, or its validity time window has expired. These
are examples of parts of the service that are subject to
change from one implementation to another, and
therefore their implementation requires a degree of
flexible. Other UCs foresee more complex business
rules whose definition is given in term of algorithm
modelled by UML activity diagrams, like the
calculation necessary to generate unique user id.

The authentication UC specification also includes a
number of references to the pre-defined corresponding
part of the DOM (figure 5), highlighted by the string
“DOM” written in bold. As mentioned before, UCs
and DOM describe two different projections of the
same “entity”, which, in this case, is the authentication
service requirement.

Figure 5. Part of the DOM

The BA, as usual, can decide to integrate the
propose sections of the DOM referenced by the UC
specification, or to use his/her own. In this case, the
most significant entities: user, profile and password,
are provided with the corresponding UML statechart
diagrams that can be included in the BA model.

Moreover, the UC specification refers to a well-
defined user interface (UI:SEC::USER_AUTH) whose

object oriented model is a part of the user requirement
as well.

Finally, the pattern adds in a number of terms (for
example, Authentication and Authorisation), including
the corresponding definition, which can be included in
the Glossary document.

4. Requirements patterns categories

The concept of pattern in the SW community has

been used with a number of different meanings. The
pattern notion considered by this paper presents a high
level of compatibility with the original Alexandrian
idea [12] that each pattern describes a recurring
problem in the particular problem domain including the
corresponding solution. This provides practitioners
with the possibility of reusing the solutions a number
of times without having to study the same problem
over and over again [3]. Therefore, the real core idea
is to produce a catalogue of elegant, well-proven,
extensible and re-usable requirements patterns in the
same way that the authors of the book [4] did for the
design model. In particular, RPs are reusable, well-
proven, architecture friendly and high-quality
requirement models for recurrent problems, obtained as
result of the experiences from development of real
projects. These patterns are provided with the context
of their usage, including forces, and they are designed
to be customisable by modifying the linked business
rules.
From the analysis of real world projects requirements,
it has been possible to divide RPs into two main
categories: domain specific and general purposes. The
former are particularly suitable for specific domains
like security, e-commerce, banking, etc. This category
presents some similarities with the work of Bjørner [5],
related to his studies to formally define the problem
domain via a formal mathematical language. The latter
are patterns, like data entry, searches, data analysis,
and so on. These are typically extracted as a result of
the process of reengineering patterns belonging to the
previous category. Therefore, the previous category is
a first-level application of the patterns present in this
set. However, both categories are proper patterns since
they provide a well-defined solution to recurrent
problems, either domain specific or more general.

RPs can provide practitioners with:
• elegant solutions that not everybody would think

of immediately;
• technology and programming language agnostic;
• architecturally compatible and consistent solutions

that have been proved through successful
implementation in other projects;

• well-proven solutions identified through the
analysis of real projects;

• high level of flexibility;
• simple but effective solutions;
• reusable solutions;
• a framework for developing CASE tools;
• a set of superior solutions that can also be very

useful for training purposes.

5. Advantages

The RPs adoption produced the following

advantages:
time saving. These RPs allowed BA to save time and
effort invested in modelling the requirements and
therefore they were able to invest more time in the
proper requirements analysis and less in the formal
aspect of their modelling. This time saved is not only
related to the initial production, but it is extended to the
number of re-factoring iterations that BAs typically
undertake. Often reviewing a model generates a ripple
of a number of other models. For example, reviewing
a package in the DOM necessitates the review of all
UCs that, starting from the described entities, generate
a number of services, the UI, the business rules, etc.
higher-level of quality. Analysis gathering discipline
proved to be a complicated and particularly critical part
of the SW development process. It is not always
possible to think ahead about all the different aspects
of a requirement (especially for the more complex
ones) and as a result, a number of changes can occur
that can produce serious consequences of the process
outcome (e.g. requirement creep). Furthermore, it is
not always possible or affordable to employ a BAs
expert in very specific domains, like e.g. in IT security.
Therefore, RPs are extremely convenient in these
scenarios. Furthermore, RPs explore all scenarios and
possible alternatives present in the analysed topic and
therefore they do not leave any aspect unexplored,
often they present a way of modelling the same
requirement that not everybody would think of
immediately, they are “implementation friendly” and
consistence since they have been identified in previous
projects, etc. Finally, each pattern, typically, includes
other models like the DOM and the UI model that are
often neglected because of a project’s time and budget
limitations. As proof, the issues tracking system (this
project used the software Jira) showed that there was
not a single log related to change requirements for the
security system. They were all related to fixing and
only 10% to the implementation of new services.
risk reduction. This advantage is a direct
consequence of the overall quality enhancement
described above. Furthermore, since the RPs are well-

proven solutions identified through the analysis of real-
projects, their feasibility and their ease of
implementation are guaranteed. In addition, these
patterns provide BAs with important tools for verifying
the validity, accuracy and completeness of the
requirements specified by users;
time and cost saving. These objectives are the logical
consequence of a number of factors. First of all, BAs
did not have to model a number of requirements since
these were already provided by the patterns. UCs and
scenarios can be labour-intensive to capture and
document. ([10] and [11]). Furthermore, the
requirement models present a high quality level and
they are architecture-friendly. The requirements
patterns can be raised to a further level by including
design model and implementation. In fact, other
outputs of the implementation of the security system
are reusable design model related to the security RPs.
Therefore, the selection of a RP has the potentiality to
bring with it models belonging to the design and
implementation phases. Finally, their presence allows
managers to organize teams where not all business
analysts need to be experienced.
standardisation of the business areas. A number of
practitioners started realising that the large availability
of out-of-the-box components evocated by the .Net and
J2EE architecture has not happened. One of the
explanatory factors can be found in the lack of business
domains standardisation. This problem can be solved
with the RPs, which provide a core with the description
of the flows of actions, including the point where the
behaviour can vary. Therefore, this should provide
development teams with a standardisation that would
allow them to produce well-defined and reusable
software components. As proof, the development team
is investigating the idea of releasing a few icomponents
to the open source community.
learning. RPs provide junior BAs with an effective
way of improving their technique. Furthermore, given
their quality and elegance they allow the less
experienced analysis to produce high quality outcome.

6. Related work

The RPs idea is in some ways related to previous

works in this area. The most relevant works are:
parameterised UCs introduced by Cockburn [7],
where two examples of patterns are discussed. One
such pattern, the “find whatever”, represents the
researching data function, and the second relates to a
typical CRUD functionality.
“Patterns for Effective Use Cases” [8], in this case
there are differences starting from the patterns notion,
which is clearly illustrated by several quotes included
in the book. E.g. they propose to consider patterns as

merely a sign of quality, and strategy. They do not
consider pattern language as a complete strategy for
writing requirements, but as a set of guidelines to
support practitioners fill a gap in their knowledge,
evaluate UCs quality, etc. Therefore, there is an
important divergence from the idea presented in this
paper.
“Use Cases Patterns and Blueprints” by G.
Övergaard and K. Palmkvist [9]
Bjørner’s study [5] where the author investigates
specific domains (like the railways) with the aim of
representing them via a formal mathematical language

The current IT body of knowledge embraces a
number of patterns methodologies applied to other
disciplines of the software development process, like
analysis patterns and design patterns. Although these
are extremely interesting, they are out of the scope of
this paper.

Although several academic studies and empirical
researches present some similarities with this approach,
there are also a number of important differences. The
most relevant ones shared by all other approaches are:
• some approaches do not consider UCs at all (e.g.

[5], [8])
• approaches that focus on UCs are often not fully

compliant with the corresponding standard ([7])
• most of the approaches focus on one artefact and

do not expand to the wider concept of SW
requirements. Either they focus on the functional
requirements or on a sort of static view ([5]).
Other important requirements artefacts, like DOM
and UI, are simply ignored

• only one approach ([9]) tries to makes use of BR
but not in a way that would promote reusability

• no single approach includes specific mechanisms
for a convenient re-use and customisation of RPs.

Övergaard and Palmkvist ([9]) propose several UC
patterns based on a high level of conceptuality that
poses a number of problems for their re-use in real
projects. E.g., as a matter of comparison, it is possible
to analyse their version of the user authentication UC,
called log-in. This is unexpectedly integrated with the
logoff UC (the same UC encapsulates two completely
different and logically opposite services). From the
analysis of this UC it is possible to highlight that it is
not considered the possibility of fraudulent security
attacks, there is not a scenario aimed at locking a user
account in case the maximum number of consecutively
failed attempts to login has been reached, there are no
further checks on the password data, etc. Therefore the
reuse of their patterns it is not straightforward. It will
likely require the production of a further and more
detailed version of the proposed UCs. Finally, the UCs
notation is adopted in an unconventional fashion

highlighted by the unusual presence of two main
scenarios.

7. Conclusion

The overall hypothesis is that the RPs strategy
provides practitioners with an effective instrument to
produce higher quality requirements analysis more
efficiently. This, in turn, produces two major
advantages:
project cost reduction: requirements are gathered
more rapidly, there are fewer change requirements, etc;
risks reduction. This is achieved because the
extracted requirements present a higher-level quality
and because the saved time can be invested in more
critical activities.

The latter advantage is particularly important since
commercial surveys still indicate that the major
number of software projects fail because of problems
with the requirements stage.

The initial study and corresponding investigation
showed a huge success during the requirement phases
where UCs and the corresponding DOM were
produced by copying patterns from a document. The
whole set was produced in only twenty three man days
and with virtually no change was requested during the
whole process. Furthermore, architects could benefit
straightaway from a whole set of requirements that
allowed them to design the architecture and the system
with no delays.

10. References

[1] R. Collard – “Test Design, Software Testing & Quality

Engineering” – July 1999
[2] OMG UML 2 specification
[3] C. Alexander, “A Pattern Language”, New York: Oxford

University Press, 1977
[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides – “Design

patterns, Elements of Reusable Object-Oriented Software” –
Addison Wesley, 1994

[5] D. Bjørner: A Cloverleaf of Software Engineering, IEEE
SEFM'05

[6] C. Wohlin, K. Henningsson, M. Höst , “Empirical Research
Methods in Software Engineering”, 1998

[7] A. Cockburn, “Writing effective use cases”, Addison-Wesley,
September 2000

[8] S. Adolph, P. Bramble, A. Cockburn, A. Pols, in the book
“Patterns for Effective Use Cases” Addison-Wesley, 08/2002

[9] G. Övergaard and K. Palmkvist – “Use Cases Patterns and
Blueprints” – Addison Wesley – Nov/2004

[10] P.A. Gough, F.T. Fodemski, S.A. Higgings, and S.J. Ray
“Scenarios – An Industrial Case Study and Hypermedia
Enhancements” Proc. Second IEEE Symposium Requirements
Engineering. IEEE Computer Society, pages 10-17. 1995

[11] T. Royer, “Using Scenario-Based Designs to Review User
Interface Changes and Enhancements”, proc. DIS95: Designing
Interactive Systems, Ann Arbor. Pages 236-246 – 1995

[12] C. Alexander, “A Pattern Language”, New York: Oxford
University Press, 1977

