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Abstract—There are two key ingredients in supporting high-
frequency and continuous clinical assessment of patient popula-
tions at scale: first, the availability of validated metrics of disease
progression which reliably capture the longitudinal variations of
symptoms; and second, the ability to compute these metrics on
the fly over multiple concurrent streams of sensor data captured
at home or in the community. In this paper, we describe the
design, development and validation of PDKit, a comprehensive
data science toolkit for Parkinson’s Disease, and explore the
dataflow paradigm as a means to provide salable performance.
QOur aim is to contribute towards the development of robust
clinical outcome measures for therapeutic trials and to support
longitudinal investigations of disease mechanism through the
analysis of data collected from wearables and smartphones. The
PDKit is released as open source and offers a succinct interface for
interactive collaborative data exploration. Moreover, it enables
the composition of data processing pipelines for tremor, tapping,
bradykinesia and gait tests with the view to support horizontal
scalability over common Cloud infrastructures on production
workloads. Specifically, we report on our early experiments
executing PDKkit pipelines using Apache Beam, a unified dataflow
multi-runtime stream processing engine. Our long-term aim is
to provide the PD research community with the tools needed to
individually tailor treatment plans and to empower patients to
become more involved in their own care.

Index Terms—Parkinson’s Disease, clinical
dataflow processing, sensor data streaming.
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I. INTRODUCTION

Rapidly ageing global populations bring about accelerated
growth in the prevalence of long-term neurodegenerative
diseases including Huntingtons, Parkinsons and Alzheimers
disease and other dementias. Such diseases progressively af-
fect the neurones of the human brain leading to debilitating
conditions and are incurable. Parkinson’s Disease (PD) in
particular is associated with a wide spectrum of symptoms
including tremor, slowness of movement and freezing, swal-
lowing difficulty, sleep-related difficulties and psychosis [7].
Since there is no cure, symptom management is a life-long
process and includes pharmacological treatment typically with
L-Dopa, physiotherapy, and surgery in its latter stages [25].

Regular monitoring of People with Parkinsons (PwPs) and
adjustment of medication is a key ingredient of typical clinical
care pathways. However, with over 10 million PwPs world-
wide and a rapidly increasing patient population , current
approaches to monitoring and care are becoming overwhelm-
ingly unaffordable and do not scale. One way to confront this

challenge is offered by the wider availability of smartphone
apps and wearables employed to monitor symptoms is bringing
about a fundamental transformation in the way PwPs can be
assessed: The application of these technologies enables the
unsupervised, and at high-frequency or continuous measure-
ment of motor and non-motor performance of a large patient
population [3], [11]. Mirroring patterns of contemporary data
production in other domains, this paradigm shift in the clinical
assessment of PD leads to the tremendous increase in the
availability of patient performance data. In this setting, manual
analysis of data is no longer viable. Instead, it is imperative
to adopt a software-based approach so that outputs of clinical
relevance can be computed automatically and presented to
researchers, clinicians and patients in an intuitive manner [4].

To this end, in this paper we present the design, devel-
opment and validation of a comprehensive software toolkit
for the management and processing of patient data captured
continuously by wearables [5], [13] or by high-use-frequency
smartphone apps [1], [10], [15]. The toolkit facilitates the
application of a data science methodology to the analysis
of this information incorporating an extensive collection of
methods and techniques selected from the PD literature. Al-
though inherently flexible, in the development of PDkit we
have prioritized functionality critical to therapeutic clinical
trial delivery rather than general patient care.

Presented in Sections III and IV below, the PDKit is released
as open source under the permissive MIT License as we
believe that open and inclusive access to its features will
provide a key ingredient towards realizing the promise of
mobile and wearable technology for PD. Further, we report
on our experimentation using patient data collected through
our own work and using open data sets, which suggest
that achieving the above goals requires the application of
longitudinal metrics rather the one-shot approach commonly in
practice today. We discuss this alternative approach in Section
V where we demonstrate how it can work in practice.

Working at full population scale to conduct longitudinal
assessments demands that systems infrastructure must scale
out. In Section VI, we demonstrate how the pipeline-base
approach adopted for the development of the PDKkit facilitates
modern stream processing architectures supporting scalability
on modern cloud platforms. We conclude with a summary of
our finding and directions for future work in Section VII.
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Fig. 1. The PDKit processing pipeline for high-frequency and continuous measurement of motor symptoms for Parkinson’s Disease.

II. BACKGROUND AND RELATED WORK

Over the past decade, several smartphone apps and wearable
systems [1], [6], [13], [14], [27], [33] have been developed to
address the needs of PD: the mPower app developed for iOS
by Apple and Sage Bionetworks in the US; the uMotif app
developed with NHS SBRI Healthcare funding; the Wearable
Companion app developed by the MJ Fox Foundation and
Intel; the mHP app for Parkinsons developed by myHealthPal;
the Verily app in collaboration with ParkinsonNet in Holland;
and several others. We refer to these apps collectively as
following a High-Frequency pattern of assessment in contrast
to standard clinical practice which is carried out relatively
infrequently. This terminology reflects the fact that the apps
are able to carry out measurements of most elements of motor
and cognitive performance of PD patients multiple times per
day or even continuously when wearables are used in addition
to a smartphone [9].

In our own work [17], we developed cloudUPDRS, the first
smartphone app to achieve certification as a Class I medical
device by the Medicines & Healthcare products Regulatory
Agency for the clinical assessment of the motor symptoms
of Parkinson’s. cloudUPDRS is based on the Unified Parkin-
son’s Disease Rating Scale [5] and the PDQ39 questionnaire
[29], and incorporates cloud-based Big Data management
and analytics microservices to generate objective and precise
assessments of motor performance [31]. Following Part III of
MDS-UPDRS, patients use the app at home to record high-
precision sensor measurements while performing a series of
simple actions with each limb, such as tapping the screen to
assess bradykinesia and holding the phone on their knee to
assess tremor [10]. The data captured by the app is then used
to calculate the clinical UPDRS score through the application
of a biomedical signal processing pipeline (cf. Figure 1). Ad-
ditional longitudinal analytics can be performed subsequently
to enable trend analysis and patient stratification [28].

III. PDKIT: FEATURES AND FUNCTIONALITY

As noted in Section II, there is intense interest in the
development of automated assessments for PD symptoms

through the use of smartphone apps and wearables. However,
each system proposed in the literature adopts one or more
performance metrics from a diverse variety of alternatives
proposed in the literature. As such, it is often difficult to
directly compare the performance of alternative approaches
or indeed compare novel techniques against a state-of-the-art
baseline. To address this, we have developed PDkit as an open
source toolbox that supports such experimentation through the
development of a wide variety of standard performance metrics
for PD supporting a simple to use set of abstractions. The
toolkit is structured around the PD data processing pipeline
presented in Figure I.

The PDKkit can play a critical role supporting therapeutic de-
velopment and cost-effective clinical trial evidence collection,
by facilitating the development of: (i) detailed clinical outcome
measures that enable for example the early identification of
problems such as medication side-effects, (ii) robust quanti-
tative metrics of disease progression computed automatically
from the data, (iii) individualized patient profiles leading to
personalized assessment, and (iv) patient stratification through
longitudinal analytics. In the following Sections we briefly
outline the four areas of functionality implemented.

A. Quality of Information

The first stage of the PDkit pipeline supports the preparation
of raw data for analysis, a process often also referred to as data
wrangling, providing methods and techniques for assessing,
structuring, cleaning, and rolling up source data. This is
typically a time-consuming and unattractive aspect of data
science but essential to obtain accuracy, precision, consistency,
and completeness. PDkit implements a variety of such methods
ranging from standard integrity tests to identify missing data,
faulty sensing elements in the collecting device and corrupted
data items, to advanced techniques for the verification of the
correctness of the data collection process using deep learning
[16], [17].

B. Bio-Signal Processing

The second stage of the pipeline provides signal processing
techniques for the computation of over 200 distinct biome-



chanical metrics characterizing motor and non-motor perfor-
mance. For example, for tremor measurements, the application
of the Fourier and wavelet transforms offer metrics such as
dominant tremor frequency and power, and also facilitate
filtering of non-essential frequencies captured in the signal
[9]. For bradykinesia measurements, signal processing calcula-
tions relate to calculating the kinesia, akinesia, dysmetria and
arrhythmia scores. For gait measurements, signal processing
calculations estimate stride length and frequency, symmetry of
walking, lateral swinging, magnitude of acceleration, turning
performance (such as time and number of steps required) as
well as detection of freezing. In the future, the toolkit will
provide signal processing techniques for voice data to extract
dysphonia metrics and processing speed for Stroup tests.

C. Digital Biomarkers

The third stage of the pipeline employs the metrics calcu-
lated by the bio-signal processing module to compute unitary
and composite digital biomarkers. This process is akin to the
process of feature engineering in data science tailored to the
PD setting whereby metrics derived from bio-signal processing
calculations are used to identify or compose candidate features.
Such features may relate to a single metric for example turn
agility during walking [15] represented for instance by the
number of steps required to complete a full turn, or can be
applied on tuples combining several metrics. Moreover, digital
biomarkers can be constructed either using a single motor
performance observation from the raw data set taken at a
particular point in time, or defined as the statistical distribution
of the full sample taken over a specified period of time
following a particular sampling strategy. PDkit implements a
variety of realted digital biomarkers reported in the literature
[24] as well as novel ones as they emerge for example selected
proposals from the Parkinsons Disease Digital Biomarker
DREAM Challenge organized by the Michael J. Fox Founda-
tion. Closely related to the calculation of the digital biomarkers
is the development of predictive models for estimate disease
state or severity.

D. Clinical Rating Scale Calculation

FlInally, PDkit provides calculations that map computed dig-
ital biomarkers to clinical rating scales notably those published
by the Movement Disorders Society. Other rating scales will
also be considered such as the Parkinson’s Disease Composite
Scale and the OTS score developed specifically for handheld
devices at Uppsala University. Such mapping can be achieved
through the implementation of clustering and classification
algorithms associating biomarkers to rating scale scores [4].
In future versions of the PDkit we aim to incorporate general
facilities to generate such mapping from a particular data set
as well as pre-trained models [4] that can achieve this goal
for a selected set of digital biomarkers depending on raw data
availability.

IV. PDKIiIT: USE CASES

The PDkit toolkit is available under the standard PyPI
package management system for python and also full source

code is available at https://github.com/pdkit/ in-
cluding Jupyer Notebooks demonstrating its use and extensive
documentation https://pdkit.readthedocs.io/ in-
cluding bibliographic references for each of the features im-
plemented.

To highlight some of the key use cases of the toolkit, in
the section we include a description of a typical processing
pipeline receiving raw tremor input from the accelerometer of
a smart watch or mobile app and returning the UPDRS score
associated with this test (the code below is slightly amended
to facilitate presentation, full examples can be found on the
github repo above).

>> tp = pdkit.TremorProcessor ()
>> ts = pdkit.TremorTimeSeries ()

>> amplitude, freq = tp.amplitude(ts, ’'welch’)

>> testResultSet = pdkit.TestResultSet ()
>> testResultSet.process|()

>> clinical_UPDRS =
pdkit.Clinical_UPDRS (labels, testResultSet)
>> clinical_UPDRS.predict (measurement)

In the above source code example, an acceleration time
series obtained by a wearable or a smartphone app is first pro-
cessed to extract a measure of the associated tremor amplitude
using the Welch method. Subsequently, multiple assessments
are aggregated to train a classifier which can map a new
tremor observation to a clinical score on the UPDRS scale.
The initial data cleaning of the incoming raw data is integrated
transparently into the TremorProcessor class.

In the example below, we replicate the first stage of the
above pipeline for walking tests. In this case gait measure-
ments using an acceleration sensor carried by the patient at
the pelvis, is employed to extract standard performance metrics
such as regularity and symmetry of walking:

>> ts = pdkit.GaitTimeSeries () .load (filename)

>> gp pdkit.GaitProcessor ()

>> step_regularity, stride_symmetry =
gp.walk_regularity_symmetry (ts)

Finally, the example below shows how raw measurements
can be used to train a model for UPDRS scoring in the
absence of validated clinical assessments. In this case, a
clustering approach has been adopted to discriminate between
the different levels of the clinical rating scale.

>>updrs = pdkit.UPDRS (testResultSet)
>>updrs.score (observation)

V. LONGITUDINAL ANALYTICS

Recent advances in the pathophysiology of Parkinsons dis-
ease, including genetic and biochemical causes, have consid-
erably expanded the understanding of its pathogenic processes
and as well as of pharmacological responses to therapeutic in-
terventions. Despite this progress, the development of clinical
biomarkers for the evaluation of disease progression remains
highly challenging [30]. This is as much due to individual
patients having markedly different symptom constellations,
progression rates, and treatment responses, as due to the
dramatic day-to-day variation of the symptoms of a single
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Fig. 2. Longitudinal-composite disease progression metric (April 2016).

patient. Current measures of disease progression commonly
used in clinical practice, such as the UPDRS [5] and PDQ39
[29], do not adequately account for this variation.

Furthermore, such clinical measures have several limitations
[26]: First, their application is laborious and costly because
they require the direct involvement of a member of the
clinical team and as a consequence can only be carried out
infrequently. Second, although clinical measure protocols are
detailed and formally structured they are nevertheless carried
out at relatively coarse-grain granularity without the use of
specialised measurement instrumentation. Finally, despite gen-
erally good internal consistency in the application of these
measures, they still depend on subjective estimations of patient
performance by the clinician. Collectively, these constraints
suggest that a single calculation of a particular clinical measure
at a specific point in time does not accurately describe the
actual state of the patients condition, even when conducted
under controlled conditions in a clinical setting.

In this paper, we argue that such unit assessments are
better understood as drawing a single observation from a
highly dynamic process depicting the clinical presentation
of PD. From this viewpoint, attempting to characterise the
overall pattern of PD presentation from a single observation
is clearly not viable. Instead, we suggest that a more ef-
fective approach is to consider the problem of developing
disease progression indicators by following a process sampling
paradigm. According to this approach, indicators are based
on the statistical properties of the full sample of symptom
measurements obtained over a defined sampling time-frame
and following a suitably tailored sampling strategy.

Adopting this approach at scale has not been feasible until
now due to the very high cost associated with conducting
frequent assessments by specialist clinical staff [32]. Wearable
and mobile technologies however enable unsupervised moni-
toring of a large patient population by conducting precise and
objective measurements of motor and non-motor performance
multiple times per day at almost no cost. It is now thus possible
to implement a practical and comprehensive sampling strategy
for PD executed independently by patients at home.

Yet, translating these measurements into a marker of disease
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Fig. 3. Longitudinal-composite disease progression metric (July 2016).

progression remains challenging. To this end, we have pro-
posed a novel PD progression indicator adopting the process
sampling approach.The goal of this approach is to establish a
formal methodology for the reconstruction of the underlying
statistical distribution of PD presentation from smartphone
data and design a novel disease progression indicator derived
from it. Our goal is to establish this indicator as a practical,
reliable, precise and objective alternative that can moreover
accurately determine the efficacy of therapeutic agents.

Our initial experiments with high-frequency smartphone
technology provides strong support for the observation that pa-
tient motor performance exhibits complex patterns of variation.
Figure 2 shows symptom measurements for a single patient
over a three-week period of monitoring. The specific digital
biomarker displayed in this case is the strength of the dominant
tremor frequency for right leg agility measurements (we note
that similar patterns of variation are observed for all digital
biomarkers associated with affected limbs). Figure 2 also
provides annotations showing the corresponding UPDRS Part
IIT test score calculated by cloudUPDRS. Clearly, no regular
patterns emerge during this period despite the fact that the
patient follows a predictable medication routine (administered
4 times per day). For example, note that for almost any 2-hour
slot during, the corresponding score may range from 1 to 3
points on the UPDRS scale. Overall, considering this degree
of variation in symptom presentation the data suggests limited
value in assessing disease progression by comparing two
UPDRS scores taken several weeks or indeed a few months
apart as daily fluctuations are essentially indistinguishable
from the underlying disease progression trend.

Further, we note that for a specific patient each individ-
ual test and its associated digital biomarkers have variable
inferential power in establishing disease progression. This
observation is corroborated by the literature which suggests
that five to six clinically distinct factors typically suffice to
provide high correlation to the patient’s overall Part IIl UPDRS
score. This should not be surprising considering that clinical
measures explores exhaustively the full range of possible
motor symptoms caused by PD, but a specific individual would
typically present a much smaller number of symptoms which
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Fig. 4. Streaming PDkit processing pipeline using Apache Beam primitives.

dominate their overall score. In cloudUPDRS, we have devel-
oped a machine learning methodology which can successfully
identify the appropriate subgroup of tests for a specific patient
which offer the highest predictive power of their overall motor
performance.

Overall, the combination of the high-frequency pattern of
assessment with the bounded context for the interpretation
of measurements enforced through user interaction design by
the cloudUPDRS app, and the ability to identify the most
critical clinically distinct factors represented by specific digital
biomarkers for a particular individual, enables the effective
statistical description of PD from the process sampling stand-
point. To illustrate this point, in Figure 3 we aggregate all
calculations of the same digital biomarker presented in Figure
2 taken during April 2016 (25 samples in total) into the his-
togram depicted in Figure 3, and those taken during July 2016
(43 samples in total) on the right. Both histograms suggest a
normal distribution with distinct characteristics and we have
further explored this suggestion beyond visual appearance. We
summarise our main findings below.

First, the Shapiro-Wilk test was applied to both samples to
establish whether they are normally distributed and confirm
that this is indeed the case. Further, we establish that the
two samples from April and July correspondingly are drawn
from different distributions by applying the one-way analysis
of variance (One-way ANOVA) and the Wilcoxon rank-sum
tests. Both provide a strong indication that the two samples
correspond to distinct distributions. Finally, we observe that
the mean of each distribution could provide an indication
of patient performance and we note that this would imply a
deterioration of symptoms with a shift to the mean from 4.03
to 4.32 which would suggest a UPDRS score of 2 in both
cases so it would be not possible to distinguish the change by
using UPDRS only. We also note that the patient reported a
noticeable drop in his motor performance during this period.
Overall, in view of these observations it is reasonable to
explore the hypothesis that a disease progression indicator
developed according to the process sampling approach as
described above can be effective.

Using the PDkit and a data collection app using the
Vivosmart device, we are currently undertaking an exhaustive
investigation of the statistical distribution of singleton and

combinative digital biomarkers calculated from high-frequency
measurements over different time-spans ranging from several
days to a few weeks. To achieve this, we employ Qol tech-
niques from the PDKkit to pre-process the captured data so as to
ensure high quality, and subsequently compute a full range of
digital biomarkers. We anticipate that the resulting distribution
is likely to follow a normal distribution as discussed above and
to employ its defining features such as the mean and variance,
as the basis for the generation of a disease progression
indicator.

VI. STREAM PROCESSING

Supporting automated symptom assessment for PwPs at
population scale requires the ability to process large amounts
of data generated concurrently as an unordered and potentially
unbounded stream. In this setting, data may also be received
with delays that are not impossible to quantify precisely,
particularly data are relayed via an unreliable edge system.
Further, as noted in the previous Section, the calculation of
longitudinal analytics requires aggregation operations which
suggests the need to apply assessment metrics over multiple
windows of the incoming data.

To address these requirements we are developing a stream-
ing version of the PDkit, which in addition to matching
the typical clinical workflow also facilitates scalability to
full population scale. To provide transparent support across
multiple cloud-based platforms while maintaining efficiency,
the toolkit adopts a dataflow programming approach [21] as
its main architectural pattern. This approach allows application
developers to access toolkit functionality via a standard python
interface irrespective of the underlying computing substrate,
and thus reuse the same codebase unchanged. Dataflow sys-
tems achieve this by modelling a program as a directed graph
of the data flowing between operations [23]. This approach
generates efficient general purpose code that can be mapped
automatically onto practically any modern cloud architec-
ture [22] thus avoiding very specialized, non-reusable code
which is typically required by alternative high-performance
paradigms such as message-passing [21].

To implement the dataflow approach in PDkit we employ
the Apache Beam system due to the fact that it offers distinct
advantages: firstly, it provides a unified conceptual model for
stream processing; second, Beam APIs are accessible via a



python SDK which we have used to extend PDkit through PD
data-processing pipelines; and last nut not least, it provides
a variety of so-called runners, that is transparent mappings
to the underlying execution environment, for several popular
distributed processing backends including Apache Flink and
Spark and Goolge Cloud Dataflow.

The streaming version of PDKkit is currently under active
development with the first production release planned for
January 2019. To demonstrate the natural mapping of the
PDkit concepts into Beam pipelines, we have implemented
a variety of typical processing scenarios. For example, the
tremor assessment pipeline detailed in Section IV above can
be easily be translated to the Beam API for multiple concurrent
users as depicted in Figure 4: the process consists of a
series of Beam ParDo operations for filtering, mapping and
feature extraction, with the incoming acceleration data streams
easily mapped between the PDkit primitive data types and the
PCollection data objects employed by Beam.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have considered composite metrics of
disease progression in the context of Parkinson’s Disease,
which reliably capture the longitudinal variations of common
motor symptoms. At the core of this approach is the obser-
vation that better measures can be developed by aggregating
multiple symptom measurements carried out over a period of
several days. Wjhile this approach is more effective in tracing
symptoms is also presents a considerable user experience chal-
lenge. This suggests that a passive monitoring approach using
wearables or a combination of passive and active elements
would be preferable. Further, we explored dataflow streaming
as the main enabler for the computation of these metrics on the
fly over multiple concurrent streams of sensor data captured at
home or in the community concluding that they complement
well the sensor pipeline approach adopted for the PDKit.
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