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Abstract
A key ingredient of mobile computing is automated
adaptation of system behaviour to match user context. In
this paper we investigate how temporal patterns of app
use can reveal the social context of the user, in the sense
of their specific social role during a period of interaction.
Individual users typically have multiple distinct identities
associated with different social roles such as professional
and family members. We are specifically interested in
exploring whether we can employ Device Analyzer data to
construct distinct profiles for each of these roles. We
introduce a temporal sequence clustering technique that
successfully identifies periods associated with such distinct
social contexts.
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Introduction
Context-awareness is widely recognised as a desirable
property for mobile computing and in recent years
considerable effort has been invested by the research
community in developing modelling and reasoning
techniques that allow applications to adapt to changing
physical, computation and activity-related context
information [2]. Less attention has been given to social
context that is context related to the current social
situation of the user, likely due to the complexity
associated with this task [3]. Indeed, individual users of
mobile computing have multiple identities expressed in
particular contexts, and associated with distinct or
overlapping relationships, roles and communities, and that
attach to different contexts.

Social context is arguably the most powerful type of
context to employ in applications and in this paper we
propose a methodology which addresses specifically the
need to identify periods of time that correspond to
particular contexts associated with different social roles.
Using the Device Analyser (DA) data set [9] we explore
this hypothesis in the context of app use so as to identify
specific elements of user and device context that are
influential in this activity. We initiate this exploration by
looking at temporal patterns of app activation and use in
the sample DA dataset, which we consider as the first
step towards a comprehensive effort to explore the whole
range of device data.

Rationale
The availability of a general framework for understanding
the different facets of personal identity in the context of
mobile computing provides distinct benefits to context
adaptation [6]. This reflects the observation that
competing demands of individuality and community, and

the many forces bear on a person’s sense of self [8]. In
past work we identified three characteristics that stand
out in adequate treatments of identity:

• The locality principle says that identities are
situated in particular contexts, relationships, roles
and communities, and that we may have different or
overlapping identities attaching to different
contexts.

• The reciprocity principle says that both sides in a
relationship need to know what is going on so that
they can check and correct each others perceptions.

• The principle of understanding says that identity
serves in two-way relationships as a basis for mutual
understanding.

The locality principle has been identified in various
treatments of the self [4], and has significant implications
for mobile computing. It implies, for example, that a
global or universal identity makes little sense. We cannot
expect consumers of mobile services to be comfortable
with a single identity profile in relation to a universe of
activities and services that entail all aspects of their life.

Rather, we can expect a strong preference to maintain
different identities attaching to different functions, roles
and communities, and to have control over these. This
would explain the overall negative reaction of the
participants of the focus groups to ubiquitous retail since
users of the system were characterised singularly as
consumers. We believe that since a system that extends
to all types of activities including professional and family,
refusing to acknowledge the different identities, the
system did not address locality concerns. For this reason



it can be perceived as being designed to benefit the
business only without taking into account the users needs.

The locality principle also highlights the need to balance
two forces in mobile computing: first, the need to respect
the consumers localized and multiple identities, and
second, the significant advantages of open, collaborative
and ubiquitous mobile business. Although it may be
convenient to share consumer data with trading partners
this action is liable to destroy trust. It is not that the
details in question involve anything profoundly secret or
private to the consumer, but rather that the localized
identity developed via significant personal investment is
forcefully removed by an external entity and used beyond
the locality that has been developed.

Data Processing
We apply a two-stage pre-processing step to the raw
Device Analyzer data sets:

1. Extract complete records associated with app use.

2. Convert reduced logs into interval-based event
sequences.

Stage 1 involves the application of a selection filter
implemented as an AWK script, applied to each individual
source file separately. As a result form each raw DA file
we compose a reduced app use log.

Figure 1: Example of an e-sequence of 5 temporal intervals.

Stage 2 involves the processing of the reduced logs into
interval-based event sequences (e-sequences), with the
following form:

<seq id> <class id> {<event intervals>}

where sequence ID is a unique identifier provided by the
pre-processing function sequentially and event intervals is
a set of events characterised by a start and an end time as
follows:

<event ID> <start> <end>

where event ID is the anonymised app handle as retrieved
by the raw DA log files, and the start and end time
delimit the bounds of the event and are calculated in the
manner detailed below. The result of this processing step
is that in each sequence we incorporate one or several
events occurring over a time interval. Such sequence is
commonly known as e-sequence [5]. A visual example of
an e-sequence is given in Figure 1, and it corresponds to
the following e-sequence:

{<A,1,10> <B,5,13> <C,17,30> <A,20,26> <D,24,30>}

Figure 2: The seven temporal relations between two
event-intervals that are considered in this paper.

It becomes apparent that in an e-sequence there exist
temporal relations between the event intervals. Based on
Allen’s model for temporal interval relations [1], given two



event intervals A and B, we consider the seven temporal
relations shown in Figure 2.

Moreover, each e-sequence is also labeled with a class
identifier that denotes related time period in the day that
it occurs following the convention:

M1 1: 05:00 - 08:59

M2 2: 09:00 - 12:59

A1 3: 13:00 - 16:59

A2 4: 17:00 - 20:59

EV 5: 21:00 - 00:59

NT 6: 01:00 - 04:59

To calculate the start and end times for each record, we
follow this process: we begin by identifying which event(s)
are on, that is which apps are active, within each hourly
slot and we terminate the sequence at the following hourly
slot when the event transitions to off state.

For example, all active apps between 05:00 and 11:00
belong to a single sequence with sequence ID 5432. For
each app the starting hourly slot is recorded as well as the
ending hourly slot so that we encode the fact that app
gfdsa is active between 05:24 and 07:02:

1 M1 A 5 7.

It is of course possible to delimit sequences more or less
frequently than at an hourly basis and the we investigate
the effects of this choice further.

The output of this two-stage pre-processing process is
then streamed into a clustering algorithm that employs a
novel approach for the computation of distances between
sequences such as the ones described above [5]. Using
this metric we can directly perform agglomerative

clustering with the Ward distance, which allows the
observation of similarities between sequences
characterising specific periods during the day.

Sequence Clustering
We used IBSM, shorthand for Interval-Based Sequence
Matching, a novel method proposed by Kotsifakos et al.
[5] for assessing the similarity of two e-sequences. IBSM
performs e-sequence matching by mapping each
e-sequence to its corresponding re-sized event table
representation. This representation is obtained in two
phases:

• event table construction: each e-sequence is
converted to an event table, where each row
corresponds to a event label (in our case an app)
and each column is a time slot. Each cell in the
event table records whether an event is active at
each time slot (indicated by 1) or not (indicated by
0). If more than one instance of the same event are
active at a certain time slot, then the value of the
event table in that slot equals the number of active
events.

• event table re-size: the event table is then simply
re-sized by performing bi-linear interpolation on the
columns so as to ensure that each table has the
same number of columns.

Finally, IBSM computes the Euclidean distance of these
representations (the two re-sized event tables). As shown
in Kotsifakos et al. [5] IBSM performs e-sequence
matching in time linear to the maximum length of the
involved e-sequences. Additional heuristics are introduced
to speed up this computation, such as alphabet reduction
(removal of the very sparsely active event labels) and



sampling (uniformly random selection of columns of the
event table).

Figure 3: The deondrogram produced by agglomerative
clustering under the Ward distance for Dataset 1. We observe
three dominant clusters.

Using the above technique the similarity scores between
the e-sequences are computed and then fed to the
agglomerative clustering algorithm. Examples of the
produced dendrograms are shown in Figures 3 and 4 for
two of the datasets using hourly slots for defining the
event intervals. The horizontal axis represents individual
clusters identified using the labelling convention
associated to the daily period during which they occur as
discussed above. The horizontal axis shows the calculated
similarity between connected clusters so that shorter
vertical lines represent smaller calculated distances and
thus a closer match. This procedure was applied to all
datasets considered to calculate clusters for both hourly
and half-hourly slots.

Results
In this study we considered individual user datasets
selected from the DA repository. After the application of
the processing steps described in the previous Section, we
investigated the structure of the clusters identified using

an interactive exploration methodology to analyse the
obtained visualizations following the approach proposed by
Seo and Sneiderman [7]. We discovered that in all cases
there are three dominant clusters.

Figure 4: The deondrogram produced by agglomerative
clustering under the Ward distance for Dataset 2. Again we
observe three dominant clusters.

This phenomenon was present for both types of event
interval generation (using hourly and half-hourly slots).
We further scrutinised the clusters by studying their
purity, which measures the degree of overlap between the
event intervals contained in the three clusters. More
precisely, we first compute the degree of impurity of a
clustering, which corresponds to the fraction of clusters
each event label (i.e., app) participates in on average.
Hence, purity equals (1−impurity), so that purity of 1
means that all event labels participate in only one cluster.
According to our working hypothesis discusses previously,
we expect purity to be close to but less than one is all
useful cases, since at each distinct time period there is
one dominant role that dictates the principle pattern of
app use scewed due to overlaps reflecting patterns of
secondary social context. In all cases studies conducted
we considered the three most distinctive clusters.



Our findings are shown in Table 1, where we can see that
the proposed method can achieve clusterings of high
purity, and hence distinctive apps within each cluster. We
can also observe that as we increase the level of
granularity (slots) we obtain even higher purity as fewer
role shifts occur during the specified period.

Hourly slot Half-hourly slot
Dataset 1 0.87 0.90
Dataset 2 0.89 0.91
Dataset 3 0.86 0.89
Dataset 4 0.92 0.94
Dataset 5 0.93 0.94

Table 1: Purity of clustering when we use hourly and
half-hourly slots for generating the event intervals. In all cases
(five datasets) we considered the three most distinctive
clusters.

Conclusions
We investigated the importance and applicability of
temporal patterns in app use for identifying social
contexts of users. DA records are first converted to
sequences of labeled temporal intervals on which we apply
the IBSM algorithm to compute their similarity which is
subsequently employed to identify clusters via
agglomerative clustering. We discover that the identified
clusterings have high purity, which suggests distinct
profiles of app usage. This matches our hypothesis that
temporal app use profiles can reveal the distinct social
roles of individual users. Although clearly requiring further
investigation, the presence of three dominant clusters in
all cases is suggestive of three principal modes likely to
reflect patterns of professional, family and leisure activity
correspondingly, a hypothesis corroborated by the specific
temporal labelling associated with each cluster.

We are currently processing the complete DA dataset
following the methodology presented in this paper with a
view to further explore the clustering structure identified,
In particular we examine specific app patterns within the
clusters and investigate the effect of varying levels of
granularity for the event interval construction.
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