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Abstract—We present a novel approach for the on-line detec- resource that often imposes to the application designers th
tion of Complex Events in Wireless Sensor Networks. Complex need to regulate the usage of other components such as CPU,
Events are sets of data points that correspond to unusual pgrns radio, sensors, external flash and so on. A classic example

that can not be detected using threshold-based technique®ur f this is th dio: di inale bit h di
method uses an efficient implementation of SAX, a mature data 0 IS 1S the radio: sending a single Dbit over the radio can

mining algorithm, that transforms a stream of readings into a Cconsume the same energy as executing approximately 1,000
symbolic representation. Complex Event Detection is then gr- CPU instructions[]2]. It is therefore clear that sendingrgve
for.med via f.OUI‘ alternativg modes: (a.) multiple pattern detection reading over the radio to a base station for processing and
using a suffix array, (b.) distance-based comparison, (c.)nknown ;¢ f_network mining will significantly shorten the liiete

pattern detection, and (d.) probabilistic detection. The nethod T
allows users to specify complex events as patterns or to sear of the WSN. One way to address this is to perform as much

for interesting changes without supplying any information The Of the computations as possible locally and only commuegicat
appropriateness of the approach has been verified by applysn with neighbors and the outside world when it is absolutely
it to four sensor data sets. In addition, we have developed an necessary.

efficient implementation for the TinyOS operating system, ad The target platform considered is the lower-end WSN com-
further validated our assertions by collecting and analyzng data . . .
in real-time. prised of nodes such as the TMote Sky [3]. This type of node is
equipped with an ultra-low power Texas Instruments MSP430
l. INTRODUCTION F1611 16-bit RISC micro-controller. Additional component
One of the most common uses of Wireless Sensor Networkgch as storage and sensors can be added through the nodes’
(WSNSs) is to monitor the physical environment using a varieexpansion port. The hardware offers 10Kb of RAM, 48Kb
of sensors that largely depend on the goal of the appligai- Flash and is powered by a single pair of AA batteries.
tion. Typically such sensors include temperature, humiditLifetime can range from over a year to a few hours depending
light, pressure, acceleration, vibration, air qualitydao on. on how heavy the load on the resources is. To achieve
Monitoring can be passive or reactive; in the former moderolonged lifetime many applications enter low-power nmode
readings are sent to a location outside the sensor netwbskswitching off or switching to stand-by components that ar
where they are aggregated, processed and stored for figeire not used. Spending as much time as possible in low-power
The alternative is for time-sensitive response applicatithat modes is therefore an important goal for almost any WSN
need to reactf andwhencertain conditions are met. Mining application.
sensor data is essentially the process of finding integestin
and/or unusual patterns in sensor readings. Often, in thls Problem Statement
reactive scenario mining has to be performed as close te realA Complex Event is an interesting or unusual pattern in
time as possible, depending on how strict the requirementstbe collected data that can not be captured by thresholeldbas
the application are. This mode of operation is conceptualigchniques. Figure 1 shows such a complex event defined by
close to Event-Condition-Action (ECA) rules in conventibn 286 light sensor readings. The pattern is caused by swgchin
database systems where an action has to be executedhénlights on and off and the variations in the brightness are
response to an event and one or more satisfied conditionsinduced by a dimmer. Readings below 50 Lux indicate a poorly
Implementing the reactive model in desktop and serviifr room and readings above 300-350 Lux indicate a well-lit
class machines is well-understood. However WSNs introduagom. Although this example is oversimplified, it aims towho
some unique challenges with significant effects in systetimat such a pattern can be extremely difficult and inefficient
and application design. Extending the useful lifetime of # detect using thresholds.
WSN [1] is one such challenge that perhaps carries theFor the remainder of this paper we will use the terms
most weight in terms of importance. The lower-end type gfattern and Complex Eventinterchangeably. Note that our
WSN that we consider comprises devices that are extremepfinition of a Complex Event is somewhat different to the
resource constrained. In particular, power is the mostcecanotion of Complex Event Processing (CEP); CEP aims to



Fig. 1. Example of a complex event: dimmer-induced vanion the
brightness of light in a room. We assume that the variationghe light
compose the pattern. Even this simple pattern would be diffio detect
using traditional threshold-based techniques.
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so on. We therefore need an approach that scales well as the
number of events a user is interested in increases.

Some example applications that share the above require-
ments to different extents include monitoring scenariogneh

UGHT — events are relatively infrequent and complex in nature —s thi
450 |- MF . boredom punctuated by pameodus operandi is characteristic
of a full class of WSN applications. Some example appli-
400 - - . . .
cations that could benefit from the reactive model proposed
350 — in this paper include wildfire detectiohl[5], vineyard e
300 - | mental conditions alertind [6], oceanography netwolksf¢r]
- tsunami detectiori [8] and out-patient activity alertinfy [20],
5 250 — [
= 200 |- N The performance benefit of altering an application from
passive monitoring and out-of-network processing to ieact
150 | - alerting is substantial. Components such as the exterrshl fla
chip for logging data and the radio for communication are
1001~ 7 inherently slow and power-hungry. Opting to use them only
50 - L - if interesting patterns are detected can prolong the tifetof
i | | | | N the network by an order of magnitude. The aim is to support
0 50 100 150 200 250 this goal by providing a framework for efficient CED.
TIME

B. Our Contribution

To perform efficient CED, we have adapted Symbolic
Aggregate ApproXimation (SAX)112]/113]114]115]116]
[17], a mature and efficient approach that is used for trauaiti
process multiple individual events. We consider a Complgigta mining tasks, to the unique requirements of WSNs. SAX
Event a single conceptual entity that can not be broken dowgnverts a set of sensor readings to a string and CED is
to or described by individual events. then performed by operating directly on the strings instead
Complex Events are inherently difficult and in extreme case$ the sensor time-series data. We introduce an efficient
even impossible to describe. In some applications usens wimplementation of SAX using integer scaling that makes the
to be informed ofinterestingchanges but are able to describapplication of the technique feasible in WSNs. In additiwe,
what constitutes interesting using only fuzzy and ambiguodeveloped a toolbox of efficient CED methods that include:

constructs. For instance, users of a soil moisture mongori 1) Many-pattern Detection with a Suffix Array- essen-

application such as_[4] are interested in rain. But they are  tjally we are binary searching a pruned suffix array
not generally interested in common rain; they would prefer  structure for the occurrence of a pattern,

to be informed when it rains in a interesting and unusual 2)

way, e.g. rain that can produce flash floods. It is difficult to

capture this requirement in a program using constructs asch 3)

i f statements. Detection can be even impossible if the event
has not been witnessed yet. Hence a requirement was non-

parametric event detection. In this scenario WSN nddam 4)

from a portion of data that is known to be normal and they are
then able to detect events that do not fit in the learned state
of affairs. We will describe exactly how this is done in later
sections.

Exact or Approximate Matching- where the pattern is
known beforehand,

Non-parametric Detectior— where no pattern is spec-
ified in advance and sensor nodearn from a training
portion of the time series known to be normal, and
Probabilistic Detection with a Markov Chain- again
this relies on training on a portion of data known to be
normal; from this character frequencies and transition
probabilities are built. These are used to flag highly
improbable sequences as events.

~ Another requirement for Complex Event Detection (CED), we provide an experimental evaluation of the above meth-
is the case where the user is interested in a large numbe@k and present insights learned from the implementation
events. Even if the events can be described using programmgtocess and running time analysis. All the code for the

control flow, having a large number of conditional statersengpproaches discussed in this paper has been implemented for
and function calls is inefficient and wasteful. Bear in min@odes running the TinyO$ 18] operating system.

that the sampling frequency of the data collection may be
determined by the application and this defines additional

II. EFFICIENT SYMBOLIC CONVERSION

requirements. A sample of the sensors once every secon®AX is used for the symbolic conversion of sensor read-
allows for approximately one second — minus the time ihgs. Essentially SAX maps one or more readingse 7Z
takes to sample the sensors — to perform other operatidosa letter from a finite alphabet according to a set of
such as CED, radio communication, logging of readings amekll-defined rules. Formally the input is a set of readings



R = {ry,re,...,m,} and the output is a set of lettersFig. 2. Steps followed in a symbolic conversion. Dotted dimepresent
S ={s1,52,...,5m},s € ¥ and0 < m < n. In this respect alternative choices for CED.
SAX is another quantization method.

Once the conversion is complete we have theS$ethich
we refer to as thetring. CED is then performed on this string,
essentially reducing the detection problem to a search a
match. Each sensor node can be thought of as a process Normalise
outputs text and therefore CED is analogous to finding pagter
of interest within that text.

In a different system, the search for one or more patter
can be performed offline which would be straightforward. BL
in WSNs radio communication is expensive and for this reast
we aim to limit the usage of the radio component by enforcir
nodes to do the conversion locally and on-line. This meal
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During the conversion process, we choose an approprii _ _ .
. . . . . . + Detection Functions
compression ratio (i.em < n) for the time-series data. Dif- - - - - - - - - - :
ferent applications carry different information conterttigh

we learn empirically in our experiments over various data TABLE |

sets. Data sampled at frequency higher than 10Hz is best PERFORMANCE TIMES FOR SYMBOLIC CONVERSION
discretized using no compression. In contrast data such as Size
humidity and temperature sampled at low-frequencies can be Operation 40 80
discretized with a compression ratio f: 1 or even4 : 1 i g”(;\fle(rmgénsumpﬁon (A 2;—)%‘374 42528
without significant information loss. Tt ime (ms) 7 T
Some knowledge of the nature of the time-series is therefore Int Power Consumption (MA) 96.39 | 134.79

essential. This is a reasonable assumption given that WE&Ns a
not general-purpose machines and applications are degtlop
to achieve a very specific and well-defined goal. During appli
cation development, which is often intertwined with hardsva Unit (FPU) on board, the resulting performance of the code
engineering, data can be collected and processed in ordelV&s rather disappointing. The various floating point openat
make a judgment about the information content and the chof@rformed in software slowed down a single conversion to
of the appropriate compression ratio. One way of doing thapproximately 113ms and this time was almost impossible to
is converting the data using different compression ratius aimprove without removing the floating point operations. The
evaluating the impact to CED accuracy. importance of reducing active time stems from the fact that
The logical steps taken by SAX are: (). initializationthere is a direct relationship of CPU active time and power
(b). normalization (z-standardization) of the time-sgri€c). consumption and for the specific CPU used, idle time reduces
construction of a Piecewise Aggregate Approximation (PAAQUrrent consumption by up to a factor of 33.
and (d.) construction of string from the PAA representation In order to improve the slow performance of the algo-
We refer readers not familiar with the PAA representatiod arfithm we targeted the floating-point operations and decided
the SAX algorithm to one of the SAX papefs]14] that explain® replace them with integers. There are a few approaches
the approach in more detail. Figure 2 shows the process; tRearithmetic approximation for chips without FPU, inclodi
dotted-line box represents alternative detection optitvag binary scaling, fixed-point and modular arithmetic. We e t
they share one common goal: they take the string as input dRteger scaling approach, although we relax the requirémen
attempt to determine whether this string represents anuahughat the scaling factor needs to be a power of 2.
or interesting set of data points. One of the trade-offs that we had to settle is whether for
Having provided an overview of the algorithm, we nowhe sake of simplicity and performance to sacrifice a little
turn our attention to our efficient implementation of SAX angbrecision. Since we are eliminating the need for floatingvpo
its suitability for the WSN setting. Our first implementatio precision by scaling, and at the same time we avoid using
attempt was a simple line-for-line port of SAX from MAT-arbitrary large storage types such as bit vectors, we sarifi
LAB to nesC, the programming language used by TinyO# terms of accuracy.
The symbolic conversion relied on numerous floating-point The idea behind scaling, is multiplication by an integer
operations, and since our target platform has no FloatmigtP which is a power of 2 and then, if necessary, division by



Fig. 3. Comparison of integer approximation against fl@agoint con- In terms of accuracy we tested the approximation method
version. The SIZE attribute refers to the input size of timeetiseries to be using a sample from the uniform distribution. The results

ted by SAX. . . . ) .
converted by deviated slightly from results obtained by the same alforit

350 . . i . . .

T ! | | | | | | with floating-point operations running on a desktop PC. BEmpi

INT - - ically, the arithmetic mean of the differences was 0.085"avh
800 1= m the median of the differences was much smaller at 0.0026.
These differences are taken by comparing strings using the
- SAX distance metric that lower-bounds the Euclidean distan
Approximating SAX using integers instead of floating-point
- numbers, allows for more efficient operation by the WSN
nodes. The CPU idle time is increased and the gain is a
significant power saving that enables us to perform a range
of other functions such as task the sensors, write to or read
from the external flash chip, use the radio if necessary, and s
on. Most importantly, further power savings can be gained by
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the monitored phenomenon.

IIl. DETECTIONFUNCTIONS

Up to this point we describeadowwe obtain the string using

SAX. Now we shift focus orwhat we use the string for and

a power of 2. Care has to be taken so the "multiply” stagg,, e perform Complex Event Detection with it.
produces no integer overflow which would lead to undefinedy, provide four different modes of detection which we will

behavior. . . ~_describe in more detail.
As a simple example of scaling consider the way TinyOS
implements timers: i mer <TM | | i > interface provides A. Fast Multiple-pattern Matching with a Suffix Array

millisecond accuracy by assuming 1 second equals 1,024yhen a large numbers of patterns, each representing a com-
milliseconds. In this manner the floating point number 1.87@6)( event, is known in advance and matching is performed
seconds can be represented byiart with the value 1,920 py searching against this database of patterns, an efficient
milliseconds. Thus by sacrificing a little accuracy for theschnique is needed that scales well as the cumulative size
sake of performance big savings can be made in currgfitthe patterns grows. The output of the symbolic conversion
consumption. algorithm is always fixed in size and is equal to the size of
Ensuring overflow is avoided is essential therefore we plasadings array divided by the compression ratio. While this
and provide for this in our source code. This is straightlmav is sufficient for the case where the user specifies a pattern
to implement since we know the maximum sensor readinigat equals this fixed size, it scales poorly if a user wisbes t
value beforehand which is 4095 for the 12-bit Analog-tasupply a pattern of arbitrary size or many patterns of fixed or
Digital Converter (ADC) of the TMote. For instance wherarbitrary size.
we calculate the sum of the readings vector, we know thatAs an example consider a user who is interested in 12
as long as the sum stays bel@# no overflow can occur. different events described by patterns that are 8-chartartg
The largest built-in type supported by the compiler is 8ebyleach. We now have a choice of either matching the output
long unsignea®* which allows for readings vectors with sizesf the symbolic conversion to each one of these 12 patterns
well over 10° — a lot more than our application would needor concatenating the 12 patterns making sure each one is
Similar planning logic applies for other calculations amd f terminated i.e. by appendingd so there are no spurious
unsafe code that was not guaranteed to stay within aritemethatches at the end of one string and beginning of another.
bounds, we apply necessary operations such as division. At is clear that individual matching scales poorly as the
good example of this is the PAA calculation or the integefumber of patterns increases. So concatenation and linear
square root. search used to determine whether the stithgenerated by
The integer-based approximation of SAX reduced the tingymbolic conversion of the sensor readings exists in the tex
for a single conversion from 113ms to just 24ms (Table 1J, submitted by the user, is a better option and the problem
with a corresponding significant reduction in power consumfs how equivalent to the well-documented substring matghin
tion. The “Size” attribute shown on the table and on Figure Zoblem. The linear search algorithm has a worst-case mgnni
refers to the input size which is the length of the time-seri¢ime of O(nm) wheren is the length of the texi” andm is
data that we pass on to SAX for symbolic conversion. the size of the sensor-generated strigThis is without any



Fig. 4. Comparison of suffix array binary search againstlireearch. The search thus giving the algorithm an optimal timefnlogn).

SIZE attribute refers to the cumulative size of the concatith patterns (each The key in the search is that$ occurs at all inT” then all the
attern representing a complex event). . . .

P P 9 P ) locations of those occurrences will be grouped consedutive

" Suffix _||_ | | A in Pos. Using the binary search we start at the middle position
Linear — ¢ — X of the suffix array, that is?os(| 5 |); if S is lexically smaller
than the string in the middle position, thénhwill be in the
upper half.

The true behavior of the algorithm depends on how many
long prefixes ofS occur inT'. If very few long prefixes of
P occur inT then it will rarely happen that a specific lexical
comparison will actually takeéd(m) time and therefore the
boundO(mlogn) is rather pessimisti¢ [19]. The expected time
of the algorithm is much closer t@(m+logm), and in any
case this time bound can be guaranteed by augmenting the
data structure with longest common prefixcp) information.
This effectively accelerates the binary search by reduttieg
number of character examinations to at most one per iteratio

Another practical trick [[2[1] used to accelerate the binary
search is to “unroll” the loop expression. The positiong tha
binary search will examine are known in advance. So theeefor
the binary search loop can be “unrolled” by hard-coding ¢hos
positions.

For the sake of simplicity the version of suffix array we

pre-processing and without using any of the available exdBtplemented is basic. The binary search of the data streictur
matching algorithms such as the Boyer-Moore or the Knutf§ Performed without any tricks to accelerate it. The arsy i
Morris-Pratt [19]. built using insertion sort and since we only build the stuoet

But it turns out there is a better and much faster way. A da@iice at start-up, the construction cost is not that impartan
structure that is used extensively for fast string matcfigrtge "€ search performance carries much more significance since
suffix tree that can be used to locate a substring in the trédS performed at every timer tick i.e. every time a string is
in O(m) time, assuming thakE character comparisons takegepergted by the streaming sensor readings, we searctafor th
constant time. We have decided to use a similar data steict§FiNg in the pruned suffix array structure.

called the Suffix Array[[20] for the following reasons: The results of a comparison between binary searching the
. Itis three to five times more space efficient suffix array and performing a linear search are shown in Eigur

« It can be used to quickly find every occurrence of 4 The Sizeattribute refers to the size df, the cumulative
substring in the text at a time competitive and in SOm%'ze of the concatenated patterns, andTinee attribute refers

cases slightly better than that of suffix trees to the time it took a WSN node to perform each type of
« It is a good fit for TinyOS — the most po;;ular WSNsearch. We can see that as that size grows the linear search

platform — that offers no Dynamic Memory AIIocationbecomes increasingly.slower. None of the test cases regrese
and thus would make the suffix tree construction wastefflj WoSt-case for the linear search. The worst-case is vghen

since we would have to pre-allocate space for the maxt- r;ot found att ta_L"t_'nT' In ad_d|t|on thf?ret aretplentyﬁ_more
mum possible number of descendants at every node. gteizo(r’]mance statistics comparing a suffix tree 1o a sutfiarr
The optimal cost of searching for a substring in a suffix array Withl this detection method the user can specify arbitrarily
is O(m-+logn). large numbers of patterns. Our search is both space and time

A suffix array 1S deflned as follows_[19]: given an- - efficient, scaling well as the number of patterns increases.
character string’, a suffix array forl" called Pos is an array

of the integers in the range of 0 to — 1, specifying the
lexicographic order of the suffixes of the stringl".

The steps we follow to build a suffix array for the patterns In this section we introduce the case where a user is either
submitted by the user are: (i.) we first build a suffix arrainterested in one type of pattern or generally interested in
for each pattern, (ii.) we then merge the results droppingusual patterns. In the former case the pattern supplied is
duplicates, and (iii.) finally we prune the array by removingonverted to a string using the symbolic conversion process
small suffixes. For instance, if the minimum user-suppliesutlined earlier and submitted to the nodes of the WSN either
pattern has a length of 5 or over then any suffix with sizat the pre-deployment phase or dynamically during WSN
smaller than 5 can be removed from the structure. operation. In the latter case if no pattern is supplied thieso

To search for a substring using the suffix array we use binapend a fraction of time training with data known to be normal

TIME (ms)

100 150 200 250
SIZE

B. Exact and Approximate Matching



They can then use the distances observed during trainingated improved longevity. The added benefit of DSFM is that
deduce what may constitute an unusual pattern. nodes deployed in hostile and unreachable terrains can now

1) Known Pattern:In this case each string generated by thmake autonomous decisions about when to increase their
sensor node is compared against the known pattern suppliedsempling frequency instead of communicating with stations
the user. The comparison itself is distance-based and the Skycated far away over expensive links.
distance function used lower-bounds the Euclidean distanc . .

Mm2]. C. Probabilistic Detection

If the distance is zero it means either that the two strings With symbolic conversion, we have a discrete process that
are equal or that the difference between the two strings isdnntinuously produces characters from a finite alphabet. We
only one character i.elist(a,b) = 0. It is worth noting that can view this process as a Markov chain where the set of states
assuming zero-distance for adjacent characters is thailtlef@quals the size of the alphabet. Formally the set of stéitiss
setting but it can be changed in an application-dependéht= {a,b, ¢, ...} andsize(S) = ¥ whereX is the alphabet.
manner. The distances look-up table can be very easily edapt If the process outputs; at time¢ and then it moves ta;
so that adjacent characters have distance greater than zatdimet + 1, the probability for this move is represented by
This may be attractive for applications with greater desect p;; and we formally say that we had a state transition from
sensitivity requirements or if it has to be determined whethstate: to j. The process can also remain to the state it is in
two strings are identical. with a probabilityp;;, that is when the current character in the

The distance-based function allows for approximate evestting is the same as the previous.
detection since an explicit distance from the given pattemm  To encode all the possible transitions, we create and pop-
be specified. Furthermore, other sophisticated techniqaes ulate a square matrix called the transition matrix. \We ignor
be used on a per-application basis to augment the brute-fostarting states and we assume that no absorbing states exist
matching. One of the advantages of using string represenftar simplicity, we assume a Markov chain of order one
tions is that application developers benefit from a hugealiypr however this is not a strict requirement; higher order (mefo
of string algorithms that are known to produce good results Markov chains can be used depending on the type of data and
other fields. application at hand.

Alternatively, other metrics such as edit distance, cigckl ~ We then use the Markov model built during the learning
distance, and so on, can be used. We have experimentbdse to predict path probabilities. A path probability &en
with a selection of metrics including the ubiquitous Euehdd thought of as a realization of a Markov chain as a path in
distance, global and local alignment and so on, but we foutithe through its state spade [22]. So a path probability &ahp
that the SAX distance metric is sufficiently accurate and fitr1, x2 ... z;) is sSimply P(X1, X2 ... Xy) = (21, 22...2) =
for the purpose of CED. P(X1 = 21)Pzi29Prsas - - - Duy_qz,- Probabilities for strings

2) Unknown Pattern: Another perhaps more interestinghat are very close t® can be flagged as events, as the
mode of operation is when the pattern is not supplied individual transitions in the string are highly unlikelyivgn
advance i.e. non-parametric event detection. In this mede, the data segment we have used to build the transition matrix.
train one or more nodes with a set of training data that isThe same approach can be used for predicting states
known to be normal. During the learning phase, a pointer io dense deployments: for instance if we assume an over-
the maximum distance between temporally adjacent stringimplified scenario of three nodes,b andc we can then have
is recorded. At the end of this phase the maximum distaneeand b outputting characters and probabilistically determine
effectively becomes théearneddistance and it is then usedthe characters for while ¢ is in sleep mode. We can then
to decide whether or not an event has occurred. alternate with the remaining nodes in the network, thusngavi

A benefit of using this Machine Learning inspired approadatnergy.
is that we can decide when to increase the sensors’ samFinally, our Markov model implementation is approximated
pling frequency on-the-fly thus achievid@dynamic Sampling using integer-based code. For example we also apply the
Frequency ManagemenfDSFM). If the maximum distance integer scaling technique in this case so the row probagsilit
set during learning phase is exceeded, then we can makehe matrix sum up to 1024 instead of one.

a decision to double or simply increase the timer sampling
frequency. This is an important feature since it allows sode
to do less work during times of relative calm and then sampleTo verify the appropriateness of SAX for CED we have
faster during periods of interest. If we take as an exampdebjected it to various data sets and event types. This ggoce
application the prediction of the onset of a forest fire, dgri also helped in gaining an insight for the information contzn

periods of inactivity we can choose to take one temperatute different data sets which in turn is valuable for deteing

reading every few minutes. If readings indicate the polisibi the one-shot initialization parameters — such as SAX input
of a fire then we can dynamically increase the timer frequensize and compression ratio — needed for successful detectio
without user intervention. The first data set we used 23] is from a WSN of 54 nodes

DSFM reduces the active CPU time of sensor nodes addployed at the Intel Lab at Berkeley. This set contains@ppr
therefore complements the general objective of power gavinmately 2.3 million readings of temperature, humidity,hlig

IV. EXPERIMENTAL RESULTS



Fig. 5. Approximate pattern matching: suppose that the sapplies the
pattern shown by the dotted line and requests to be inforrhpdtterns similar
to the one submitted. The algorithm finds a similar pattern patiern that
minimizes the string distance. This is the simplest type edrsh since it
requires one string comparison at each step and no furtioeegsing.

Fig. 6. Unknown pattern detection: suppose that a user &rdsted in
a type of event but is unable to describe it. The machine ilegrapproach
uses a learning phase to acquire distance information. figéndistances are
flagged as events as shown as by the spike near point 618 thatfi@ently
unusual compared to the rest of the data to be flagged as ah even
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and voltage sampled at a frequency of approximately 2Hnatch by using SAX or Euclidean distance. Figure 6 shows
There is a certain element of noise in the data mainly froen example of finding the most interesting data segment, in
failing sensors. It is importance to stress that in perfogni light readings from node 1, when no pattern is supplied. rAfte
CED we are not interested in outliers such as faulty readingsaining on the first third of the set, the point 618 was idieedi
Thus it was a requirement of the technique to be able &s the start of the pattern with the higher distance, which is
successfully disregard outliers. again correct as points 600-800 have a high percent dewiatio
Synthetic complex events were planted at different part obmpared to the rest of the data. Similar to the example of
the set and the ability of the algorithm to successfully deteFigure 1, this pattern indicates somebody switching thletdig
those events was evaluated. The synthetic events were comfor a brief moment.
structed by either picking values from a uniform distribati ~ We have also explored the performance of this technique
or by altering the values by a minimum of 15 % deviatioron high frequency ECG data obtained from the UCR Data
The output of this exercise were some useful default valoies Mining Archive [24]. The two cases we tested were a normal
parameters. For instance we have found that we are unablé&E@G turning to Super Ventricular and normal turning to
detect events that are described with less than 10 dataspoiialignant Ventricular. Detection was non-parametric and i
using an input size of 28 points or larger. By varying the inpipoth cases the exact point of change was identified giving 100
size from 16 points up to 836 we were able to establish th#t accuracy. No compression was used for this data set since
a useful value for this parameter is 40 points. The setting bfcarries a high information content.
40 points is sufficient to successfully detect complex event From the same archive we have used the set named “play-
between 10 points and 40 points. In addition, if the inpué sizng” which contains accelerometer data from a Sony ERS-210
is approximately twice the size of the event then compleXibo Robot. This data was sampled at 125Hz and it is 3-
events are detected with nearly 100 % accuracy. Similadymensional. We used the first third of the data as training se
a good choice for alphabet size is 10 after testing rangasd a 4:1 compression ratio. We were able to detect the most
between 5 and 20. As expected, mean and median distarioésresting change in the set (point 536).
grow proportionately to the alphabet size increase. Due to space restrictions we will not review the experiments
We have tested exact matching, approximate matching aindfurther detail here; we refer the interested reader to our
unknown pattern matching. Figure 5 aids in visualizing aprevious work [[25].
example of approximate matching. This temperature data isLastly, a demo was designed and presented where one
from node 4 of the Intel data set and it corresponds to tloe more sensor nodes train using light readings in a room.
week of 1st of March to the 7th of March 2004. The patter@omplex events are induced using variations of the brigggtne
shown in dotted blue line is a segment from the 18th of Marcbaused by a flash light over the light sensor similar to the
The position of the match is shown on the graph and is the bestrlier example given in Figure 1. The technique used was



able to demonstrate successful real-time CED running streams of data. The language would be able to execute both
WSN nodes. Further experiments to the same effect witin PCs and distributed sensors. The data stream management
different sensor data such as accelerometer, acoustic @andystem called WaveScope combines event-stream and data
on were performed using a multi-sensorl[26] plug in. Finallppanagement operations. Unfortunately, the paper desgribi
the robustness of the code has been verified by running ndéime system is a position paper so there is only a high-level
stop for a month and processing approximately one milliasiescription of the architecture and no current impleméomat
temperature readings. or mention of plans.
REED is an improvement on TinyDB_[B3]. It extends
TinyDB with its ability to support joins between sensor data
Event notification is important in WSNs and complex eventsnd static tables built outside the network. The tablesideits
are commonplace in a large number of applications. Howewde network describe events in terms of complex predicates.
the research to address CED does not completely reflect thEilese external tables are joined with the sensor readings
importance. table, and tuples that satisfy the predicate indicate negdi
One of the first papers that presented an event-based Apinterest e.g. where an event has occurred.
proach was Directed Diffusion_[27]. In that approach a node A somewhat different method that supports geographic
would request data by sending interests which are condgptugrouping of sensor nodes was presented in Abstract Regions
similar to subscriptions in a publish/subscribe systemtaDd[34], [35]. Abstract Regions is essentially a family of spht
found to match those interests is then sent towards that. noggerators for TinyOS that allows nodes to form groups with th
This addresses individual points of interest in the data bgbjective of data sharing and reduction within the groups by
did not offer the ability to describe more complex patteds. applying aggregate operators suchnas, max, sum and
different framework that is based on event classificatisthe so on. A different direction was presented in TINAI[36] where
on-line state trackind [28] approach. This technique siasif the TOL ERANCE keyword was introduced. Users could specify
two phases: the first phase is the learning process where newvel for tolerance e.g. if tolerance was set at 10% they onl
sensor readings are classified to states and the second ph@sgings that differed by more than this tolerance threshol
is the on-line status monitoring phase during which nodeguld get reported. The work by _[37] extended the types
are collaborating to update the overall status of the nd&twobf aggregates supported by introducing approximate gleanti
This is interesting work in a sense that it moves away froguch as the median, the consensus, the histogram and range
individual nodes’ readings and views the whole network ascferies.
state machine. Conceptually it is closer to our work since it
allows for more complex conditions in order to move from VI. DI1SCUSSION& CONCLUSIONS

one state to another. . .
. I We have taken a mature algorithm that is used — among
Another event-based technique based on thresholding is Ap:- . L .
her tasks — for conventional data mining in time-seriga da

roximate Cachingl[29] whereby nodes only report readings . . . . .
ﬁ they satisfy a cogn&?tign. A morye recent pager [%0] sugges%nd we have re-engineered it so it can run efficiently withan t

) . strict constraints of a WSN. Our method successfully addres
a mixture of hardware and software as a solution for detect- i . ]
) .@’ue following requirements:
ing rare and random events. The event types they consider
are tracking and detecting events using the eXtreme Scale It is light-weight but powerfulThe code for the conver-
Platform (XSM) mote equipped with infrared, magnetic and ~ Sion is less than 1Kb (compiled RAM image) and it only
acoustic sensors. Central to their architecture is theemnc  t@kes 24ms, allowing for both high-frequency sampling
of passive vigilance, which is inspired from sleep states of @and liberal use of other node components such as radio,
humans where the slightest noise can wake us up when we are and so on.
asleep. This is implemented with duty cycling and recovierab * It scales wellas the number of events increase. With
re-tasking. the pruned Suffix Array data structure we allow users
A similar approach[[31] proposes a sleep-scheduling al- to register many events without introducing a significant
gorithm that minimizes the surveillance delay (event detec ~ computational overhead.
tion delay) while it maximizes energy conservation. Sleep ¢ It reducesCPU idle time and can aid in limiting the
scheduling is coordinated locally in a fair manner, so alle® use of radio communication. This helps to achieve power
get their fair share of sleep. A minimal subset that ensures Savings and consequently longer network lifetime.
coverage of the sensing field is always awake in order to beConcluding, we have addressed a very common problem
able to capture rare events. Sleep scheduling is relatedrto m WSN, namely the requirement for CED. The tangible
DSFM approach. outcome is an efficient implementation of SAX that allows it
A first paper that addresses the need for CED is the one tioyrun in tiny resource-constrained sensor nodes. Furtberm
Girod et al [32]. In their work the authors suggest a systehy introducing a toolbox of detection mechanisms we offer
that would treat a sequence of samples (a sighal segmentjrage choice to the user of a reactive system. These facts
a basic data type and would offer a language (WaveScript)daomplement the goal of prolonging the useful lifetime of a
express signal processing programs as declarative queees WSN.

V. RELATED WORK



Finally, all the source code for the techniques described [3]

this paper has been implemented for TinyOS 2.x and ma[%g

available to the WSN community.
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