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Abstract—We present a novel approach for the on-line detec-
tion of Complex Events in Wireless Sensor Networks. Complex
Events are sets of data points that correspond to unusual patterns
that can not be detected using threshold-based techniques.Our
method uses an efficient implementation of SAX, a mature data
mining algorithm, that transforms a stream of readings into a
symbolic representation. Complex Event Detection is then per-
formed via four alternative modes: (a.) multiple pattern detection
using a suffix array, (b.) distance-based comparison, (c.) unknown
pattern detection, and (d.) probabilistic detection. The method
allows users to specify complex events as patterns or to search
for interesting changes without supplying any information. The
appropriateness of the approach has been verified by applying
it to four sensor data sets. In addition, we have developed an
efficient implementation for the TinyOS operating system, and
further validated our assertions by collecting and analyzing data
in real-time.

I. I NTRODUCTION

One of the most common uses of Wireless Sensor Networks
(WSNs) is to monitor the physical environment using a variety
of sensors that largely depend on the goal of the applica-
tion. Typically such sensors include temperature, humidity,
light, pressure, acceleration, vibration, air quality, and so on.
Monitoring can be passive or reactive; in the former model
readings are sent to a location outside the sensor network
where they are aggregated, processed and stored for future use.
The alternative is for time-sensitive response applications that
need to reactif andwhencertain conditions are met. Mining
sensor data is essentially the process of finding interesting
and/or unusual patterns in sensor readings. Often, in this
reactive scenario mining has to be performed as close to real-
time as possible, depending on how strict the requirements of
the application are. This mode of operation is conceptually
close to Event-Condition-Action (ECA) rules in conventional
database systems where an action has to be executed in
response to an event and one or more satisfied conditions.

Implementing the reactive model in desktop and server
class machines is well-understood. However WSNs introduce
some unique challenges with significant effects in system
and application design. Extending the useful lifetime of a
WSN [1] is one such challenge that perhaps carries the
most weight in terms of importance. The lower-end type of
WSN that we consider comprises devices that are extremely
resource constrained. In particular, power is the most scarce

resource that often imposes to the application designers the
need to regulate the usage of other components such as CPU,
radio, sensors, external flash and so on. A classic example
of this is the radio: sending a single bit over the radio can
consume the same energy as executing approximately 1,000
CPU instructions [2]. It is therefore clear that sending every
reading over the radio to a base station for processing and
out-of-network mining will significantly shorten the lifetime
of the WSN. One way to address this is to perform as much
of the computations as possible locally and only communicate
with neighbors and the outside world when it is absolutely
necessary.

The target platform considered is the lower-end WSN com-
prised of nodes such as the TMote Sky [3]. This type of node is
equipped with an ultra-low power Texas Instruments MSP430
F1611 16-bit RISC micro-controller. Additional components
such as storage and sensors can be added through the nodes’
expansion port. The hardware offers 10Kb of RAM, 48Kb
of Flash and is powered by a single pair of AA batteries.
Lifetime can range from over a year to a few hours depending
on how heavy the load on the resources is. To achieve
prolonged lifetime many applications enter low-power modes
by switching off or switching to stand-by components that are
not used. Spending as much time as possible in low-power
modes is therefore an important goal for almost any WSN
application.

A. Problem Statement

A Complex Event is an interesting or unusual pattern in
the collected data that can not be captured by threshold-based
techniques. Figure 1 shows such a complex event defined by
286 light sensor readings. The pattern is caused by switching
the lights on and off and the variations in the brightness are
induced by a dimmer. Readings below 50 Lux indicate a poorly
lit room and readings above 300-350 Lux indicate a well-lit
room. Although this example is oversimplified, it aims to show
that such a pattern can be extremely difficult and inefficient
to detect using thresholds.

For the remainder of this paper we will use the terms
pattern and Complex Eventinterchangeably. Note that our
definition of a Complex Event is somewhat different to the
notion of Complex Event Processing (CEP); CEP aims to
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Fig. 1. Example of a complex event: dimmer-induced variations in the
brightness of light in a room. We assume that the variations in the light
compose the pattern. Even this simple pattern would be difficult to detect
using traditional threshold-based techniques.
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process multiple individual events. We consider a Complex
Event a single conceptual entity that can not be broken down
to or described by individual events.

Complex Events are inherently difficult and in extreme cases
even impossible to describe. In some applications users wish
to be informed ofinterestingchanges but are able to describe
what constitutes interesting using only fuzzy and ambiguous
constructs. For instance, users of a soil moisture monitoring
application such as [4] are interested in rain. But they are
not generally interested in common rain; they would prefer
to be informed when it rains in a interesting and unusual
way, e.g. rain that can produce flash floods. It is difficult to
capture this requirement in a program using constructs suchas
if statements. Detection can be even impossible if the event
has not been witnessed yet. Hence a requirement was non-
parametric event detection. In this scenario WSN nodeslearn
from a portion of data that is known to be normal and they are
then able to detect events that do not fit in the learned state
of affairs. We will describe exactly how this is done in later
sections.

Another requirement for Complex Event Detection (CED),
is the case where the user is interested in a large number of
events. Even if the events can be described using programmatic
control flow, having a large number of conditional statements
and function calls is inefficient and wasteful. Bear in mind
that the sampling frequency of the data collection may be
determined by the application and this defines additional
requirements. A sample of the sensors once every second
allows for approximately one second — minus the time it
takes to sample the sensors — to perform other operations
such as CED, radio communication, logging of readings and

so on. We therefore need an approach that scales well as the
number of events a user is interested in increases.

Some example applications that share the above require-
ments to different extents include monitoring scenarios where
events are relatively infrequent and complex in nature — this
boredom punctuated by panicmodus operandi is characteristic
of a full class of WSN applications. Some example appli-
cations that could benefit from the reactive model proposed
in this paper include wildfire detection [5], vineyard environ-
mental conditions alerting [6], oceanography networks [7]for
tsunami detection [8] and out-patient activity alerting [9], [10],
[11].

The performance benefit of altering an application from
passive monitoring and out-of-network processing to reactive
alerting is substantial. Components such as the external flash
chip for logging data and the radio for communication are
inherently slow and power-hungry. Opting to use them only
if interesting patterns are detected can prolong the lifetime of
the network by an order of magnitude. The aim is to support
this goal by providing a framework for efficient CED.

B. Our Contribution

To perform efficient CED, we have adapted Symbolic
Aggregate ApproXimation (SAX) [12], [13], [14], [15], [16],
[17], a mature and efficient approach that is used for traditional
data mining tasks, to the unique requirements of WSNs. SAX
converts a set of sensor readings to a string and CED is
then performed by operating directly on the strings instead
of the sensor time-series data. We introduce an efficient
implementation of SAX using integer scaling that makes the
application of the technique feasible in WSNs. In addition,we
developed a toolbox of efficient CED methods that include:

1) Many-pattern Detection with a Suffix Array— essen-
tially we are binary searching a pruned suffix array
structure for the occurrence of a pattern,

2) Exact or Approximate Matching— where the pattern is
known beforehand,

3) Non-parametric Detection— where no pattern is spec-
ified in advance and sensor nodeslearn from a training
portion of the time series known to be normal, and

4) Probabilistic Detection with a Markov Chain— again
this relies on training on a portion of data known to be
normal; from this character frequencies and transition
probabilities are built. These are used to flag highly
improbable sequences as events.

We provide an experimental evaluation of the above meth-
ods and present insights learned from the implementation
process and running time analysis. All the code for the
approaches discussed in this paper has been implemented for
nodes running the TinyOS [18] operating system.

II. EFFICIENT SYMBOLIC CONVERSION

SAX is used for the symbolic conversion of sensor read-
ings. Essentially SAX maps one or more readingsrn ∈ Z

to a letter from a finite alphabetΣ according to a set of
well-defined rules. Formally the input is a set of readings
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R = {r1, r2, . . . , rn} and the output is a set of letters
S = {s1, s2, . . . , sm}, si ∈ Σ and0 < m ≤ n. In this respect
SAX is another quantization method.

Once the conversion is complete we have the setS which
we refer to as thestring. CED is then performed on this string,
essentially reducing the detection problem to a search and
match. Each sensor node can be thought of as a process that
outputs text and therefore CED is analogous to finding patterns
of interest within that text.

In a different system, the search for one or more patterns
can be performed offline which would be straightforward. But
in WSNs radio communication is expensive and for this reason
we aim to limit the usage of the radio component by enforcing
nodes to do the conversion locally and on-line. This means
that events are detected in-the-network and very close to their
physical occurrence location. In particular, in this section we
deal with the complexity that this fact introduces. We address
the unique constraints of the WSN by aggressively optimizing
every operation of the algorithm.

During the conversion process, we choose an appropriate
compression ratio (i.e.m < n) for the time-series data. Dif-
ferent applications carry different information content which
we learn empirically in our experiments over various data
sets. Data sampled at frequency higher than 10Hz is best
discretized using no compression. In contrast data such as
humidity and temperature sampled at low-frequencies can be
discretized with a compression ratio of2 : 1 or even4 : 1
without significant information loss.

Some knowledge of the nature of the time-series is therefore
essential. This is a reasonable assumption given that WSNs are
not general-purpose machines and applications are developed
to achieve a very specific and well-defined goal. During appli-
cation development, which is often intertwined with hardware
engineering, data can be collected and processed in order to
make a judgment about the information content and the choice
of the appropriate compression ratio. One way of doing this
is converting the data using different compression ratios and
evaluating the impact to CED accuracy.

The logical steps taken by SAX are: (a). initialization,
(b). normalization (z-standardization) of the time-series, (c).
construction of a Piecewise Aggregate Approximation (PAA)
and (d.) construction of string from the PAA representation.
We refer readers not familiar with the PAA representation and
the SAX algorithm to one of the SAX papers [14] that explains
the approach in more detail. Figure 2 shows the process; the
dotted-line box represents alternative detection optionsthat
they share one common goal: they take the string as input and
attempt to determine whether this string represents an unusual
or interesting set of data points.

Having provided an overview of the algorithm, we now
turn our attention to our efficient implementation of SAX and
its suitability for the WSN setting. Our first implementation
attempt was a simple line-for-line port of SAX from MAT-
LAB to nesC, the programming language used by TinyOS.
The symbolic conversion relied on numerous floating-point
operations, and since our target platform has no Floating-Point

Fig. 2. Steps followed in a symbolic conversion. Dotted lines represent
alternative choices for CED.
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TABLE I
PERFORMANCE TIMES FOR SYMBOLIC CONVERSION.

Size
Operation 40 80
FP time (ms) 113 226
FP Power Consumption (mA) 251.74 448.98

Int time (ms) 24 46
Int Power Consumption (mA) 96.39 134.79

Unit (FPU) on board, the resulting performance of the code
was rather disappointing. The various floating point operations
performed in software slowed down a single conversion to
approximately 113ms and this time was almost impossible to
improve without removing the floating point operations. The
importance of reducing active time stems from the fact that
there is a direct relationship of CPU active time and power
consumption and for the specific CPU used, idle time reduces
current consumption by up to a factor of 33.

In order to improve the slow performance of the algo-
rithm we targeted the floating-point operations and decided
to replace them with integers. There are a few approaches
to arithmetic approximation for chips without FPU, including
binary scaling, fixed-point and modular arithmetic. We use the
integer scaling approach, although we relax the requirement
that the scaling factor needs to be a power of 2.

One of the trade-offs that we had to settle is whether for
the sake of simplicity and performance to sacrifice a little
precision. Since we are eliminating the need for floating-point
precision by scaling, and at the same time we avoid using
arbitrary large storage types such as bit vectors, we sacrifice
in terms of accuracy.

The idea behind scaling, is multiplication by an integer
which is a power of 2 and then, if necessary, division by
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Fig. 3. Comparison of integer approximation against floating point con-
version. The SIZE attribute refers to the input size of the time series to be
converted by SAX.
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a power of 2. Care has to be taken so the “multiply” stage
produces no integer overflow which would lead to undefined
behavior.

As a simple example of scaling consider the way TinyOS
implements timers: aTimer<TMilli> interface provides
millisecond accuracy by assuming 1 second equals 1,024
milliseconds. In this manner the floating point number 1.875
seconds can be represented by anint with the value 1,920
milliseconds. Thus by sacrificing a little accuracy for the
sake of performance big savings can be made in current
consumption.

Ensuring overflow is avoided is essential therefore we plan
and provide for this in our source code. This is straightforward
to implement since we know the maximum sensor reading
value beforehand which is 4095 for the 12-bit Analog-to-
Digital Converter (ADC) of the TMote. For instance when
we calculate the sum of the readings vector, we know that
as long as the sum stays below264 no overflow can occur.
The largest built-in type supported by the compiler is 8-byte
long unsigned264 which allows for readings vectors with sizes
well over106 — a lot more than our application would need.
Similar planning logic applies for other calculations and for
unsafe code that was not guaranteed to stay within arithmetic
bounds, we apply necessary operations such as division. A
good example of this is the PAA calculation or the integer
square root.

The integer-based approximation of SAX reduced the time
for a single conversion from 113ms to just 24ms (Table 1),
with a corresponding significant reduction in power consump-
tion. The “Size” attribute shown on the table and on Figure 3
refers to the input size which is the length of the time-series
data that we pass on to SAX for symbolic conversion.

In terms of accuracy we tested the approximation method
using a sample from the uniform distribution. The results
deviated slightly from results obtained by the same algorithm
with floating-point operations running on a desktop PC. Empir-
ically, the arithmetic mean of the differences was 0.0857 while
the median of the differences was much smaller at 0.0026.
These differences are taken by comparing strings using the
SAX distance metric that lower-bounds the Euclidean distance.

Approximating SAX using integers instead of floating-point
numbers, allows for more efficient operation by the WSN
nodes. The CPU idle time is increased and the gain is a
significant power saving that enables us to perform a range
of other functions such as task the sensors, write to or read
from the external flash chip, use the radio if necessary, and so
on. Most importantly, further power savings can be gained by
reducing radio communication. There is no need anymore to
report or log every single reading. The radio component can
be switched off and only periodically power up to transmit
interesting patterns in the text that denote unusual activity in
the monitored phenomenon.

III. D ETECTION FUNCTIONS

Up to this point we describedhowwe obtain the string using
SAX. Now we shift focus onwhat we use the string for and
how we perform Complex Event Detection with it.

We provide four different modes of detection which we will
describe in more detail.

A. Fast Multiple-pattern Matching with a Suffix Array

When a large numbers of patterns, each representing a com-
plex event, is known in advance and matching is performed
by searching against this database of patterns, an efficient
technique is needed that scales well as the cumulative size
of the patterns grows. The output of the symbolic conversion
algorithm is always fixed in size and is equal to the size of
readings array divided by the compression ratio. While this
is sufficient for the case where the user specifies a pattern
that equals this fixed size, it scales poorly if a user wishes to
supply a pattern of arbitrary size or many patterns of fixed or
arbitrary size.

As an example consider a user who is interested in 12
different events described by patterns that are 8-character long
each. We now have a choice of either matching the output
of the symbolic conversion to each one of these 12 patterns
or concatenating the 12 patterns making sure each one is
terminated i.e. by appending\0 so there are no spurious
matches at the end of one string and beginning of another.

It is clear that individual matching scales poorly as the
number of patterns increases. So concatenation and linear
search used to determine whether the stringS generated by
symbolic conversion of the sensor readings exists in the text
T submitted by the user, is a better option and the problem
is now equivalent to the well-documented substring matching
problem. The linear search algorithm has a worst-case running
time of O(nm) wheren is the length of the textT andm is
the size of the sensor-generated stringS. This is without any
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Fig. 4. Comparison of suffix array binary search against linear search. The
SIZE attribute refers to the cumulative size of the concatenated patterns (each
pattern representing a complex event).
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pre-processing and without using any of the available exact
matching algorithms such as the Boyer-Moore or the Knuth-
Morris-Pratt [19].

But it turns out there is a better and much faster way. A data
structure that is used extensively for fast string matchingis the
suffix tree that can be used to locate a substring in the tree
in O(m) time, assuming thatΣ character comparisons take
constant time. We have decided to use a similar data structure
called the Suffix Array [20] for the following reasons:

• It is three to five times more space efficient,
• It can be used to quickly find every occurrence of a

substring in the text at a time competitive and in some
cases slightly better than that of suffix trees,

• It is a good fit for TinyOS — the most popular WSN
platform — that offers no Dynamic Memory Allocation
and thus would make the suffix tree construction wasteful
since we would have to pre-allocate space for the maxi-
mum possible number of descendants at every node.

The optimal cost of searching for a substring in a suffix array
is O(m+logn).

A suffix array is defined as follows [19]: given ann-
character stringT , a suffix array forT calledPos is an array
of the integers in the range of 0 ton − 1, specifying the
lexicographic order of then suffixes of the stringT .

The steps we follow to build a suffix array for the patterns
submitted by the user are: (i.) we first build a suffix array
for each pattern, (ii.) we then merge the results dropping
duplicates, and (iii.) finally we prune the array by removing
small suffixes. For instance, if the minimum user-supplied
pattern has a length of 5 or over then any suffix with size
smaller than 5 can be removed from the structure.

To search for a substring using the suffix array we use binary

search thus giving the algorithm an optimal time ofO(mlogn).
The key in the search is that ifS occurs at all inT then all the
locations of those occurrences will be grouped consecutively
in Pos. Using the binary search we start at the middle position
of the suffix array, that isPos(⌊n

2
⌋); if S is lexically smaller

than the string in the middle position, thenS will be in the
upper half.

The true behavior of the algorithm depends on how many
long prefixes ofS occur in T . If very few long prefixes of
P occur inT then it will rarely happen that a specific lexical
comparison will actually takeΘ(m) time and therefore the
boundO(mlogn) is rather pessimistic [19]. The expected time
of the algorithm is much closer toO(m+logm), and in any
case this time bound can be guaranteed by augmenting the
data structure with longest common prefix (Lcp) information.
This effectively accelerates the binary search by reducingthe
number of character examinations to at most one per iteration.

Another practical trick [21] used to accelerate the binary
search is to “unroll” the loop expression. The positions that the
binary search will examine are known in advance. So therefore
the binary search loop can be “unrolled” by hard-coding those
positions.

For the sake of simplicity the version of suffix array we
implemented is basic. The binary search of the data structure
is performed without any tricks to accelerate it. The array is
built using insertion sort and since we only build the structure
once at start-up, the construction cost is not that important.
The search performance carries much more significance since
it is performed at every timer tick i.e. every time a string is
generated by the streaming sensor readings, we search for that
string in the pruned suffix array structure.

The results of a comparison between binary searching the
suffix array and performing a linear search are shown in Figure
4. The Sizeattribute refers to the size ofT , the cumulative
size of the concatenated patterns, and theTimeattribute refers
to the time it took a WSN node to perform each type of
search. We can see that as that size grows the linear search
becomes increasingly slower. None of the test cases represent
a worst-case for the linear search. The worst-case is whenS

is not found at all inT . In addition there are plenty more
performance statistics comparing a suffix tree to a suffix array
at [20].

With this detection method the user can specify arbitrarily
large numbers of patterns. Our search is both space and time
efficient, scaling well as the number of patterns increases.

B. Exact and Approximate Matching

In this section we introduce the case where a user is either
interested in one type of pattern or generally interested in
unusual patterns. In the former case the pattern supplied is
converted to a string using the symbolic conversion process
outlined earlier and submitted to the nodes of the WSN either
at the pre-deployment phase or dynamically during WSN
operation. In the latter case if no pattern is supplied the nodes
spend a fraction of time training with data known to be normal.
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They can then use the distances observed during training to
deduce what may constitute an unusual pattern.

1) Known Pattern:In this case each string generated by the
sensor node is compared against the known pattern supplied by
the user. The comparison itself is distance-based and the SAX
distance function used lower-bounds the Euclidean distance
[12].

If the distance is zero it means either that the two strings
are equal or that the difference between the two strings is in
only one character i.e.dist(a, b) = 0. It is worth noting that
assuming zero-distance for adjacent characters is the default
setting but it can be changed in an application-dependent
manner. The distances look-up table can be very easily adapted
so that adjacent characters have distance greater than zero.
This may be attractive for applications with greater detection
sensitivity requirements or if it has to be determined whether
two strings are identical.

The distance-based function allows for approximate event
detection since an explicit distance from the given patterncan
be specified. Furthermore, other sophisticated techniquescan
be used on a per-application basis to augment the brute-force
matching. One of the advantages of using string representa-
tions is that application developers benefit from a huge library
of string algorithms that are known to produce good results in
other fields.

Alternatively, other metrics such as edit distance, city block
distance, and so on, can be used. We have experimented
with a selection of metrics including the ubiquitous Euclidean
distance, global and local alignment and so on, but we found
that the SAX distance metric is sufficiently accurate and fit
for the purpose of CED.

2) Unknown Pattern: Another perhaps more interesting
mode of operation is when the pattern is not supplied in
advance i.e. non-parametric event detection. In this mode,we
train one or more nodes with a set of training data that is
known to be normal. During the learning phase, a pointer to
the maximum distance between temporally adjacent strings
is recorded. At the end of this phase the maximum distance
effectively becomes thelearneddistance and it is then used
to decide whether or not an event has occurred.

A benefit of using this Machine Learning inspired approach
is that we can decide when to increase the sensors’ sam-
pling frequency on-the-fly thus achievingDynamic Sampling
Frequency Management(DSFM). If the maximum distance
set during learning phase is exceeded, then we can make
a decision to double or simply increase the timer sampling
frequency. This is an important feature since it allows nodes
to do less work during times of relative calm and then sample
faster during periods of interest. If we take as an example
application the prediction of the onset of a forest fire, during
periods of inactivity we can choose to take one temperature
reading every few minutes. If readings indicate the possibility
of a fire then we can dynamically increase the timer frequency
without user intervention.

DSFM reduces the active CPU time of sensor nodes and
therefore complements the general objective of power savings

and improved longevity. The added benefit of DSFM is that
nodes deployed in hostile and unreachable terrains can now
make autonomous decisions about when to increase their
sampling frequency instead of communicating with stations
located far away over expensive links.

C. Probabilistic Detection

With symbolic conversion, we have a discrete process that
continuously produces characters from a finite alphabet. We
can view this process as a Markov chain where the set of states
equals the size of the alphabet. Formally the set of statesS is
S = {a, b, c, . . . } andsize(S) = Σ whereΣ is the alphabet.

If the process outputsxi at time t and then it moves toxj

at time t + 1, the probability for this move is represented by
pij and we formally say that we had a state transition from
statei to j. The process can also remain to the state it is in
with a probabilitypii, that is when the current character in the
string is the same as the previous.

To encode all the possible transitions, we create and pop-
ulate a square matrix called the transition matrix. We ignore
starting states and we assume that no absorbing states exist.
For simplicity, we assume a Markov chain of order one
however this is not a strict requirement; higher order (memory)
Markov chains can be used depending on the type of data and
application at hand.

We then use the Markov model built during the learning
phase to predict path probabilities. A path probability canbe
thought of as a realization of a Markov chain as a path in
time through its state space [22]. So a path probability for path
(x1, x2 . . . xt) is simplyP (X1, X2 . . .Xt) = (x1, x2 . . . xt) =
P (X1 = x1)px1x2

px2x3
. . . pxt−1xt

. Probabilities for strings
that are very close to0 can be flagged as events, as the
individual transitions in the string are highly unlikely, given
the data segment we have used to build the transition matrix.

The same approach can be used for predicting states
in dense deployments: for instance if we assume an over-
simplified scenario of three nodes,a, b andc we can then have
a and b outputting characters and probabilistically determine
the characters forc while c is in sleep mode. We can then
alternate with the remaining nodes in the network, thus saving
energy.

Finally, our Markov model implementation is approximated
using integer-based code. For example we also apply the
integer scaling technique in this case so the row probabilities
of the matrix sum up to 1024 instead of one.

IV. EXPERIMENTAL RESULTS

To verify the appropriateness of SAX for CED we have
subjected it to various data sets and event types. This process
also helped in gaining an insight for the information content of
the different data sets which in turn is valuable for determining
the one-shot initialization parameters — such as SAX input
size and compression ratio — needed for successful detection.

The first data set we used [23] is from a WSN of 54 nodes
deployed at the Intel Lab at Berkeley. This set contains approx-
imately 2.3 million readings of temperature, humidity, light
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Fig. 5. Approximate pattern matching: suppose that the usersupplies the
pattern shown by the dotted line and requests to be informed of patterns similar
to the one submitted. The algorithm finds a similar pattern — apattern that
minimizes the string distance. This is the simplest type of search since it
requires one string comparison at each step and no further processing.
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and voltage sampled at a frequency of approximately 2Hz.
There is a certain element of noise in the data mainly from
failing sensors. It is importance to stress that in performing
CED we are not interested in outliers such as faulty readings.
Thus it was a requirement of the technique to be able to
successfully disregard outliers.

Synthetic complex events were planted at different part of
the set and the ability of the algorithm to successfully detect
those events was evaluated. The synthetic events were con-
structed by either picking values from a uniform distribution
or by altering the values by a minimum of 15 % deviation.
The output of this exercise were some useful default values for
parameters. For instance we have found that we are unable to
detect events that are described with less than 10 data points,
using an input size of 28 points or larger. By varying the input
size from 16 points up to 836 we were able to establish that
a useful value for this parameter is 40 points. The setting of
40 points is sufficient to successfully detect complex events
between 10 points and 40 points. In addition, if the input size
is approximately twice the size of the event then complex
events are detected with nearly 100 % accuracy. Similarly
a good choice for alphabet size is 10 after testing ranges
between 5 and 20. As expected, mean and median distances
grow proportionately to the alphabet size increase.

We have tested exact matching, approximate matching and
unknown pattern matching. Figure 5 aids in visualizing an
example of approximate matching. This temperature data is
from node 4 of the Intel data set and it corresponds to the
week of 1st of March to the 7th of March 2004. The pattern
shown in dotted blue line is a segment from the 18th of March.
The position of the match is shown on the graph and is the best

Fig. 6. Unknown pattern detection: suppose that a user is interested in
a type of event but is unable to describe it. The machine learning approach
uses a learning phase to acquire distance information. Thenhigh distances are
flagged as events as shown as by the spike near point 618 that issufficiently
unusual compared to the rest of the data to be flagged as an event.
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match by using SAX or Euclidean distance. Figure 6 shows
an example of finding the most interesting data segment, in
light readings from node 1, when no pattern is supplied. After
training on the first third of the set, the point 618 was identified
as the start of the pattern with the higher distance, which is
again correct as points 600-800 have a high percent deviation
compared to the rest of the data. Similar to the example of
Figure 1, this pattern indicates somebody switching the lights
on for a brief moment.

We have also explored the performance of this technique
on high frequency ECG data obtained from the UCR Data
Mining Archive [24]. The two cases we tested were a normal
ECG turning to Super Ventricular and normal turning to
Malignant Ventricular. Detection was non-parametric and in
both cases the exact point of change was identified giving 100
% accuracy. No compression was used for this data set since
it carries a high information content.

From the same archive we have used the set named “play-
ing” which contains accelerometer data from a Sony ERS-210
Aibo Robot. This data was sampled at 125Hz and it is 3-
dimensional. We used the first third of the data as training set
and a 4:1 compression ratio. We were able to detect the most
interesting change in the set (point 536).

Due to space restrictions we will not review the experiments
in further detail here; we refer the interested reader to our
previous work [25].

Lastly, a demo was designed and presented where one
or more sensor nodes train using light readings in a room.
Complex events are induced using variations of the brightness
caused by a flash light over the light sensor similar to the
earlier example given in Figure 1. The technique used was
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able to demonstrate successful real-time CED running on
WSN nodes. Further experiments to the same effect with
different sensor data such as accelerometer, acoustic and so
on were performed using a multi-sensor [26] plug in. Finally
the robustness of the code has been verified by running non-
stop for a month and processing approximately one million
temperature readings.

V. RELATED WORK

Event notification is important in WSNs and complex events
are commonplace in a large number of applications. However
the research to address CED does not completely reflect their
importance.

One of the first papers that presented an event-based Ap-
proach was Directed Diffusion [27]. In that approach a node
would request data by sending interests which are conceptually
similar to subscriptions in a publish/subscribe system. Data
found to match those interests is then sent towards that node.
This addresses individual points of interest in the data but
did not offer the ability to describe more complex patterns.A
different framework that is based on event classification, is the
on-line state tracking [28] approach. This technique consists of
two phases: the first phase is the learning process where new
sensor readings are classified to states and the second phase
is the on-line status monitoring phase during which nodes
are collaborating to update the overall status of the network.
This is interesting work in a sense that it moves away from
individual nodes’ readings and views the whole network as a
state machine. Conceptually it is closer to our work since it
allows for more complex conditions in order to move from
one state to another.

Another event-based technique based on thresholding is Ap-
proximate Caching [29] whereby nodes only report readings
if they satisfy a condition. A more recent paper [30] suggests
a mixture of hardware and software as a solution for detect-
ing rare and random events. The event types they consider
are tracking and detecting events using the eXtreme Scale
Platform (XSM) mote equipped with infrared, magnetic and
acoustic sensors. Central to their architecture is the concept
of passive vigilance, which is inspired from sleep states of
humans where the slightest noise can wake us up when we are
asleep. This is implemented with duty cycling and recoverable
re-tasking.

A similar approach [31] proposes a sleep-scheduling al-
gorithm that minimizes the surveillance delay (event detec-
tion delay) while it maximizes energy conservation. Sleep
scheduling is coordinated locally in a fair manner, so all nodes
get their fair share of sleep. A minimal subset that ensures
coverage of the sensing field is always awake in order to be
able to capture rare events. Sleep scheduling is related to our
DSFM approach.

A first paper that addresses the need for CED is the one by
Girod et al [32]. In their work the authors suggest a system
that would treat a sequence of samples (a signal segment) as
a basic data type and would offer a language (WaveScript) to
express signal processing programs as declarative queriesover

streams of data. The language would be able to execute both
on PCs and distributed sensors. The data stream management
system called WaveScope combines event-stream and data
management operations. Unfortunately, the paper describing
the system is a position paper so there is only a high-level
description of the architecture and no current implementation
or mention of plans.

REED is an improvement on TinyDB [33]. It extends
TinyDB with its ability to support joins between sensor data
and static tables built outside the network. The tables outside
the network describe events in terms of complex predicates.
These external tables are joined with the sensor readings
table, and tuples that satisfy the predicate indicate readings
of interest e.g. where an event has occurred.

A somewhat different method that supports geographic
grouping of sensor nodes was presented in Abstract Regions
[34], [35]. Abstract Regions is essentially a family of spatial
operators for TinyOS that allows nodes to form groups with the
objective of data sharing and reduction within the groups by
applying aggregate operators such asmin, max, sum, and
so on. A different direction was presented in TINA [36] where
theTOLERANCE keyword was introduced. Users could specify
a level for tolerance e.g. if tolerance was set at 10% then only
readings that differed by more than this tolerance threshold
would get reported. The work by [37] extended the types
of aggregates supported by introducing approximate quantiles
such as the median, the consensus, the histogram and range
queries.

VI. D ISCUSSION& CONCLUSIONS

We have taken a mature algorithm that is used — among
other tasks — for conventional data mining in time-series data
and we have re-engineered it so it can run efficiently within the
strict constraints of a WSN. Our method successfully addresses
the following requirements:

• It is light-weight but powerful. The code for the conver-
sion is less than 1Kb (compiled RAM image) and it only
takes 24ms, allowing for both high-frequency sampling
and liberal use of other node components such as radio,
and so on.

• It scales wellas the number of events increase. With
the pruned Suffix Array data structure we allow users
to register many events without introducing a significant
computational overhead.

• It reducesCPU idle time and can aid in limiting the
use of radio communication. This helps to achieve power
savings and consequently longer network lifetime.

Concluding, we have addressed a very common problem
in WSN, namely the requirement for CED. The tangible
outcome is an efficient implementation of SAX that allows it
to run in tiny resource-constrained sensor nodes. Furthermore,
by introducing a toolbox of detection mechanisms we offer
more choice to the user of a reactive system. These facts
complement the goal of prolonging the useful lifetime of a
WSN.
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Finally, all the source code for the techniques described in
this paper has been implemented for TinyOS 2.x and made
available to the WSN community.
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