
Integer-based Optimisations for

Resource-constrained Sensor Platforms

Michael Zoumboulakis and George Roussos

School of Computer Science and Information Systems
Birkbeck College, University of London

{mz,gr}@dcs.bbk.ac.uk

Abstract. In this paper we argue that the fundamental constrains of
WSNs impose the need to re-discover programming optimisation tech-
niques that were widely used a few decades ago but are less common
today, at least in the conventional computing arena. Integer techniques,
code tuning and profiling are absolutely essential in the world of the very
small devices. We present three alternative methods of integer program-
ming: scaling, fixed-point and rational arithmetic. These techniques are
complemented by a brief review of bitwise and general optimisation tech-
niques. As artifact of the usefulness of these techniques, we discuss the
implementation details of a data mining algorithm that gained over a
factor of 10 improvement in performance as a result of integer program-
ming. We conclude by presenting a widely accepted time model adapted
for a WSN platform.

Key words: Wireless Sensor Networks, Optimisation, Integer Tech-
niques, Fixed-Point Arithmetic, Rational Arithmetic, Data Mining

1 Introduction

There was a time when programmers used to go to great lengths in order to
ensure that their programs were efficient. Computers were slow and expensive
pushing program performance optimisation very high on the list of software en-
gineering priorities. As the years passed, advances in circuit design and memory
density translated into faster machine speeds. Today we live in an era of power-
ful, transistor-dense, multi-core machines with abundant memory and storage.
Inevitably, this fact had an impact in modern software engineering priorities:
programmers chose to attach more gravity to other important goals such as sta-
bility, portability and maintainability whilst performance and efficiency gradu-
ally dropped towards the bottom of the priorities list.

However, the resource-constrained end of the Wireless Sensor Network (WSN)
spectrum is comprised of devices whose datasheets are very similar to those of
computers from a couple of decades ago. Furthermore, we know that the rate of
growth of WSN nodes’ capabilities is much slower than that of their consumer
electronics counterparts. For instance, memory in low-cost, ultra-low power de-
vices does not track Moore’s law — a micro-controller RAM costs three orders

2 Michael Zoumboulakis and George Roussos

of magnitude more than PC SRAM and five orders more than PC DRAM [12].
Even more importantly, energy density does not seem to track Moore’s law either
— over a decade energy density of commercially available batteries has changed
only modestly [4].

These fundamental constraints suggest that programming optimisation tech-
niques widely used a few decades ago need to be re-discovered. Consequently,
we address the importance of programming efficiency in WSNs and we discuss
methods that contribute to the attainment of this goal.

In the remainder of the paper, we draw from our own experience of imple-
menting an established data mining algorithm in a resource-constrained platform
and we present the direct performance gains of applying a few straightforward
coding techniques. Moreover, we focus on integer programming complemented
by bitwise techniques and general code tuning — combined, they form a toolbox
of techniques that can greatly improve program efficiency. Lastly, we adapt the
conventional time model of [2] for a sensor platform with a view to identify costly
operations and provide rough estimates of the time needed for typical tasks.

2 Case Study: TinySAX — Efficient Implementation of a

Data Mining Algorithm

Symbolic Aggregate Approximation (SAX) [7] is a widely-accepted and mature
algorithm used for data mining. Essentially SAX performs Symbolic Conversion:
it maps an ordered sequence of sensor readings to a sequence of letters from a
finite alphabet Σ according to a set of well-defined rules. Formally, the input is
a sequence of readings r̄ = 〈r1, r2, . . . , rn〉, ri ∈ Z and the output is a sequence
of letters s̄ = 〈s1, s2, . . . , sm〉, si ∈ Σ with 0 < m ≤ n. In this respect SAX is a
discretisation technique.

Applying SAX to a time-series stream has many attractive properties such as
dimensionality reduction due to the Piecewise Aggregate Approximation (PAA)
that is central to the algorithm. A PAA representation has been found to rival
more sophisticated dimensionality reduction techniques such as Fourier trans-
forms and wavelets [6]. The core idea of obtaining a PAA from a sequence of
readings is based on dividing the sequence into m equal-sized frames and tak-
ing the mean of the values that fall within each frame. The PAA representation
comprises the vector of the mean values. The final step involves transforming the
PAA into a sequence of equiprobable symbols. For this, SAX uses a sorted list of
breakpoints (found in statistical tables) β̄ = 〈β1, β2, . . . , βα−1〉, with α =size of
the alphabet, such that the area under a N(0,1) Gaussian curve from βi to βi+1

is 1/a with β0 and βα set to −∞ and ∞ respectively [14]. The final string is
obtained according to the range of the PAA coefficients i.e. if a coefficient is less
than β1 it is mapped to 1, if it is lies between β1 and β2 is is mapped to 2 and so
forth. The precise details of the PAA transformation and the further symbolic
transformation are well-described in the SAX literature [7, 6] (and references
therein).

Integer-based Optimisations for Resource-constrained Sensor Platforms 3

Table 1. Performance Times (in ms) for a Symbolic Conversion using naive imple-
mentation with floating-point operations.

Size
Operation 40 80 120

S2. Standardise

a. Mean 12ms (10.62%) 24ms (10.62%) 37ms (11.01%)
b. Std Dev 42ms (37.17%) 81ms (35.84%) 120ms (35.71%)
c. Subtract & Divide 25ms (22.12%) 53ms (23.45%) 78ms (23.21%)

S3. Get PAA 24ms (21.24%) 48ms (21.24%) 73ms (21.73%)

S4. Get Symbols 10ms (8.85%) 20ms (8.85%) 28ms (8.33%)

Total Time 113ms 226ms 336ms

RAM Image Size (Bytes) 766 846 926

One of the common uses of SAX is for Anomaly Detection in a time-series.
We use SAX in the WSN setting for a similar purpose, namely Complex Event
Detection. We use the following definition of Complex Events:

Complex Event. An interesting or unusual pattern in the data gathered and
processed by WSN nodes that can be very difficult or even impossible to
detect using threshold-based techniques.

This method allows us to detect many complex patterns simultaneously with-
out significant overhead to the resources of the WSN nodes. We use SAX in an
online fashion where sensor nodes continuously convert sliding windows of read-
ings to symbols and then compare them against patterns of symbols submitted
by users as event interests.

SAX relies on various operations involving floating-point numbers and a first
implementation attempt was running prohibitively slow on the target platform
(TMote Sky [16]). A single symbolic conversion was taking approximately 113ms
for a sliding window of 40 readings. Profiling the code, by timing the entry and
exit points of every function, provided the information shown on Table 1.

2.1 Refactoring SAX into TinySAX

This slow implementation had to be reviewed and re-written in a manner suitable
for the constraints of the WSN. The outcome was TinySAX; an efficient integer-
only implementation that reduced the active CPU time by more than a factor of
10. This was achieved by a combination of the following actions, listed in order
of importance:

– Integer Programming. Firstly, all floating point variables were replaced by
integers. Functions such as standardisation — that relies on the costly formula
z̄i = ri−µ

σ
where µ is the mean and σ is the Standard Deviation of the slid-

ing window r̄ — were re-written with elimination of the division operation.
Instead, the breakpoint vector β̄ was scaled by σ. The size of the breakpoint

4 Michael Zoumboulakis and George Roussos

 0

 50

 100

 150

 200

 250

 300

 350

 40 50 60 70 80 90 100 110 120

T
im

e
(m

s)

Window Size

11

113

19.5

226

30

336TinySAX
SAX

Fig. 1. Comparison of running times for two alternative implementations of the same
data mining algorithm on a TMote Sky. SAX refers to an implementation that relies
heavily on a number of floating point operations. TinySAX refers to an optimised
implementation that has been re-written using integer programming.

vector is equal to the size of the alphabet. Since the latter is typically much
smaller than the size of the sliding window, scaling the former involves signif-
icantly less operations than dividing each ri by σ. Furthermore, as we will see
in section 8, division is much costlier than multiplication especially for double
words (i.e. 32-bit integers). Secondly, the breakpoints vector was binary scaled

(i.e. multiplied by a power of 2) offline to map the floating point numbers to
integers. To counteract this, the PAA coefficients were also scaled by the same
scaling factor.

– Bitwise Techniques. Functions such as the square root were replaced by fast
integer implementations coded in a manner that utilised bit-level operations.
This gave an additional performance boost to the code.

– General Optimisations. Unrolling and consolidating loops and the choice
of appropriate variables (i.e. unsigned ints for indices) trimmed off the final
excess milliseconds from the implementation.

The results for TinySAX, in terms of time, are shown in Figure 1 — the difference
in current consumption for a typical sliding window of length 40 is 73.7mA for
the integer implementation compared to 251.74mA for the naive implementation
(assuming a 1Hz sampling frequency).

In the sections to follow we are going to describe from a more general perspec-
tive some of the programming techniques used to transform SAX into TinySAX
— an efficient data mining algorithm for constrained devices.

3 Optimisations: Strategies, Tools and Techniques

There are a few different alternatives when deciding to optimise for performance.
One of the first things that should be decided is whether there is a need for op-

Integer-based Optimisations for Resource-constrained Sensor Platforms 5

timisation: a fundamental questions is “is the program good enough already” [2].
The answer depends on the context in which the program must execute. If it has
been stress-tested under different realistic workloads and it is found to perform
well, then clearly there is little need to optimise. Aggressively optimising a pro-
gram still in the early design stage can adversely impact the quality of the code
and compromise its correctness. In the words of Donald Knuth [8]: “we should

forget about small inefficiencies, say about 97% of the time: premature optimi-

sation is the root of all evil”. A program should be subjected to an optimisation
process once it has been profiled and its runtime behaviour is well-understood.

If optimisation passes the above suitability test, it should then be decided
whether to opt for node-level optimisation, network-wide optimisation, or both.
Node-level optimisation targets the specific program image that executes on a
single node and attempts to re-design it so it is highly efficient. Network-wide
optimisation, as the name suggests, targets the entire network: local decisions of
individual nodes may be sub-optimal for the benefit of the whole network e.g.
an example of this is distribution of processing load among nodes or avoiding
bottlenecks such as the funnelling effect [1] that penalises nodes near a base sta-
tion. Network-wide optimisation largely depends on application-specific factors
and network characteristics such as density and therefore is beyond the scope of
this paper. The techniques that follow are primarily aimed at node-level optimi-
sation.

4 Integer Techniques

Integer techniques is a broad term for a family of methods relating to computer
programs using integral data types. Although the term has been used to refer to
techniques that sometimes use a mixture of floating-point and integer numbers,
in this context we use it to refer to programs that use exclusively integers.

The motivation for re-introducing integer techniques into WSN programs
stems from the following:

1. Floating Point on Software. The majority of low-end microcontrollers
(MCUs) lack Floating Point Units (FPUs). Floating point numbers are rep-
resented in software and operations involving these data types are inherently
slow and expensive.

2. Lack of Standardisation. Programs that use floats in WSNs are less
portable since there exist variations in the floating point representation
across different compilers and microcontrollers. Programs in heterogeneous
networks that need to communicate floating point values over the radio,
suffer from the added complexity that the lack of a common standard intro-
duces.

3. Application needs. Many real-world applications have a requirement for
operations involving real numbers — typical examples are object tracking
and target estimation applications. In general, a large number of trigonomet-
ric and statistic functions are prime candidates for integer transformation.

6 Michael Zoumboulakis and George Roussos

In the following, we will discuss some of the specific techniques that are available
to a programmer.

4.1 Scaling

We have briefly discussed scaling in section 2.1 where it was used in the im-
plementation of TinySAX. Scaling is a well-understood technique that involves
multiplying a floating point number by an integer, usually a power of two (bi-
nary scaling) to represent it as an integer. Arithmetic operations can then be
performed using the scaled numbers and the result can be divided by the same
scaling factor. As an example consider the floating point numbers −0.52 and
1.28. Scaling both by 211 and rounding toward zero gives −1064 and 2621 re-
spectively. Any arithmetic operation can be performed using the integers: i.e.
multiplication would yield −2788744. If we divide the result by the same scaling
factor we obtain −1361. To retrieve the floating point result we divide again and
obtain 0.6645 (the exact floating point result is 0.6656).

Care must be taken to prevent arithmetic overflow. This is usually done by
performing some analysis of the range of values that a program variable will
take. The maximum of these values is taken and scaled. To accommodate the
maximum value xmax, M bits will be needed with log2 xmax ≤ M . Numerical
precision requirements vary across applications, so N bits must be reserved to
satisfy the accuracy requirements ∆x with 2−N ≤ ∆x. The total number of bits
that will be needed to represent the floating point number in an integer type
within the accuracy requirements is therefore M+N . There is a tradeoff between
the maximum range of a variable and the accuracy required [17], but this is very
much application dependent.

Embedded operating systems such as TinyOS [13] employ scaling techniques
in the design of certain components — an example of this is the implementation
of Timers: a second equals 1,024 milliseconds. So if we need to represent the time
value of 1.875 seconds we scale it by 210 and use 1,920 to perform any arithmetic
operations. This level of accuracy is good enough for many applications.

Generally speaking, there will always be a tradeoff between speed and ac-
curacy: if an application requires very high numerical fidelity in its calculations
then performance may need to be sacrificed, for instance by using arbitrary
precision data types.

4.2 Fixed-point arithmetic

Fixed-point arithmetic is very closely related to the scaling technique but it
involves slightly higher degree of programming effort. It is estimated that ap-
proximately 30 % of the software development for the first NASA Apollo space
missions was spent on fixed-point arithmetic and scaling [3]. Nowadays, it is still
widely used by DSP programmers, graphics developers, computer typesetting
and other applications where there is a combined need for real-valued numbers
and high performance.

Integer-based Optimisations for Resource-constrained Sensor Platforms 7

In floating-point numbers the radix point is generally allowed to be deter-
mined dynamically or to “float” thus being capable of representing a wide range
of values. Conversely, in fixed-point arithmetic the radix point is fixed. There is
a fixed number of digits after the radix point reserved for the fractional part.

Let N represent the total number of bits needed to accommodate a fixed-
point variable. We can then split a type of length N into Integer bits and Frac-
tional bits. The integer bits are to the left of the hypothetical or implied binary
radix point and the fractional bits are the remaining bits to the right. We use the
notation (I, F) 1 to represent the Integer part and the Fractional part respec-
tively. The number of bits needed for an unsigned type is I +F and for a signed
type I + F + 1. The range of unsigned fixed-point numbers is from 0 to 2i − 2−f

while the range for singed fixed-point numbers is from −2i−1 to 2i−1−2−f , where
i and f are the number of bits needed to represent the integer and fractional
parts respectively. To obtain the value of unsigned and signed numbers in (I, F)
(fixed-point) representation we use equations 1 and 2 respectively [19]:

x = 2−f

N−1
∑

n=0

2nxn (1)

x = 2−f

(

−2N−1xN−1 +

N−2
∑

n=0

2nxn

)

(2)

Where xn denotes bit n of x.
Consider the following example: an unsigned fixed-point data type of the

form (3, 5). This type can accommodate a range from 0 to 7.96875 and has the
following representation:

← Integer Part → ←− Fractional Part −→

I I I F F F F F

The number (00101011)2 is then 2−5(1+ 2 +23 + 25) = 1.34375. Similarly, if
we were using a signed type (3, 5) requiring (I +F)+1 = 9 bits the range would
become −4 ≤ x ≤ 3.96875, with the MSB reserved for sign in two’s complement
notation. The code (in C) needed for the transformation is shown below:

#define FB 5 /* (3,5) Representation */

float f=1.34375; uint8_t fp;

fp = (uint8_t)(f * (1<<FB) + (f>=0 ? 0.5 : -0.5));

f = (float) fp / (1<<FB); /* Fixed-point back to float */

All arithmetic operations are defined using the fixed-point representation but
care needs to be taken to ensure that the types are in the same sign representation

1 Other common notations are (M, N) and Q.

8 Michael Zoumboulakis and George Roussos

and that the result does not overflow. Operations can still be performed on
numbers with different bit (I, F) representations but somewhat more effort is
required for bit alignment.

Although measurable performance improvements can be gained by using
fixed-point arithmetic, it suffers from certain disadvantages: it can hinder code
portability. Moreover, it can make the programming task tedious resulting in
error-prone code.

Recently, there have been efforts to automate the floating-point to fixed-point
conversion process. Notably, [11] and [15] suggest program translators that firstly
monitor and collect statistics about the range of floating point variables and then
automatically generate a fixed-point isomorphism.

4.3 Rational Arithmetic

An often overlooked alternative that lies between fixed point and floating point
arithmetic in complexity, cost and capability is rational (or “no point”) arith-
metic [5]. In rational arithmetic two variables are used to store each number; A
real number is therefore represented as a ratio (fraction) of two numbers. If arith-
metic is done on fractions instead of approximations many computations can be
performed entirely without any rounding errors or precision loss [9]. However,
taking into account that it is advisable to avoid arbitrary precision arithmetic,
some loss will occur if rational operations are bounded to a specific type length
as it is the typical case.

Rational numbers are represented programmatically as pairs of integers
(u/u′) with u and u′ relatively prime and with zero represented as (0/1). Arith-
metic operations are defined on pairs of integers and they largely rely on the
greatest common divisor algorithm. Euclid’s algorithm which is by far the sim-
plest for gcd calculation has O(n2) complexity, but a binary gcd implementation
is somewhat faster.

An example of multiplication between (u/u′) and (v/v′) and result (w/w′) in-
volves the calculation of uv and u′v′. The resulting (w/w′) may not be relatively
prime but if we let d = gcd(uv, u′v′) the answer is w = uv/d and w′ = u′v′/d
[9].

Rational arithmetic using bounded types offers the same range as fixed-point
arithmetic and approximately the same accuracy. In terms of simplicity, the
arithmetic operations of addition and subtraction are easier to implement [5]
in fixed-point whilst division and multiplication have simpler implementations
in rational arithmetic. An interface providing basic operations such as addition,
multiplication, comparison, and so forth can be developed that offers the ability
to use them in the same manner as calling library functions.

The advantage of rational arithmetic over fixed point is that it is more
portable and less machine dependent. Of course this assumes that all helper
functions (such as gcd) have machine-independent implementations.

Integer-based Optimisations for Resource-constrained Sensor Platforms 9

5 Bitwise Techniques

Bitwise techniques involve the use of the bit-level operators: AND, OR, Exclusive
OR (XOR) and left (<<) and right shifts (>>). The use of bit fiddling allows to
operate at a much lower level and it can often assist in making programs more
time and space efficient. Bit packing for example is a good technique for packing
many values into one data type.

Consider an example from our implementation of TinySAX: the typical al-
phabet size used is 10 characters with a maximum size of 15 characters. The
application has a requirement to send over the radio a string of characters. The
smallest data type that a language provides is one byte, however 4 bits are suf-
ficient to represent a character from an alphabet of size 15 (with range 0-15).
The listing below shows a code example used to pack 4-bit nibbles into a 64-bit
integer.

uint64_t y=0; /* 64-bit var to be packed with 16 nibbles */

for (i=0; i < length-1; i++)

{ y = (y+data[i]) << 0x4; }

y += data[length-1];

With this code we can encode twice the amount of information in a single
variable. If there is a requirement to send such a variable once a second over
the radio, in the course of a whole day we save 675 kilobytes (or little over 2
megabytes if we include the packet headers and footers) at the expense of a little
computation. The packed value can be unpacked using the code below:

for (i=shift=0; i < length; i++, shift+=0x4)

unpacked_data[(length-1)-i] = (y>>shift)%0x10;

Note that the modulo operation is inexpensive since it does not require divi-
sion i.e. x mod 2n = x&(2n − 1) [10].

Bit fields such as the above are particularly useful in WSNs when there
is a need to keep track of a neighbour table. For instance if neighbours with
identification numbers 1,5,8 are awake, this can be encoded in a bit field in the
following manner: {1, 0, 0, 0, 1, 0, 0, 1}. This a very compact representation and
individual bits from the field can be toggled, as neighbours appear or disappear,
at a very small computational cost.

Furthermore, bitwise operations are useful for the reduction or elimination of
branching — a part of the program where control flow is decided on evaluating
some condition — in programs. For example the simple line x - ((x - y) &

-(x < y)) can be used to determine the maximum of the two values (x, y) or
(x ˆ (x >> (16 - 1))) - (x >> (16 - 1)) to determine the absolute (abs)
value of x (assuming 16-bit integers).

10 Michael Zoumboulakis and George Roussos

 0

 200

 400

 600

 800

 1000

 1200

 1400

T
im

e
(m

s)

Size: (a) 128 (b) 256 (c) 512

70 102

296
132198

588

255
392

1174var1
var 2
var3

Fig. 2. Running time of 3 variance algorithms on a TMote Sky — Sets A, B, C
represent vectors of 128, 256 and 512 random numbers respectively.

The usefulness of bit-level techniques in embedded devices is undisputed —
in the words of the author of one of the leading works in bit fiddling [18] “It is

amazing what can done with binary addition and subtraction and maybe some

bitwise operations”. The main criticism for bit fiddling is that it can make pro-
grams less portable. The majority of bit-level operations depend on endianness
(i.e. the byte ordering) and therefore can make programs platform-specific.

6 Profiling

Profiling or benchmarking is a useful form of empirical analysis that aims to
identify which parts of a computer program consume the most time or other
resources such as memory, registers or disk. With respect to time, a straightfor-
ward way of profiling a program is the use of timers at entry and exit points of
functions. Timers are criticised of inaccuracy in conventional operating systems
because a multi-tasking computer system is rarely idle and processes contend for
CPU time. However this is not entirely true for the majority of low-end sensor
nodes where a single-threaded application 2 is the only process in the system.
Therefore, the use of timers is a fairly accurate profiling measure within the
platform timer accuracy and precision envelope.

Theoretical complexity analysis of algorithms can be complemented by em-
pirically obtaining execution times for real-world input. This process can aid
in deciding which implementation to include in the final version of a program.
As an example consider the results of the empirical analysis of three alternative
variance implementations shown in figure 2.

The first algorithm (var1) is fast but slightly inaccurate: it has a relative
error of .0011%, .037% and .092% on sets of random numbers A, B and C of

2 For the sake of simplicity, we ignore recent multi-threading abstractions such as
TinyThreads and ContikiOS.

Integer-based Optimisations for Resource-constrained Sensor Platforms 11

Table 2. Results from unrolling a basic loop that executes the one-line statement
c[i]=a[i]+b[i] in its body.

Degree of Unrolling Time (ms)

Normal Loop 220ms

2-way Unrolling 173ms

Loop Elimination 112ms

sizes 128, 256 and 512 respectively. Algorithm 2 (var2) is precise and fairly
fast while algorithm 3 (var3) [9] is a highly accurate and numerically stable
algorithm.

The use of such analysis can annotate the accuracy-efficiency tradeoff with
some numbers and can make the decision-making process easier.

7 Loop Unrolling

If a program performs an operation multiple times it is worth considering un-

rolling the loop — that is explicitly writing each iteration of the loop in sequence
[2]. This can only be achieved when the terminating condition of the loop is
known in advance.

An example of 2-way unrolling, provided SIZE is known in advance and it is
an even number, is shown below:

for (i=0; i < SIZE; i+=2)

{ c[i] = a[i]+b[i];

c[i+1] = a[i+1]+b[i+1]; }

The loop can be unrolled further as long as (SIZE mod increment) ==0 and
it can even be eliminated altogether by writing out explicitly every instruction.
The runtime results from unrolling the simple loop described above are shown
on Table 2.

Another optimisation technique, involves removing any conditional expres-
sions that are inside the body of a loop. This will reduce branching and the code
can be re-factored by enclosing a copy of the loop inside the bodies of the if

and else clauses respectively. Similarly, any expensive operations inside the loop
body should be examined: for instance if a loop involves an expression that con-
tains division, then this expression should be re-arranged to use multiplication
e.g. (u/u′) ≤ (v/v′) is equivalent to (uv′) ≤ (vu′) — the latter is significantly
cheaper, as we will see in the next section.

Generally speaking, loops are usually the first part of the program to target.
Eliminating the loop completely will almost always yield a gain in performance.
Critics of this technique assert that there is a side-effect of higher register usage
to keep track of intermediate results. Empirical analysis suggests that this is

12 Michael Zoumboulakis and George Roussos

Table 3. Performance Times (in ms) for various operations executed by the TMote
Sky (timed using TinyOS 2.x and msp430-gcc 3.2.3).

Arithmetic (Integer)

Operation 16-bit 32-bit 64-bit

Increment 6,734 12,824 67,271
Addition 7,955 15,319 88,301
Subtraction 7,969 15,310 87,985
Multiplication 145,020 159,060 316,755
Division 226,265 709,720 3,519,055
Remainder 225,375 706,875 3,540,080

Bitwise

AND 7,965 15,285 88,095
OR 7,985 15,325 88,360
XOR 7,955 15,315 88,310
SHIFT 56,735 62,880 573,665

Floating Point Arithmetic

Assignment & Cast 2,687,535
Addition 3,438,530
Subtraction 3,499,920
Multiplication 4,841,490
Division 4,041,785

Array Comparisons & Swaps

Straight Comp 104,095
Comp C Fcn 83,315
Comp TOS Fcn 83,335
Comp TOS task 159,055
Swap C Macro 93,085
Swap C Function 83,320

Max Function

Straight Max 137,565
Max C Macro 137,075
Max C Function 79,110

Built-in Sensors

ReadLight 327,510
ReadTemperature 154,125
ReadHumidity 154,175
ReadIVoltage 321,635

External Flash Chip IO

Reads (4-bytes) 158,750
Writes (4-bytes) 191,280

highly compiler-dependent; run-time results can always assist in measuring the
benefit for loop elimination.

Integer-based Optimisations for Resource-constrained Sensor Platforms 13

8 A Time Model for WSNs

In this section, we apply the methodologies introduced by Bentley [2] for the
construction of a time model that can be used to identify the relative cost of
typical operations. The model is adapted so it tests various platform-specific
components such as the time it takes to sample the on-board sensors. The results
are shown in Table 3. Reported times are in milliseconds per 5,000 trials. As
expected the arithmetic operations that are larger than the MCU word size (16-
bit) are taking much longer. For example, 64-bit integer division is almost as
slow as floating point division, while for other operations using a 64-bit type is
cheaper than floating-point. 64-bit types can be useful for temporary storage i.e.
holding results, when scaling is employed.

The lack of FPU slows down floating point operations — by a factor of 432
in the case of addition — making floating point operations unacceptably slow.
Surprisingly, bitwise operations are slightly slower than addition and subtraction
but shifts are still considerably faster than division and multiplication.

Subscripted array operations are generally fast, and according to [2] this is
due to favourable memory access predictability. A TinyOS function — which is
platform-independent and hence portable — is infinitesimally slower (by 20ms)
than a C function performing the same operation. However, a TinyOS task,
which is placed on a separate FIFO queue, is somewhat slower — almost by a
factor of 2 — than the C or TinyOS function. The debate of whether a function
or a preprocessor macro is faster, appears to have settled on the fact that on a
mote the C function is faster than its macro equivalent.

Sampling Light and Internal Voltage sensors is more expensive than sampling
Temperature and Humidity — the internal temperature and humidity sensors
are on the same chip, hence the similarity in terms of performance. Flash Input-
Output is generally slow3 and as expected writes and slower than reads. The
reads are not cached, in contrast with traditional disks and flash chips.

Lastly, we expect this table to provide a suitable guide into the tradeoffs of
operations and data types that partially determine the running time of programs.

9 Summary

There is a wide variety of real-world WSN applications that have a need for
representation of real numbers in programs. However, many MCUs lack Float-
ing Point Units (FPUs) and as a result computations are performed in software.
This has the undesirable impact of slow performance and increased energy cost;
both factors are burdensome in any embedded environment. Furthermore the
lack of a common floating point representation across different node platforms
and compilers can introduce runtime errors in heterogeneous networks that need
to communicate such values over the air. In this paper, we focus on three main

3 The results reported are using the ConfigStorage TinyOS component.

14 Michael Zoumboulakis and George Roussos

integer programming techniques: Scaling, Fixed-point and Rational-point Arith-
metic. Each one of these varies in complexity, cost and implementation and a
good understanding of their relative strengths and weaknesses is essential for
designers who aim to shave off valuable time units from their implementations.
Moreover, bitwise techniques and other optimisations such as loop unrolling can
assist in compounding significant performance gains. We have highlighted the
applicability of these methods, combined with integer techniques, by present-
ing a case study of an implementation of a data mining algorithm for a WSN
platform. By re-writing the program with efficiency as the ultimate goal perfor-
mance improved by a factor of more than 10. Finally, we assert that operational
awareness of a program’s performance together with application of an appropri-
ate optimisation strategy are essential factors in software engineering for WSNs
with direct implications to network and device lifetime.

References

1. Gahng-Seop Ahn, Se Gi Hong, Emiliano Miluzzo, Andrew T. Campbell, and
Francesca Cuomo. Funneling-MAC: a localized, sink-oriented MAC for boosting
fidelity in sensor networks. In SenSys, pages 293–306. ACM, (2006).

2. Jon Bentley. Programming Pearls (2nd Edition). Addison-Wesley Pub Co, (1999).
3. H. Kreide and D.W. Lambert. Computation: Aerospace Computers in Aircraft,

Missiles and Spacecraft. Space/Aeronaut, 78, (1964).
4. Joseph M. Hellerstein, Wei Hong, and Samuel Madden. The sensor spectrum:

technology, trends, and requirements. SIGMOD Record, 32(4):22–27, (2003).
5. Berthold K. P. Horn. Rational arithmetic for minicomputers. Softw., Pract. Exper.,

8(2):171–176, (1978).
6. Eamonn Keogh, Jessica Lin, and Ada Fu. HOT SAX: Efficiently Finding the

Most Unusual Time Series Subsequence. IEEE International Conference on Data
Mining, pages 226–233, (2005).

7. Eamonn Keogh, Stefano Lonardi, and Chotirat Ann Ratanamahatana. Towards
parameter-free data mining. In KDD ’04: Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 206–215,
New York, NY, USA, (2004).

8. Donald E. Knuth. Structured Programming with go to Statements. ACM Comput.
Surv., 6(4):261–301, (1974).

9. Donald E. Knuth. The Art of Computer Programming, Volume II: Seminumerical
Algorithms, 2nd Edition. Addison-Wesley, (1981).

10. Donald E. Knuth. The Art of Computer Programming: Volume 4, F.1, Binary
Tricks and Techniques. Addison-Wesley, (2009).

11. Ki-Il Kum, Jiyang Kang, and Sung Wonyong. AUTOSCALER for C: an opti-
mizing floating-point to integer C program converter for fixed-point digital signal
processors. In IEEE Transactions on Circuits and Syst—Part II, volume 47, pages
840–848, (2000).

12. Philip Levis, Eric Brewer, David Culler, David Gay, Samuel Madden, Neil Patel,
Joe Polastre, Scott Shenker, Robert Szewczyk, and Alec Woo. The Emergence of a
Networking Primitive in Wireless Sensor Networks. Communications of the ACM,
51(7):99–106, (2008).

Integer-based Optimisations for Resource-constrained Sensor Platforms 15

13. Philip Alexander Levis. TinyOS: An Open Operating System for Wireless Sensor
Networks (Invited Seminar). In MDM ’06: Proceedings of the 7th International
Conference on Mobile Data Management, page 63, Washington, DC, USA, (2006).

14. Stefano Lonardi, Jessica Lin, Eamonn J. Keogh, and Bill Chiu. Efficient discovery
of unusual patterns in time series. New Generation Comput., 25(1):61–93, (2006).

15. Daniel Menard, Daniel Chillet, and Olivier Sentieys. Floating-to-fixed-point con-
version for digital signal processors. EURASIP J. Appl. Signal Process., 2006:77–
77, (2006).

16. MoteIV (later renamed to Sentilla). TMote Sky Datasheets and Downloads,
http://www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf.

17. Jimfron Tan and Nicholas Kyriakopoulos. Implementation of a Tracking Kalman
Filter on a Digital Signal Processor. In IEEE Transactions on Industrial Electron-
ics, volume 35, pages 126–135, (1988).

18. Henry S. Warren. Hacker’s Delight. Addison-Wesley, (2002).
19. Randy Yates. Fixed-point arithmetic: An introduction — digital signal labs, tech-

nical reference, http://www.digitalsignallabs.com/fp.pdf, (2007).

http://www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf
http://www.digitalsignallabs.com/fp.pdf

	Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering
	Michael Zoumboulakis, George Roussos
	Introduction
	Case Study: TinySAX --- Efficient Implementation of a Data Mining Algorithm
	Refactoring SAX into TinySAX

	Optimisations: Strategies, Tools and Techniques
	Integer Techniques
	Scaling
	Fixed-point arithmetic
	Rational Arithmetic

	Bitwise Techniques
	Profiling
	Loop Unrolling
	A Time Model for WSNs
	Summary
	References

